
OmniLedger: A Secure, Scale-Out, Decentralized Ledger

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, and Bryan Ford
firstname.lastname@epfl.ch
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Abstract
Designing a secure and open Distributed Ledger (DL) sys-
tem that performs on par with classic payment-service
providers such as Visa is a challenging task. Current pro-
posals either do not scale-out or do so only at the cost of
security or decentralization. OmniLedger is a new scalable
DL that provides secure, decentralized, horizontal scaling by
splitting the state into multiple shards and using distributed
randomness to assign validators securely. To maintain intra-
and cross-shard consistency validators run a novel parallel
consensus algorithm for the former and an Atomic Commit
protocol for the latter. To mitigate storage cost and enable
fast, secure bootstrapping, OmniLedger introduces compact
state-blocks that summarize shard-states.

OmniLedger offers tunable performance based on the as-
sumed strength of the adversaries, and scales linearly with
the number of shards. Experiments show that it achieves
Visa-level throughput of 6000 transactions per second (peak-
ing at 50000) for 1800 validators, of which up to 12.5%
(5%) are assumed to be malicious. Finally, OmniLedger sig-
nificantly reduces bandwidth cost for out-of-date validators
to update: for a one-month-old view, a validator downloads
40% of the amount of data compared to Bitcoin, whereas a
new validator downloads only 7% while bootstrapping.

1. Introduction
The current increase of interest in decentralized systems
has revealed the lack of users’ trust in third-parties, such
as banks for managing their assets [43], identity providers
for managing their digital identities [2, 36], or certificate au-
thorities [54] for certifying their trustworthiness. However,
Bitcoin, the most prominent such systems, has been proven
both inefficient [17] and insecure [3, 25, 30].

Existing solutions [1, 15, 19, 37, 46] change the consen-
sus algorithm to PBFT [16] variants, which eliminates or
mitigates the majority of attacks and can increase scalabil-
ity [37]. However, as the number of validators increases the
performance decreases due to the need to replicate all trans-
actions and reach consensus across larger groups, i.e., these
systems do not scale out. A naive approach to scaling out, by

Figure 1. Trade-off triangle of current DL-systems

having one validator for each transaction, does not work in
realistic environments where validators may be malicious.

To tackle these horizontal scaling issues, recent efforts [18,
39] split the state and bring sharding [61] to DLs, but do not
yet offer a general solution that maintains strong security.
RSCoin [18] relies on a central bank for randomness gen-
eration and auditing, making it inapplicable to open, decen-
tralized trust environments. Elastico [39] offers horizontal
scaling but with high failure probabilities: e.g., 97% within
an hour for 16 shards in its experimental configuration, as
explained in Section 9. Furthermore, Elastico cannot atom-
ically process transactions that touch more than one shard,
a critical requirement in financial applications such as cryp-
tocurrencies. In short, prior solutions [18, 37, 39] achieve
only two out of the three desired properties decentralization,
security, and scale-out, as illustrated in Figure 1.

This work introduces OmniLedger, the first general DL
system that provides all three properties mentioned above
and achieves performance comparable to Visa [7, 57]. Om-
niLedger addresses four key challenges.

First, current scalable systems [37, 39] suffer latencies
of minutes, especially under faults. To address this chal-
lenge, OmniLedger increases the concurrecny of current ap-
proaches, using the observation that unlike Bitcoin’s prob-
abilistic consensus [43], PBFT ensures finality [58]: once
consensus is reached on a block, validators subsequently ac-
cept only transactions that recognize this decision. Hence,
a strict total ordering of blocks is not needed, as long as
the partial ordering of transactions is consistent. Further-
more, OmniLedger increases robustness of ByzCoin with-
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out affecting performance significantly by adopting group
communication patterns that enable the consensus leader to
circumvent malicious group leaders.

Second, only Proof-of-Work (PoW) [4] systems currently
provide a decentralized mechanism to assign validators to
shards [39]. However, PoW is inefficient [20] and prone to
recentralization (e.g., only a couple of validators can con-
trol Bitcoin [33]), necessitating the pessimistic assumption
that validators controlling a high fraction of the system’s
hashing power may be colluding. OmniLedger enables se-
cure sharding based on bias-resistant decentralized random-
ness [26, 53], which is applicable to any Sybil-attack protec-
tion mechanism including PoW [37, 39, 43, 63], Proof-of-
Stake (PoS) [5, 35], Proof-of-Personhood (PoP) [12], or per-
missioned blockchains [15, 18]. This flexibility enables Om-
niLedger to offer higher performance and scalability in de-
ployments that can realistically assume weaker adversaries.

Third, current sharding approaches in DLs do not provide
transaction atomicity [39], posing the risk of indefinitely
locking funds if a transaction is accepted only partially. Om-
niLedger implements an Atomic Commit (AC) [60] algo-
rithm to guarantee either that shards fully commit transac-
tions, or that clients eventually hold proofs of rejection to
reclaim locked funds. Given that shards use BFT consensus,
we can treat them as honest, reliable processors and imple-
ment AC atop these secure shards.

Finally, while Bitcoin’s blockchain is relatively small and
slow-growing, more scalable systems [1, 37, 39] can drasti-
cally increase their DL’s growth rate . Eventually, this would
lead to recentralization effects as only validators with access
to enough resources would be able to bootstrap and store
the blockchain. To mitigate these problems, we introduce
state blocks that checkpoint [16] the state of a shard enabling
blockchain truncation. Thanks to the properties of BFT con-
sensus, validators can drop most of the history, once they
commit to a new state block (SB) which removes the prob-
lem of an ever-increasing DL. Thus validators can bootstrap
and update much faster than in conventional DL-systems and
without relying on trusted intermediaries.

To evaluate OmniLedger, we implemented a prototype
in Go on commodity servers (12-core VMs on Deterlab).
Our experimental results show that OmniLedger scales lin-
early in the number of validators yielding a throughput of
6,000 transactions per second with a 10-second consensus
latency (for 1800 widely-distributed hosts, of which 12.5%
are malicious). If we assume at most 5% of validators to
be malicious, the system achieves throughput comparable to
Visa [7, 57], with a latency of a few seconds. Furthermore,
running multiple consensus instances enables OmniLedger’s
consensus algorithm to handle 20% more throughput than
ByzCoin with a concurrent 35% decrease in the consensus
latency. Finally, a Bitcoin validator with a month-long stale
view of the state incurs 40% of the bandwidth, due to check-
pointing with state blocks.

In summary, this paper makes the following key contri-
butions:

• We introduce OmniLedger, the first DL system that
provides secure sharding, decentralization, high perfor-
mance, horizontal scaling and low storage costs, inde-
pendently of the anti-Sybil-attack method.

• We provide an example of OmniLedger with auditing in
an open cryptocurrency, where we introduce the first DL
that enables trustless collaboration of a third-parties and
an open cryptocurrency.

• We informally analyze the security of OmniLedger and
provide guidelines on the trade-off between performance,
decentralization and robustness.

• We implement OmniLedger and evaluate a prototype on
real-world Bitcoin transactions.

Roadmap. Section 2, recalls existing systems serving as
OmniLedger’s starting point. Section 3, introduces Om-
niLedger’s systems and threat models and introduces Sim-
pleLedger, a strawman protocol trying to achieve Om-
niLedger’s goals. Then it discusses SimpleLedger’s short-
comings and provides a roadmap on how OmniLedger ad-
dresses them. Section 4 presents the general architecture of
OmniLedger and introduces an example application on an
open cryptocurrency. Then, Section 5 provides an informal
security analysis, Section 6 describes the implementation
of OmniLedger and Section 7 the experimental evaluation.
Finally, Section 8 discusses limitations of the current de-
sign, Section 9 presents the related work, and Section 10
concludes this paper.

2. Background
This section outlines the most relevant prior work that Om-
niLedger builds on and how we extend it.

2.1 RandHound
RandHound [53] provides unbiasable decentralized random-
ness in a Byzantine setting. It assumes the existence of an
externally accountable client that wants to get provable ran-
domness from a big group of semi-trustworthy servers. To
produce randomness, RandHound splits the group of servers
into smaller ones and creates a publicly verifiable commit-
then-reveal protocol [52] which leverages the pigeonhole
principle to prove that the final random number includes the
contribution of at least one honest participant thus perfectly
randomizing RandHound’s output.

OmniLedger combines RandHound with a random leader
election process. This process uses Verifiable Random Func-
tions (VRF [42]) in order to bound the bias probability, even
without the existence of an accountable client.

2.2 Cothority
Multisignature schemes [51, 45] are a common approach for
attesting files or statements by a joint group of independent
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parties and, usually, enable the parties to produce a single at-
testing signature. Such schemes, however, often do not scale
well with the increasing number of parties. CoSi [54] is a
protocol for large-scale collective signing. Aggregation tech-
niques and communication trees [56] enable CoSi to effi-
ciently produce compact Schnorr multi-signatures [51] and
to scale to thousands of participants. The system assumes the
existence of an authority (e.g. a CA) whose actions are ob-
served and cross-checked and, if found to be valid, co-signed
by a group of semi-trustworthy witnesses. Together author-
ity and witnesses form a collective authority or cothority.

In OmniLedger we use this scheme for efficient auditing
of untrusted shards managed by a third part (e.g., a bank).
The auditors form a cothority together with the third party as
the leader and verify and attest the consistency of the shard’s
publicly exposed DL.

2.3 ByzCoin
The first experimentally proven scalable BFT consensus pro-
tocol was introduced in ByzCoin [37], where the authors
use collective signing [54] to build a scalable version of
PBFT [16]. The biggest performance improvement comes
from using the aggregation techniques and the communica-
tion patterns that CoSi introduced. Another contribution of
ByzCoin is the way it bootstrapped BFT consensus groups
from a PoW blockchain, thus managing to bring together the
open-membership assumptions of Bitcoin with the closed-
membership needs of PBFT. Later work [1, 46] provides for-
mal proofs and incentive analysis of systems closely related
to ByzCoin.

OmniLedger improves on ByzCoin by increasing the con-
currency of block commitments and by using more conser-
vative communication patterns that withstand faults without
impacting performance heavily.

3. System Overview
This section presents system and threat models as well as the
design goals of OmniLedger. Based on that we build a straw-
man protocol to identify the challenges that need to be ad-
dressed and specify a design roadmap towards OmniLedger.

3.1 System and Threat Model
We assume that the system evolves in epochs, coarse-grained
units of time such as days or weeks. Validators are nodes
who reach consensus on the validity of transactions and keep
the ledger consistent. Moreover, we presume the existence
of a (decentralized) public-key infrastructure (PKI) [37, 39],
which allows validators to learn each others’ public keys
and subsequently verify messages sent to each other. We as-
sume the group of validators is determined by a Sybil-attack
resistant mechanism, such as PoW, PoS, PoP or simply a
static permissioned group [15]. Validators can be anony-
mous, but they establish their identity depending on the used
anti-Sybil-attack method. During an epoch the group of val-
idators is randomly split into subgroups, so-called shards,

each of which validates a designated portion of the system’s
state.

If OmniLedger’s membership DL does not rely on PoW,
the network model is partially synchronous, while for PoW
systems, we assume that at least 51% of honest miners are
in synchrony with the acceptable delay ∆ defined by the
expected block mining time as defined by Pass et al. [47].
This differentiation in the network assumptions is necessary
for the security of PoW, but, as we do not rely on synchrony
within one epoch, does not affect the rest of the paper.

We assume that adversaries are bound computation-
ally and that the usual cryptographic hardness assump-
tions hold, i.e., adversaries cannot break security of cryp-
tographic hash functions, are subject to the computational
Diffie-Hellman assumption, etc. Finally, we assume, simi-
lar to prior work [19, 37, 39], that an adversary is able to
control at most 25% of the validators. This assumption is
strong, as an adversary would have to control 25% of the
total currency (PoS) or 25% of accountable validators (per-
missioned, PoP). In Section 7, we show that decreasing the
power of the adversary to (25 − ϵ)% for ϵ > 0, can lead to
an increase of OmniLedger’s performance.

3.2 Design Goals
This section summarizes the design goals of OmniLedger
categorized into objectives for performance and security.

Performance Goals:
• High throughput and low latency: The system provides

higher throughput and lower latency than other scalable,
state-of-the-art DL systems (i.e., ByzCoin).

• Scale-out: If the number of validators increases, the ex-
pected throughput increases.

• Low storage: Validators do not need to store the full his-
torical data but only the last state to validate transac-
tions.

Security Goals:
• Full decentralization: There are no trusted third parties or

single points of failures.
• Secure cross-shard transactions: Transactions that touch

multiple shards commit atomically, or eventually abort,
thus preventing funds from being locked forever.

• Secure sharding: Each shard correctly processes transac-
tions assigned to it.

• Censorship resistance: Individual malicious shard leaders
cannot censor transactions.

3.3 OmniLedger Design Roadmap
This section introduces SimpleLedger, a strawman DL-
system, on the basis of which we specify our design roadmap
towards OmniLedger.

The PKI mentioned in Section 3.1 is specified in Sim-
pleLedger (and also later in OmniLedger) as an epoch-

3 2017/5/11



Figure 2. Architectural overview of OmniLedger

level DL, where membership is either determined through
a CA [15] or through validators competing for election [37,
39] using their anti-Sybil-attack membership tokens (PoW,
PoS, PoP) as proofs for having established their identities.
All elected members can participate in the next epoch and
gain rewards. Validators learn the epoch’s public keys via
gossiping mechanisms similar to Bitcoin’s approach and use
these keys to verify signatures. For the rest of the paper we
assume that validators have established their identities and
focus only on one epoch.

For the per epoch run of SimpleLedger, we start with
the secure validator assignment to shards. Permitting the
validators to choose the shards they want to participate is not
secure, as the adversary could focus all his identities in one
shard and break it. As a result, we need to use some source of
randomness to ensure that the validators of one shard will be
a sample of the overall system and w.h.p. will have about the
same fraction of malicious nodes as the overall system. PoW
is currently the only proven Sybil-attack resistant method
that can provide such decentralized randomness. However,
we want SimpleLedger to be applicable to any DL. Hence,
SimpleLedger uses a centralized randomness beacon (e.g.,
the NIST beacon [44]) to split the validators into subgroups.

After assigning validators to shards, SimpleLedger uses
ByzCoin for inner-shard consensus. To ensure secure opera-
tions, ByzCoin is run in groups of 600, see Figure 6. Finally,
SimpleLedger assumes that transactions are validated within
one shard and that the DL of each shard holds all the histor-
ical data, for new validators to bootstrap securely.

Challenges. Although SimpleLedger is a first step towards
our goals it still exhibits various restrictions. Namely, (1)
ByzCoin’s algorithm enforces a global total ordering of
transactions leading to non-real-time latencies, especially
under faults, (2) the randomness source is centralized, (3)
there is no secure cross-shard transaction mechanism and
(4) validators face high storage overheads. To address these
restrictions, we transform SimpleLedger into OmniLedger
in four steps (Figure 2):

1. To increase throughput and decrease latency, OmniLedger
removes total ordering between blocks and introduces
parallel consensus. (Section 4.2, i⃝ in Figure 2).

2. To enable sharding in any kind of DL, OmniLedger ex-
tends RandHound [53] and creates decentralized, bias-
resistant randomness, without a trustworthy client (Sec-
tion 4.3, ii⃝ in Figure 2).

3. To enable secure cross-shard transactions OmniLedger
uses AC that provides clients with proofs of rejection, and
enables them to abort partially committed transactions
(Section 4.4, iii⃝ in Figure 2).

4. To decrease the data stored on the ledger, OmniLedger
introduces state blocks that summarize the current state
and enable history-pruning. (Section 4.5, iv⃝ in Figure 2).

The first and fourth technique can increase performance
of current DLs [1, 15, 19, 37, 43, 46, 62] that do not imple-
ment sharding.

4. OmniLedger’s Design
This section presents OmniLedger, a framework that pro-
vides security, scalability, and performance for decentralized
systems that maintain a distributed ledger (DL) and run in a
Byzantine environment. For clarity of exposition, we start
from SimpleLedger, as introduced in Section 3, and address
its shortcomings step by step until we arrive at OmniLedger.

4.1 RoadMap
Section 4.2 shows how to increase performance of ByzCoin
and PBFT by identifying the dependencies between conflict-
ing transactions, removing total ordering of blocks and intro-
ducing a block-DAG to achieve maximum concurrency. In
the next part, Section 4.3, we introduce bias-resistant, decen-
tralized randomness to securely assign validators to shards,
followed by the specification of an Atomic Commit proto-
col to preserve transaction atomicity in Section 4.4. After-
wards, Section 4.5 discusses how to deal with the problem
of an ever-growing DL by introducing intermediate state
blocks that enable efficient verification and fast bootstrap-
ping and decrease storage needs. Finally, Section 4.6 de-
scribes an anti-censorship mechanism, the last component
of OmniLedger, and Section 4.7 extends the default per-
missionless setting of OmniLedger to enable a trustless co-
existence of open and private shards, the latter of which are
managed by third-parties (e.g., banks).
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4.2 Speeding Up Consensus
This section provides a new parallel consensus algorithm
that can be used on its own in a cryptocurrency and as
experiments show (see Section 7), it concurrently provides
higher throughput and lower latency than ByzCoin.

4.2.1 Challenges
A number of DL protocols [24, 37, 39, 43, 62], including
SimpleLedger, have a common architecture, where a leader
proposes a new block that respects a strict total ordering of
blocks, that form a blockchain. This block is a batch of oper-
ations on the objects of the state, that are the Unspent Trans-
action Outputs (UTXOs). In this work we intuit that we can
achieve better parallelization if the validators decide on the
ordering of operations per UTXO-object, thus enabling them
to commit transactions in parallel. However, in order to run
parallel consensus instances, we need to be sure that conflict-
ing transactions are not committed concurrently. Hence, in
order to keep the state consistent, independent of the order-
ing upon which blocks were committed, we need to identify
the dependencies between transactions.

Identifying the dependencies is not enough, as running
consensus is costly and consequently does not scale well
if run on a per transaction basis [37]. As a result, the sys-
tem needs to rely on batching non-conflicting sets of trans-
actions, i.e., creating blocks. However, two problems arise
with the current blockchain [43] data-structure. First, every
block is dependent on its parent, thus creating a linear chain
which means that the shard cannot run consensus rounds in
parallel. Second, it is almost certain that most transactions
within one block will depend on different transactions that
were committed in multiple different blocks, creating a mul-
titude of backpointers to capture all dependencies.

4.2.2 Identifying the Dependencies
To address the challenge of safely running parallel consen-
sus instances we first identify the potential dependencies be-
tween transactions. Bitcoin transactions have two kinds of
operations: inputs and outputs. At the input fields, the clients
spend their UTXOs. At the output fields, the clients cre-
ate UTXOs and credit them some value. A conflict between
transactions exists only if they have overlapping sets of in-
puts and/or outputs, hence the validators can safely commit
in parallel any other pair of transactions without imposing
order. We now look into the specific dependencies between
two transactions that update overlapping parts of the state.
We call the two transactions A and B, where A should be
committed before B.

• Input-after-input: This dependency is an unavoidable
data dependency, as B needs to wait until A commits.
By breaking consistency and forcing the concurrent com-
mitment of two input-conflicting transactions, attackers
mount double-spending attacks [43] in slowly consistent
protocols [24, 43, 62].

• Input-after-output: This dependency emerges when A
creates a UTXO as an output and B concurrently spends
that specific UTXO. Consequently, if B is validated be-
fore A, the validation fails. Hence, B should be in a block
that causally depends on the block that validated A.

• Output-after-output: When it comes to concurrently
committing transactions that try to credit the same ad-
dress (account), there is no real dependency due to the
commutativity of addition.1 This is also why transactions
A and B create different UTXOs for the same output.

4.2.3 Block-DAG (Directed Acyclic Graph)

Figure 3. Block-DAG in OmniLedger (A− > B denotes
that funds are transfered from account A to account B)

To address the challenge of putting transactions into
batches while preserving concurrency, we move to the block-
DAG data-structure (see Figure 3), where every block has
multiple backpointers. Unlike in previous research [38], we
enforce pending blocks to include non-conflicting transac-
tions and should point to all other blocks upon which the
pending blocks depend.

Finally, as for the challenge of needing a big amount of
backpointers per block, we relax the requirement that a block
(we call it block A) must point back to all the committed
blocks that A’s transactions depend on. Instead, A refers to
the minimal set of committed blocks that are independent of
each other (because they were created concurrently) but that
A depends on.

4.3 Secure Shard Creation
A crucial aspect of the secure operation of OmniLedger is
the proper assignment of validators to shards. The straw-
man approach, introduced in Section 3, uses a centralized
randomness beacon, thus bearing the risk that if an ad-
versary manages to subvert the beacon he can also un-
dermine OmniLedger’s security. To mitigate this problem,
OmniLedger uses a verifiable randomness-generation proto-
col [11, 32, 53] that does not rely on a trusted third party.
To keep OmniLedger’s randomized validator assignment in-
dependent from other blockchain-based systems, such as
Bitcoin [11], we make use of the RandHound protocol [53].
Next, we describe the challenges of integrating such a bea-
con into OmniLedger and discuss our solution.

1 Transactions add a defined amount of funds, which is commutative.
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4.3.1 Challenges
RandHound requires a leader who manages protocol runs.
Obviously, this leader might fail accidentally or deliberately
at his task of producing collective randomness for the shard-
ing process. To mitigate this problem we specify a mech-
anism to elect leaders who take over responsibilities from
their failing predecessors. Making this election mechanism
deterministic, however, might enable a Byzantine adversary
to enforce the sequential failing of n/3 out of n protocol
runs, hence enabling him to either significantly delay or in
the worst case even bias the sharding. Therefore, the election
of leaders should be unpredictable and unbiasable, which
results in a chicken-and-egg problem, as the purpose of a
RandHound protocol run is to generate randomness.

4.3.2 Randomized Leader-Election Protocol
To address the challenge of delaying or biasing the random-
ized sharding process, we use two countermeasures. First,
OmniLedger enforces the rule that if a leader fails to finish a
RandHound run, he loses his right to participate in the epoch
and the associated reward. Second, OmniLedger uses a lot-
tery mechanism for leader election; it is based on verifiable
random functions [42], reducing an adversary’s chance to be
the leader in n consecutive runs to (1/3)n.

There are multiple alternative ways to get a VRF [22, 23].
In OmniLedger we use the construction of Franklin and
Zhang [26]: Let (ki,Ki) = (ki, G

ki) denote the private-
public key pair of node i where G is the generator of the
cryptographic group. We assume that Ki is known to other
OmniLedger participants, that a protocol instance is identi-
fied by a unique value u (e.g., the hash of the membership
DL signed by the previous epoch’s members), and that views
v are consecutively numbered starting from 0. Then, for
each view, participants compute a view base H = H(u, v)
for a hash function H such that H ̸= G is a generator of
the respective cryptographic group. Then, each participant
i computes his lottery ticket Hki together with a discrete-
logarithm equality proof [26] that is verifiable against the
public key Ki.

Participants then start gossiping with each other to find
the lottery ticket with the lowest value. After waiting a suffi-
cient amount of time for this gossip to propagate the lowest-
available solution to all good participants, each participant
“locks in” the lowest valid ticket he has seen and takes the
holder of that solution to be the leader, subsequently ignor-
ing messages from any other node purporting to be the leader
for that view. To prevent replay attacks, all messages coming
from the elected leader in this view need to be tagged by a
unique identifier derived from the values u, v, and i.

Each participant, including malicious ones, can produce
only one single valid lottery ticket per round. This ticket is
unpredictable to other non-colluding nodes, as they do not
know the solution-holder’s private key. However, a mali-
cious holder of the lowest solution in a view can still cause

mischief by either (a) withholding their solution entirely, or
(b) withholding their solution until close to the time the hon-
est participants will lock in their choice of leader.

Nevertheless, both failure cases can only occur if a ma-
licious node draws the winning lottery solution in a given
view, thus resulting in a success probability that is upper-
bounded by (1/3)n for n successive malicious views. Fur-
thermore, the aforementioned attacks are not-stronger equiv-
alents to the malicious leader executing the lottery protocol
correctly but then doing nothing as leader of that view. In this
case, the honest participants will detect the DoS and change
the view. Hence, in the face of any such attacks, a good (or at
least live) leader will be picked in a small, constant-expected
number of rounds.

Shard Size Security. One of the goals of OmniLedger is to
provide tunable performance based on the strength of the ad-
versary. Let m be the percentage of validators the adversary
controls drawn from an infinite pool of validators and N be
the size of one shard. Table 4.3.2 provides guidelines on how
OmniLedger should be configured based on the adversarial
strength to achieve a failure probability of 10−6 with a more
detailed analysis being presented later in Section 5.1.

m 1% 5% 12.5% 25%

N 4 25 70 600

Table 1. Adversarial power m dependent shard sizes N to
achieve a failure probability of at most 10−6

4.4 Coordinating Cross-Shard Transactions
SimpleLedger assumes that transactions can be fully vali-
dated inside a single shard; We start by proving that cross-
shard transactions for sharded DLs are expected to be the
norm, given that previous work [39] ignored this issue. Af-
terwards, we address the challenge of guaranteeing transac-
tion atomicity by introducing the Atomic Commit protocol
that is used in OmniLedger and reasoning about the proto-
col’s validity and security.

4.4.1 Probability of Cross-Shard Transactions
This section explores the limitations cross-shard transactions
pose to the performance of the system. When splitting the
state into disjoint parts, the common practice [18, 39] is to
assign UTXOs to shards, based on the first bits of their hash.
For example, one shard manages all UTXOs whose first bit
is 0, and the second shard all UTXOs whose first bit is 1.
Then each shard is managed by a group of validators who
keep the state consistent and commit updates.

For an intrashard transaction we want all the inputs and
outputs of the transaction to be assigned at the shame shard.
The probability of assigning a UTXO in a shard is uniformly
random from the randomness guarantees of cryptographic
hash functions. Let m be the total number of shards, n the

6 2017/5/11



sum of input and output UTXOs and k the number of shards
that need to participate in the cross-shard validation of the
transaction. The probability can be calculated as:

P (n, k,m) =


1, n = 1, k = 1

0, n = 1, k ̸= 1
m−k
m P (n− 1, k − 1,m)+

k
mP (n− 1, k,m), n ̸= 1, k > 0

(1)

For a typical transaction with two inputs and one output and
a three-shard setup, the probability of a transaction being
intra-shard is P (3, 1, 3) = 3.7%, rendering the assumption
that transactions touch only one shard [39] problematic.

4.4.2 Secure Validation of Cross-Shard Transactions

Figure 4. Atomic Commit protocol in OmniLedger. Arrows
indicate flow of information, not direct messages

An important issue in order to enable every user to trans-
act with anyone securely and instantly is preserving atom-
icity of cross-shard transactions that touch more than one
shard. Otherwise money can be locked forever in one shard
because another input of the transaction is invalid.

We design an Atomic Commit protocol that assumes that
shards run BFT-consensus inside. This protocol works only
if the shards participating are not compromised (i.e., less
than 1/3 of the validators in each shard are malicious). The
protocol works as shown in Figure 4:
Initialize: The client creates a transaction whose inputs
touch the state of some Input Shards (IS) and whose outputs
touch the state of some Output Shards (OS). The transaction
is gossiped and eventually reaches the ISs.
Lock: Each IS leader validates the transaction inside the
shard deciding that the inputs can be spent and returns a
proof-of-acceptance. If the transaction is not accepted, the
leader creates analogously a proof-of-rejection (a special
bit indicates acceptance or rejection). The client can follow
the DLs of each IS to verify the proofs; once all ISs have
decided, the client holds enough proofs to show that the
transaction is committed or to reclaim any locked funds.
Unlock: This process occurs at the OSs for accept and at
the ISs for abort. After the Lock phase, the client uses the
proofs to create an unlock transaction, that has a special
format as the inputs are spendable by verifying the proofs.
The transaction reaches the ISs and OSs. If the transaction

is accepted, the OSs’ leaders add the transaction in the next
block, to update the state and enable the expenditure of the
new funds. If the transaction is aborted, then the ISs’ leaders
follow the same procedure to unlock the UTXOs.

Discussion. Assuming that shards cannot fail, the above
algorithm guarantees that if all shards propose to accept the
transaction, then the transaction is eventually committed, as
each shard will eventually have an honest leader who reaches
consensus with all honest validators. A malicious client can
create a valid proof-of-acceptance (for OSes) if and only
if he receives proofs-of-acceptance from the Lock phases
of all the ISs. Similarly the malicious client can create a
valid proof-of-rejection (for ISes) if and only if he receives
a proof-of-rejection from the Lock phase of one of the ISs.
Given that the ISs are honest, the client cannot hold both
proofs concurrently.

Clients experience similar latency as intrashard transac-
tions, as they wait only for the Lock phase to finish. How-
ever, they pay transaction fees proportionally to the number
of shards the transaction touched and pay for rejected trans-
actions as well. The difference between classic AC and this
protocol, is that shards cannot crash and remain silent indefi-
nitely. Moreover, clients are responsible for proceeding with
the Unlock phase, as it is their funds at stake. A client who
crashes permanently only harms himself and is isomorphic
to a client who crashes and loses his private key, leading to
his inability to spend the corresponding to the key UTXOs.

If OmniLedger’s techniques are extended to implement
scalable state-machine replication, then protection from ma-
licious clients that do not unlock is needed. In this case, one
shard can be the coordinator of the transaction and is the
one that initiates the Unlock. A further refinement would be
to run (meta-)consensus on top of the participating ISs and
OSs, and only afterwards, to send the proofs to the clients.

4.5 Pruning the Ledger With State-Blocks
DL protocolss [24, 37, 39, 43, 62], including SimpleLedger,
follow the same pattern of storing all historical data from
the first day of operation. Bitcoin’s blockchain is more than
120 GB [9] and increases with an average of 1 MB every
10 minutes. Given the high throughput that next generation
systems provide [37, 39], the expected growth rate can ex-
plode. On the other hand, the state size of Bitcoin is around
1.7 GB [50] and increases around 500 MB per year.

To resolve the challenge of storing the full DL, Om-
niLedger introduces state blocks (SB). SBs play a similar
role to stable checkpoints of PBFT [16]. An important differ-
ence between SBs and checkpoints is how those are stored.
SBs should not be forgotten, as this defeats the purpose of
having a DL with an authenticated immutable history. In-
stead validators create a conceptually higher-level DL (stor-
ing these SBs), that provides skips from an epoch’s SB to
another. This SB-DL holds the last SB in full and all previ-
ous SBs’ headers. This is necessary as clients that want to
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prove the validity of a past transaction need to have a refer-
ence point.

For example, a client who holds a Proof-of-Existence
(PoE) [59] cannot use that proof as it consists of showing
that a transaction was included in a normal block (bearing
a timestamp). Even if the transaction is summarized in the
latest SB, this SB will have a later timestamp, meaning that
the client cannot prove the time the transaction was first
created.

At the end of the epoch, the leader starts the creation of
an SB by reconstructing the shard’s state that consists of all
UTXOs and creates an ordered Merkle Tree [41]. Then the
shard’s validators run consensus on the SB’s header (which
includes the Merkle Tree Root), while no regular blocks are
pending. Once they reach consensus that the SB is correct,
the new block becomes the epoch genesis block.

Meanwhile, validators store the headers of all the SBs
that form a SB-DL (see Figure 2) and drop normal blocks.
This way OmniLedger delegates the responsibility of prov-
ing past transactions to the client who holds the proofs.
These proofs consist of all the normal block headers, starting
from the block that validated their transaction until the sub-
sequent SB. In this system the PoE client can skip backwards
the SB-DL blockchain, find the SB he has a reference to and
then use his PoE. On the contrary, proving that a transaction
is still valid is more efficient with SBs, as any client can use
the SB as proof, instead of the normal block; and a verifier
will need to only check the last part of the DL, instead of
checking all the DL from the validation of the transaction.

Finally, bootstrapping new validators or bringing crashed
validators up-to-date becomes more efficient, as they start
from the last valid SB and replay only the last part of the
DL, instead of replaying the full DL from the first block
or from the moment they crashed. For example, if Bitcoin
is deployed on OmniLedger the bandwidth bootstrap cost
would be two orders of magnitude less (1.7 GB instead of
120 GB). This becomes more important when sharding is
used and, due to the random shard assignment process, val-
idators switch shards periodically and need to update.

4.6 Censorship Resistance
A final issue that OmniLedger addresses is when a malicious
shard leader censors transaction. This attack can be unde-
tectable from the rest of the shard’s validators. A leader who
does not propose a transaction is acceptable as far as the state
is concerned, but this attack can compromise the fairness of
the system or be used as a coercion tool. For this reason the
rest of the validators can request transactions to be commit-
ted, because they think the transactions are censored. They
can either collect those transactions via the normal gossiping
process or receive a request directly from a client.

The workflow (Figure 5), starts (step 1) with each valida-
tor proposing a few hashed transactions for anti-censorship,
which initiates a consensus round. Once the round ends,
there is a list (step 2) of transactions that are eligible for

Figure 5. Anti-censorship mechanism OmniLedger

anti-censorship, which is a subset of the proposed. As the
transactions are hashed, no other validator knows which ones
are proposed before the end of the consensus. Each valida-
tors reveals (step 3) his chosen transactions, the rest of the
validators check that the transactions are valid and expect
the leader to propose them within a fixed (e.g. 10) amount
of blocks. The leader is then obliged to include (step 4) the
transactions that are consistent with the state, otherwise the
honest validators will cause a view-change [16].

4.7 OmniLedger on a Hybrid Cryptocurrency
In the specific case of an open cryptocurrency, OmniLedger
enables hybrid systems, where third-parties (e.g. banks us-
ing RsCoin [18]) establish untrusted (private) shards. Om-
niLedger enables users to move coins to and from private
shards, as they please.

private shards are validated by assigned validators whom
OmniLedger considers untrustworthy. However, these shards
provide features not available in the generic permissionless
DL, such as transaction privacy where the private shard’s DL
is not transparent. The basic requirement is for the ledger’s
governance and the third-party to agree on the existence of
mutually trusted auditors.

Auditors form a cothority [54] with the third-party as the
leader. The cothority or collective authority is a group of
semi-trustworthy, accountable witnesses that attest on the
validity of the records the leader proposes, or in our case
independently check the consistency of each exposed SB at
the end of the epoch. The difference between auditors and
validators (other than accountability), is that the former do
not store history but only replay the exposed DL and need
not run consensus, as there is only one question to answer;
is the SB valid? Auditors can run the scalable Collective
Signinig [54] protocol atop which ByzCoin builts, or attest
with individual signatures.

If we assume ⌊N
3 ⌋ of malicious auditors, where N is the

number of auditors, once 2 · ⌊N
3 ⌋+ 1 of auditors accept the

SB the rest of the system is certain of the SB’s validity. The
fundamental goal of this system is to protect normal (open)
shards from compromised private shards so that they can
keep functioning and providing the same security guarantees
as before. The full protection of a client using a private shard
is not considered as a client chooses to trust a specific private
shard, in order to get an additional feature.
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Auditors also detect and mitigate attacks where a compro-
mised shard inflates the currency (Sections 4.7.1 and 4.7.2)
or tries to DoS clients (Section 4.7.2).

4.7.1 Shard Poisoning Mitigation
A shard poisoning attack occurs when a private shard ac-
cepts an invalid cross-shard transaction, whose inputs are
within the private shard’s state, creating money out of thin
air. To mitigate this, we pose a limit in the amount of money
that can move out of the private shard. When a third-party
establishes a private shard, it posts collateral that serves as a
safety net in case of misbehavior.

Afterwards the auditors set a quota of funds that can be
transfered outside the shard between two epochs: this equals
the amount of collateral posted and is confiscated after detec-
tion of an attack. This way the state of the private shard can
be recovered, upon detection, without affecting the correct-
ness of the rest of the state. We leave the recovery process of
faulty private shards to the discretion of the shard’s manager,
who can decide which transactions should be deleted in or-
der to get back to a correct state. The quota level is renewed
after the auditors accept each state-block, or increased upon
request and more collateral posting.

4.7.2 Cross-Shard Atomic Commit
Another challenge for private shards is that the protocol of
Section 4.4 cannot work out-of-the-box. The properties we
want from such an algorithm that can be violated are:

1. Agreement: If an honest shard decides on action A, then
every honest shard decides on action A.

2. Termination: Every honest shard eventually decides.

Agreement can be violated in the previous algorithm, as a
dishonest shard can collude with the client and provide both
a proof-of-acceptance and a proof-of-rejection. The client
can then cause the ISs and OSs to diverge. Termination
can be violated by a DoS from a private shard that never
creates the required proofs. To resolve these challenges, we
resort to the auditors to provide a trustworthy intermediary
between OmniLedger and private shards. The auditors job is
to (a) notarize all cross-shard transactions so that they can
check the state-block later and (b) make sure that the private
shard does not exceed its quota level.

During a cross-shard transaction, auditors verify the
proofs provided by the private shards and sign-off2, before
the client and any normal OSs or ISs can feel secure that the
transaction is committed (or aborted), preserving agreement.
Preserving termination is similar to the censorship resistance
algorithm (see Section 4.6) run among auditors and request-
ing proofs from validators.

2 2/3 of auditors needs to sign, in order to prevent an equivocation attack

5. Security Arguments
This section analysis the security of OmniLedger infor-
mally.

5.1 Randomness Creation
RandHound assumes an honest leader, however in Om-
niLedger we cannot guarantee his existence, meaning that
a dishonest leader can choose to release the output of Rand-
Hound or fail and cause a restart. We economically disincen-
tivize such behavior and bound the bias by the randomized
leader election process described in Section 4.3.

The leader election process is unpredictable as the adver-
sary is bound by the usual cryptographic hardness assump-
tions (see Section 3.1) and, in particular, is unaware of (a) the
private keys of the benevolent validators and (b) the input
of the hash function. The membership DL is unpredictable
at the moment of private key selection and private keys are
bound to the identity and cannot change without destroy-
ing the identity. As a result, the adversary has m = 1/3
probability per round to control the elected leader. Thus, the
probability that an adversary leads n consecutive views is
upper-bounded by P [X ≥ n] = 1

3n < 10−λ. If we want
λ = 6, then the adversary will at most control 12 consecu-
tive views. This is an upper bound as we do not include in
our calculation the exclusion of the previous leader from the
consecutive leader election process.

Shard Size Security. The security of OmniLedger’s val-
idator assignment mechanism is modeled as a random sam-
pling problem with two possible outcomes (benevolent, ma-
licious). Assuming an infinite pool of potential validators we
can use the binomial distribution (Equation 2). We can as-
sume random sampling due to RandHound’s unpredictabil-
ity property that guarantees that each selection is completely
random, leading to the adversarial power to be at most m =
0.25, from the assumption of Section 3.

P
[
X ≤ ⌊n

3
⌋
]
=

n∑
k=0

(
n

k

)
mk (1−m)

n−k (2)

In this setting, we are interested in the probability that one
shard picks less than c = ⌊n

3 ⌋ Byzantine nodes as consensus
group members, hence guarantees safety. To calculate the
failure rate of one shard, we use the cumulative distributions
over the shard size n, where X is the random variable that
represents the number of times we pick a Byzantine node.
Figure 6 illustrates the proposed shard size based on the
power of the adversary.

5.2 Epoch Security
Although the security of a shard can be modeled as a ran-
dom selection process the failure probability calculated in
the previous section is not equal to the failure probability of
an epoch. Instead, the total failure rate of a correctly boot-
strapped epoch is the union bound of the failure rates of
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the individual shards. Furthermore, correct bootstrap of an
epoch is eventually achieved giving the adversary a bias ad-
vantage every time he controls the leader of RandHound.

We can calculate an upper bound of the total failure prob-
ability by allowing the adversary to run RandHound multi-
ple times and choose the random number he prefers. This
is stronger than what RandHound permits, as the adversary
cannot choose an older random number.

An upper bound for the epoch failure event XE can be
calculated as

P [XE ] ≤
l∑

k=0

1

3k
· n · P [XS ] (3)

where l is the number of consecutive views the adversary
controls, n is the number of shards and P [XS ] is the failure
probability of one shard as calculated in Section 5.1. For
l → ∞, we get P [XE ] ≤ 3

2 · n · P [XS ]. If we analyze the
experiment of Figure 15, the failure probability for a 12.5%-
adversary and 16 shards is 5·10−5 or one failure in 358 years
if one epoch corresponds to one week.

5.3 Censorship Resistance
This section analyzes the censorship resistance guarantees
of the algorithm described in Section 4.6.

Because transactions are hashed randomly, the Byzantine
leader does not know the transactions that are proposed by
honest validators. As a result, honest validators will eventu-
ally propose transactions with sufficient fees whose delay is
abnormally high. The Byzantine leader cannot block all hon-
est proposals as this will cause a view-change. This means
that the transaction is going to be proposed for proof. Hence,
the failed leader is obliged to commit or the honest validators
will switch to another leader.

5.4 Shard Poisoning
Any currency inflation is contained within the failed shard,
due to the rate-limit enforced for cross-shard transactions.
Since the maximum amount of cross-shard funds per epoch
is equal to the sum of the withheld collateral and considering
that auditors will detect misbehavior within the epoch, we
are sure that a compromised private shard will not affect the
rest of the state.

5.5 Atomic Commit
The validity and agreement of the Atomic Commit algorithm
follows, as already outlined in Section 4.4, from the fact
that normal shards behave as honest processors and private
shards have an auditor that enforces compliance. Termina-
tion follows from the liveness guarantees of the underlying
consensus algorithm.

6. Implementation Details
We implemented OmniLedger in Go [31] and will make it
available on GitHub. We extended RandHound’s code that
is available on GitHub and implemented the randomized
leader election by using the VRF construction of Franklin
and Zhang [26]. To implement OmniLedger’s intra-shard
consensus, we modified ByzCoin’s code that is available on
GitHub by having multiple rounds concurrently running on
blocks that include independent transactions.

Furthermore, even if ByzCoin is scalable, it suffers avail-
ability risks due to its tree structure. In order to mitigate this,
we modify the communication pattern to Groups, as shown
in Figure 7, so that there is a leader and

√
N groups of size√

N . These groups are created randomly using the output
of RandHound. The protocol uses the same communication
pattern, but the shard’s leader randomly chooses a partici-
pant of each group to be the group’s leader. If this group’s
leader does not respond in a predefined timeout, the shard’s
leader contacts another group member. This way the ex-
pected number of retries is bound to a maximum of

√
N
2 .

As you can see in Section 7, there is a performance penalty
for this approach; nevertheless, the system remains highly
performant and withstands faults in a clean way.

Figure 7. OmniLedger’s Group communication pattern vs
ByzCoin’s tree
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Another performance improvement came from pipelining
the internal Collective Signing [54] rounds of ByzCoin so
that there is one signed block per communication round
instead of every four. We implemented the group splitting
process; the AC consensus protocol that runs on top of the
ByzCoin shards; a client that is dispatching and verifying the
proofs and an auditor group that runs AC with private shards
and Collective Signing for notarization.

Pipelining ByzCoin Collective Signing [54] is done in
four different phases per round, namely Announce phase,
Response phase, Challenge phase and Commit phase. In
ByzCoin the Announce and Commit phases of the CoSi pro-
tocol are not used since the proposed messages (the block in
the prepare round and the proof-of-acceptance in the com-
mit round) can be sent to the signers in the Challenge phase.
This allows for the intersection of the two rounds so that the
announce/commit phases of the ByzCoins’s commit round
are piggybacked on the challenge and response messages
of the ByzCoins’s prepare round. This pipeline allows for a
reduction of latency (one round-trip less).

Looking into the normal execution of ByzCoin this
pipeline can be extended so that an optimal throughput of
one signed block per round-trip is produced. A sample exe-
cution can be seen in Table 2.

ti ti+1 ti+2 ti+3 ti+4

Bk
prepare An/Co Ch/Re
commit An/Co Ch/Re

Bk+1
prepare An/Co Ch/Re
commit An/Co Ch/Re

Bk+2
prepare An/Co Ch/Re
commit An/Co Ch/Re

Table 2. OmniLedger pipelining for maximum transaction-
throughput; Bk denotes the block signed in round k, An/Co
the Announce-Commit and Ch/Re the Challenge-Response
round-trips of CoSi

7. Evaluation
We ran all our experiments on DeterLab [21] by using 60
physical machines, each having an Intel E5-2420 v2 CPU
and 24GB RAM. We arranged the servers in a star topol-
ogy and in order to simulate a realistic wide area network
we imposed a latency of 100ms per link. Furthermore
we limited the bandwidth of each host to be 20Mbps. The
blocks include actual Bitcoin transactions parsed from the
first 10, 000 blocks of Bitcoin’s blockchain.

7.1 Scaling Intra-shard Consensus
In this experiment, we measure the performance benefits of
the parallel consensus when extending ByzCoin’s consensus
algorithm. In order to have a fair comparison, each data-
series corresponds to the total size of data concurrently in
the network, meaning that if the concurrency level is 2 then
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there are 2 blocks of 4MB concurrently, adding to a total of
8MB.

As depicted in Figures 8 and 9, we can see that there is a
20% performance increase when moving from one big block
to 4 smaller concurrently running blocks, with an additional
35% decrease in the per block consensus latency. This can
be attributed to the higher resource utilization of the sys-
tem, when blocks are arriving more frequently for valida-
tion. When the concurrency further increases, we can see a
slight drop in performance, meaning that the overhead of the
parallel consensus outweighs the parallelization benefits.

Figure 10 illustrates the scalability of ByzCoin’s [37]
tree and fall-back flat topology, versus OmniLedger’s more
fault-tolerant (Groups) communication pattern and its per-
formance when failures occur. As expected the tree topol-
ogy scales better, but only after the consensus is run among
almost a thousand nodes, which assumes a rather strong ad-
versary (see Figure 6). This is due to OmniLedger’s commu-
nication pattern which can be seen as a shallow tree where
the round-trip from root to leaves is faster than in the tree of
ByzCoin.

Hence, whereas ByzCoin has a fixed branching factor and
an increasing depth, OmniLedger has a fixed depth and an
increasing branching factor. The effect of these two choices
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leads to better latencies for a few hundred nodes for fixed
depth. However, the importance of the group topology is
that it is more fault tolerant and even when failures occur
the performance is not seriously affected. This is not true for
ByzCoin that switches to a flat topology in case of failure
that does not scale after a few hundred nodes, due to the
huge branching factor. This experiment was run with 1MB
blocks.

7.2 Epoch-boot Cost
In this experiment, we measure the time to bootstrap a new
epoch. The process starts with collectively signing the new
membership configuration that is used for the VRF based
leader election. Once the leader is elected, he runs Rand-
Hound with a group-size of 16 hosts, (which is secure
enough for a 25% adversary [53]). When RandHound fin-
ishes, each validator verifies the random number and con-
nects to his peers. In this experiment we assume that val-
idators already know the state of the shard they will be vali-
dating. It is important to mention that this process is not on
the critical path, but occurs concurrently with the previous
epoch. Once the new groups have been setup, the new shard-
leaders force a view-change on them, like in ByzCoin [37].

As we can see in Figure 11, the cost of bootstrapping is
mainly due to the RandHound run that takes up more than
70% of the total time. However, if we combine that with
the proof of Section 5.1 we can see that even in the case
with 1800 hosts an honest leader will be elected after at
most 12 RandHound runs, which will take a bit more than
3 hours. Given an epoch duration of one day, this worst case
overhead is acceptable. Another approach would be to run
RandHound among only the new members (144 for one day
epoch), this would be faster but it is susceptible to PoW
burst attacks, that could allow the adversary to bias the shard
assignment. In both cases the randomness splits only the new

Figure 11. Epoch bootstrap latency

members, whereas the old ones who retained membership
keep validating the same shard, in order to lower the epoch
bootstrap costs.

7.3 Client-Side Latency for Cross-Shard Transactions
In this experiment a client submits transactions to private
shards. We evaluate this version, as it is similar to validators
submitting transactions to normal shards with the additional
overhead of auditing. As shown in Figure 12, the client per-
ceived latency is almost double than the consensus latency
and slightly increases when multiple shards validate a trans-
action. This occurs because, when a transaction arrives at
one shard, there are already on-the-fly blocks and, as a re-
sult, the inclusion of the transaction in a block is delayed.

Furthermore, we can see that the latency that auditing im-
poses for private shards can be almost equal to the consensus
latency if the size of the auditor’s group is equal to the size
of the validators group. The total end-to-end latency would
be higher if the clients also waited for the Output Shards to
run consensus, but this is not needed. If they want to directly
spend the new funds they can batch together the proof-of-
acceptance and the expenditure transaction in order to re-
spect the input-after-output constraint.

7.4 Multi-Shard Performance
In this experiment, we look into the max throughput the
system can achieve with either a fixed number of hosts
and a varying adversary or a fixed adversary and increasing
number of hosts. The Observed data-series is the measured
throughput, where each shard replays the same transactions
internally. The Normalized data series is derived from as-
suming a canonical workload where all transactions have
one input and two outputs (split) or one output and two in-
puts (merge), as we can construct arbitrary transactions from
these primitives. This data series is calculated on the Ob-
served data-series using the equation of Section 4.4.
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Figure 12. Client perceived, end-to-end latency

Figure 13. Throughput with varying adversary
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In Figures 13 and 14, we see that the performance de-
pends on the assumed adversary, because with the same re-
sources a 5% adversary instead of a 25% leads to throughput
increase of two orders of magnitude. This assumption is too
optimistic in a PoW system but might be acceptable for a

PoS, while even an 1% adversary can be acceptable for cen-
trally banked permissioned systems [18].
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In Figure 15, we can see the performance of OmniLedger
with a fixed adversary at 12.5% and increase number of
shards from 1 to 16. As we can see, the Observed throughput
increases almost linearly with the number of shards, whereas
the Normalized starts to increase slower, because increasing
the number of shards increases the probability of cross-shard
transactions. Once the majority of transactions touches
all the three shards they can, we see that the Normalized
throughput increases almost linearly as well.

Finally, the Optimal data series is derived by multiplying
the performance of one shard with the number of shards. The
difference between Observed and Optimal increases as the
number of hosts increase, due to the oversubscription of the
physical servers. Finally, if we extrapolate the scalability,
we can see that with 80 shards adding to a total of 5600
validators, less than the number of Bitcoin full nodes [8],
the system could surpass the peek throughput of Visa [7, 57],
even under this stronger adversary.

7.5 Cost of Bootstraping with State Blocks
In this experiment, we investigate the bootstrap improve-
ment that SBs offer. A validator of OmniLedger has to crawl
the membership blockchain first and then only get the lat-
est SB, instead of replaying the full blockchain. We recon-
structed Bitcoin’s blockchain [9] and created a parallel Om-
niLedger blockchain that has SBs every week. We recovered
the state size from [50]. Figure 16 depicts the bandwidth
overhead of a validator that did not follow the state for 1
to 100 days. As we can, see the SB approach is better if the
validator is stale for 19 days or 2736 Bitcoin blocks.
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The benefit might not feel substantial for Bitcoin but, in
ByzCoin or OmniLedger, 2736 blocks are created in less
than 8 hours, meaning that for one-day-long epoch, the SB
approach is significantly better. This can provide further
benefits when the peak throughput is needed and 16MB
blocks are deployed. In this case, the bandwidth benefit of
SBs is expected to be close to two orders of magnitude.

8. Limitations and Future Work
OmniLedger is a proof-of-concept with several limitations.
First, even if the epoch bootstrap does not interfere with the
normal operation, its cost (in the order of minutes) is signif-
icant. We leave to future work the use of advanced cryptog-
raphy, such as BLS [10] for performance improvements.

Furthermore, the actual throughput is dependent on the
workload. If all transactions touch all the shards before com-
mitting, then the system is better-off with only one shard. We
leave to future work the exploration of alternative ways of
sharding, using locality measures instead of randomly. Per-
formance wise the latency cannot be considered real-time,
especially when the system is under heavy load.

Finally, even if OmniLedger is able to protect the rest of
the system from a compromised private shard, the recovery
process is left on the administrative level, which means that
clients of this specific shard might lose part of their assets.

9. Related Work
There is a growing effort in scaling blockchain protocols.
We provide a comparison in Table 9 of the most prominent
systems introduced the last year. We already talked about
ByzCoin [37] in Section 2. Although it is more scalable
than PBFT, it does not scale-out, meaning that it can provide
sufficient performance for a few hundreds nodes, but after
1000 participating hosts the consensus latency is as high
as two minutes. Furthermore, if malicious validators are
assigned at a high level on the communication tree, they
can stop forwarding messages causing a Tree-DoS. Then, the

leader would switch to a flat-topology reducing performance
significantly.

Elastico [39] is the first system to experimentally prove
that sharding is a viable approach for open, blockchain sys-
tems wherein participating processors have no pre-established
identities. In Elastico, every round is bootstrapped from
PoW similar to ByzCoin, then the least significant bits of
the PoW distribute the miners to be authoritative on differ-
ent shards. Once the setup has finished, every shard runs
classic PBFT to reach consensus and a leader shard verifies
all the signatures and creates a global block.

One of Elastico’s weaknesses appears in its experimental
configuration, where every shard has only 100 authoritative
validators, a choice likely motivated by PBFT’s lack of scal-
ability. Shards this small yield a high failure probability of
2.76%3 per shard per block under the 25% Byzantine adver-
sary, which cannot safely be relaxed in a PoW system [29].
For 10-minute epoch and 16 shards, the failure probability is
97% over the course of one hour (1 − (1 − 0.0276 ∗ 16)6).
A second weakness of Elastico is that transaction atomicity
is not preserved on transactions that touch more than one
shard, creating the potential of blocking funds forever. A fi-
nal weakness is that the validators constantly switch shards,
leading to the need for them to store the global state, which
can hinder the total performance of the system. We did not
compare experimentally with Elastico (whose performance
is dominated by PBFT), as the biggest part of performance
benefit for OmniLedger will come from ByzCoin [37] which
is experimentally proven to be more performant than PBFT,
even under failures. Furthermore, we were unable to find an
open source implementation of Elastico.

In the permissioned setting, sharding is proposed as a
scalable approach to transparent centrally banked cryptocur-
rency. RSCoin [18] uses a random numbers generated by a
central bank, to split the validators. Each shard coordinates
with the client to validate his transactions. RSCoin does not
run BFT, but a simplified two-phase commit protocol, as-
suming that if the majority of validators are honest, safety is
preserved. However, the system implicitly trusts the clients
and does not provide pro-active security from a malicious
client who can sent two conflicting transaction to two dis-
joint halves of validators and achieve two majorities, as long
as he colludes with one only validator. Furthermore, RSCoin
relies on the trusted third party for randomness generation
and auditing, making the system problematic to use in a
trustless setting.

Bitcoin-NG is a notable approach to scaling Bitcoin with-
out changing the consensus algorithm. Its key insight, which
ByzCoin also used, is that the PoW process does not have
to be the same as the transaction validation process. This
lead to the use of two separate timelines; one slow for PoW
and one fast for transaction validation, significantly increas-
ing the throughput of Bitcoin. However, Bitcoin-NG is still

3 Cumulative binomial distribution (P = 0.25, N = 100, X ≥ 34)
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System Scale-Out Transaction State Blocks Measured Estimated Measured Attacks
Atomicity Scalability Time to Fail Latency

RsCoin [18] In Permissioned Partial No 30 N/A 1 sec Client
Elastico [39] In PoW No No 1600 1 hour 800 sec Shard Fail
ByzCoin [37] No N/A No 1008 19 years 40 sec Tree DoS

Bitcoin-NG [24] No N/A No 1000 N/A 600 sec Bitcoin & Leader
PBFT [13, 15] No N/A No 16 N/A 1 sec Censorship

Nakamoto [43, 14] No N/A No 4000 N/A 600 sec Bitcoin
OmniLedger Yes Yes Yes 2400 358 years 20 sec No

Table 3. Comparison of Scalable DLs

susceptible to the same attacks as Bitcoin [30, 3], with an
additional Achilles heel on the leader of the epoch, that is
not pro-actively checked.

Aspen [28] is a higher-level sharding protocol that builds
on top of Bitcoin-NG [24] to further scale the protocol, by
splitting the state into services. This approach is orthogonal
to OmniLedger that is service agnostic and can be combined
for further scalability benefits.

Other efforts to scale blockchains exist in the industry.
Tendermint [13] is one such protocol that implements a pro-
tocol similar to PBFT for shard-level consensus. However,
the benchmarking is done with a small number of validators
and should be tested for hundreds instead of 16. Lightning
network [48] is another industrial protocol that tries to scale
Bitcoin by limiting the number of transactions exposed to a
ledger and is also compatible with OmniLedger.

Buterin et al. [14] address the scaling problems of Ethereum
with sharding, however the protocol is not evaluated and de-
pends in randomness, without showing how to generate it.
An interesting orthogonal system is Interledger [55] that is
used to connect different cryptocurrencies. It is inspired by
two-phase commit and relies on the existence of notaries to
transfer funds between currencies.

Finally, in a different setting there are protocols that
scale state-machine replication [40] and database replica-
tion [27] using, among other techniques, state sharding to
scale-out [6] and split validators into groups [49]. However
the assumptions are not compatible with DL systems and do
not work with a Byzantine adversary among thousands of
replicas, while preserving safety w.hp. OmniLedger could
be used as a middleware for large scale replicated databases,
however in order to provide Snapshot Isolation [34], it would
need an additional global blockchain that sequences transac-
tions before validation, similar to Hyperledger [15].

10. Conclusion
OmniLedger is the first system to securely scale-out dis-
tributed ledgers to Visa-level throughput coupled with sec-
onds of latency, while preserving full decentralization and
protecting against a Byzantine adversary. OmniLedger achieves
this through a novel approach consisting of three steps. First,

OmniLedger is designed with concurrency in mind, to iden-
tify and maximize the resource utilization while preserving
safety. Second, OmniLedger preserves the ability to trans-
act securely with any other user of the system. Finally,
OmniLedger enables validators to securely and efficiently
switch between shards, in order to verify any transaction.
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