
SmartCast: An Incentive Compatible Consensus
Protocol Using Smart Contracts

Abhiram Kothapalli
kothapa2@illinois.edu

Andrew Miller
soc1024@illinois.edu

Nikita Borisov
nikita@illinois.edu

Abstract
Motivated by the desire for high-throughput public databases (i.e., “blockchains”),

we design incentive compatible protocols that run “off-chain”, but rely on an existing
cryptocurrency to implement a reward and/or punishment mechanism. Our protocols
are incentive compatible in the sense that behaving honestly is a weak Nash equilibrium,
even in spite of potentially malicious behavior from a small fraction of the participants
(i.e., the BAR model from Clement et al. [8]). To show the feasibility of our approach,
we build a prototype implementation, called SmartCast, comprising an Ethereum smart
contract, and an off-chain consensus protocol based on Dolev-Strong [11]. SmartCast
also includes a “marketplace” smart contract that randomly assigns workers to protocol
instances. We evaluate the communication costs of our system, as well as the “gas”
transaction costs that are involved in running the Ethereum smart contract.

Keywords— atomic broadcast, TRB, game theory, Ethereum, smart contracts

1 Introduction
Bitcoin and related cryptocurrencies have sparked renewed interest in decentralized con-
sensus protocols, as exemplified by the so-called blockchain technologies. It turns out that
many applications (including complementary currencies, certificate revocation [15, 7], direc-
tory authorities for p2p networks like Tor [10]), benefit from a globally agreed-upon sequence
of transactions. Currencies such as Bitcoin and Ethereum use the proof-of-work mining to
distribute the responsibility for maintaining the blockchain integrity to a large collection
of parties; the integration of mining with a financial reward makes this collection difficult
to subvert. However, the global nature of this ledger creates some inherent costs, both in
terms of transaction costs and the agreement latency. An alternative approach is what has
been termed a permissioned ledger, where the role of miners is taken by a trusted coalition
of parties, whose motivation to properly follow the protocol is assumed to come externally.

Several applications of blockchains, however, would benefit from a middle ground be-
tween these two extremes. Loosely defined coalitions, such as food banks, cooperatives, or
student organizations, are some times in need of a blockchain-like ledger for tracking mem-
bership benefits or exchanges between sister organizations; however, they would not have
the resources to directly operate a reliable collection of “miners,” nor, necessarily agree on a
set of trusted parties. At the same time, directly using cryptocurrency for account deposits
might limit their accounting flexibility and incur non-trivial transaction costs.

Our approach creates a system where workers who act to enforce integrity are financially
rewarded for their correct participation in the process, as monitored by other workers and

1

enforced through an Ethereum smart contract. Our protocol draws inspiration from a
consensus protocol designed by Clement et al. [8], where honest participation is shown to
be a rational strategy for participants trying to maximize their utility. Their protocol,
however, assumes that workers derive intrinsic utility from the correct functioning of the
protocol and requires an infinite time horizon; in our scenario, which we believe to be more
realistic, we expect consensus to be enforced by inherently disinterested parties whose only
motivation is financial. This extrinsic reward dramatically simplifies the protocol design
and improves its efficiency. Our protocol requires only occasional communication with the
Ethereum blockchain through the smart contract, thus minimizing transaction costs.

To design our protocol, we create a generic transform that renders any existing protocol
where communication is the dominant cost incentive-compatible. We show that, under this
transform, honest participation is a weak Nash equilibrium in a worst-case utility model,
which was previously used by Clement et al. [8].

To show the feasiblity of our approach, we build a prototype implementation, called
SmartCast, comprising an Ethereum smart contract and an “off-chain” consensus protocol
(based on the Dolev-Strong [11] broadcast protocol). . We evaluate the communication
costs of our system, as well as the “gas” transaction costs that are involved in running the
Ethereum smart contract. We additionally describe how these protocols can be deployed in
practice with random consensus nodes.

1.1 Related Works
Several previous works have proposed using cryptocurrencies to enforce properties in off-
chain protocols. Bentov and Kumaresan’s protocol [1] guarantees either a fair output or
else financial compensation to each honest party, but requires significant collateral deposits.
In contrast, our weak Nash equilbirium notion guarantees that parties cannot benefit by
deviating. In a separate line of work, Garay et al. design a general framework to build
protocols that are resilient against rational adversaries [12]. We instead design a protocol
transformer that can achieve resilience for a certain class of protocols. To the best of our
knowledge, we are the first to harness smart contracts for the purpose of Byzantine fault
tolerance.

2 Background and Preliminaries
2.1 Network Model
Our basic computation model is the standard point-to-point network setting with syn-
chronous authenticated channels. We consider a fixed set of parties N , where an indi-
vidual party is denoted p ∈ N . The protocol proceeds in rounds of communication, with
the exact order of messages in each round may be arbitrary (i.e., chosen by the adver-
sary). Messages not delivered within the round are invalid. Each party is associated with a
common-knowledge public signing key to send authenticated messages. Our model accounts
for Byzantine failures. The adversary can choose to corrupt a subset of nodes B ⊂ N , giving
them complete control over these nodes. |B| is bounded by a parameter b.

2

2.2 Smart Contract Protocols
Public cryptocurrencies [5] (or “blockchain”) systems, such as Bitcoin [18] and Ethereum [21],
provide a decentralized platform for programmable money. These can be used as general-
purpose trusted third parties, but with caveats. For instance, they can be trusted for
correctness, but do not provide any inherent privacy. For some applications, privacy can be
provided by a layer of multi-party computations and zero-knowledge proofs [13, 2]. A sec-
ond caveat is that blockchain transactions are expensive (because they are fully replicated
throughout the entire cryptocurrency network), so it typically is not cost-effective to carry
out protocols directly on top of the blockchain.

A protocol in the smart contract model is therefore most effective with two components:
1) A smart contract program, which receives reports from nodes about each other, and
dispenses rewards at the end; and 2) Local code for each of the parties to execute, including
interactions with the smart contract and participation in “off-chain” subprotocols. We also
assume a rushing adversary, who can observe the smart contract transactions sent by non-
Byzantine parties before submitting transactions on behalf of the Byzantine parties.

2.3 Utilities in the BAR Model.
We adapt the The Byzantine-Altruistic-Rational (BAR) fault tolerance model from Clement
et al. [8] to the smart contract setting. The BAR model is a game-theoretic layer on top of
the standard distributed protocol execution model. That is, we view the choice of what code
to run (i.e., either following the protocol or deviating in some arbitrary way) as a strategic
decision.

We associate each “off-chain” protocol message with a cost to the sender of that message,
determined by the total size of the messages sent. However, we ignore any other costs of
computation, storage, and other resources. We thus assume that the total utility of each
party therefore depends on the monetary payments disbursed by the smart contract, minus
the cost of the messages they send. Since the protocol execution is probabilistic, unless
indicated otherwise we are concerned with the expected utility.

As Clement identifies, in an ordinary protocol (i.e., without the smart contract incentive
mechanism in place), parties may be able to profit by deviating from the protocol — in
particular by withholding messages to reduce their costs (i.e., by acting “lazy”). Thus the
high level approach is to punish lazy nodes.

A strategy profile ~σ defines a program for each party p in N to run. Given a protocol
ρ, we use the symbol ~ρ to denote the prescribed strategy, in which every party follows the
protocol correctly.

While standard distributed systems models feature a worst-case adversary, and standard
game models feature a set of strategic (i.e., “rational”) players, the intersection of these has
yet to be studied widely. Clement proposes the following notion of “worst-case utility,”
which we also adopt.

Definition 1. Worst-case Utility. The worst case utility ūp(σ) for a rational player p ∈ N is
where p follows strategy σ, every non-Byzantine player in N−B−{p} follows the prescribed
strategy, ~ρN−B, and the choice of Byzantine players B and their strategies τ̄B ∈ SB are
chosen to minimize the resulting utility up. This is defined more precisely as:

ūp(σ) , min
B⊂N :|B|≤b

◦ min
~τ∈SB

◦ up(~ρN−B−{p} + σ + ~τB) (1)

3

Our goal is then to show that the prescribed strategy is a worst-case weak Nash equilib-
rium, i.e., ūp(ρp) ≥ ūp(σ) for any σ. That is, a rational party cannot improve their expected
utility by following any other deviant protocol σ. This solution concept could be thought of
as modeling paranoid players who think that other parties (up to b of them colluding) are
“out to get them.”

2.4 Synchronous Byzantine Agreement
Alternative definitions of consensus primitives abound in the distributed systems literature.
Perhaps the strongest of these — and the one most naturally suited to our application
scenario — is “atomic broadcast.” This primitive allows any of the N protocols parties to
submit input values, and the parties all reach agreement on an ordered sequence of values
that at least includes the inputs from each honest party. Atomic broadcast could thus be
described as the “blockchain” primitive in today’s post-Bitcoin parlance.

Below we provide a more formal definition of this primitive, adapted for the synchronous
setting. We assume that each input value is bounded by a maximum message size C, and
that the protocol finally terminates after a maximum number of rounds r†.

Definition 2. Bounded Atomic Broadcast: Given a set of players N , each process p in N
receives inputs mp,r ∈ {0, 1}C in round r.

• (Termination): after a bounded number of rounds r†, each correct process terminates.
• (Agreement): The sequence of outputs Vp,r in round r by each correct process p are all

identical, i.e. ∀r, ∀p, q ∈ N − B.Vp,r = Vq,r.
• (Validity): every input from a correct node (received before r ≤ r†) is included in Vr† .

Looking ahead, in Section 3.4 we implement an atomic broadcast protocol by composing
a simpler primitive, called Terminating Reliable Broadcast (TRB). In TRB, one of the
parties is designated as the leader, and only the leader may input messages. Thus in TRB
there is no need to apply an ordering to messages from different sources, and if the leader
is faulty then the parties may need to output a default value ⊥.

Definition 3. Terminating Reliable Broadcast Given a set of players N , among which one,
D, is designated the leader and receives an input m ∈ {0, 1}C (i.e., within some bounded
message size of C bits), a Terminating Reliable Broadcast protocol must satisfy the following
properties:

• (Termination): Every correct process p delivers some value m ∈ {0, 1}C ∪ {⊥} after a
bounded time r∗.

• (Agreement): If any correct process delivers m, then all correct processes deliver m.
• (Validity): If the leader D is correct, then every correct process delivers D’s input m.

Alternative network models. Although our SmartCast protocol relies on a synchronous
network model. This is generally considered a strong assumption. Other protocols such as
PBFT [6] provide security in the more challenging weakly synchronous setting — they meet
the lower bound in this model, which is b ≤ N/3. However, synchrony is an assumption
we must take anyway if we rely on a smart contract system in the style of Bitcoin and
Ethereum. It is not clear how to adapt our protocol to the asynchronous setting, since we
would not be able to detect whether a message was omitted by a party or just delayed in
the network.

4

3 Smart Contracts for Incentive Compatible Protocols
In this section we present our main contribution, a protocol transformer, SmartBAR(·),
which transforms an arbitrary synchronous protocol with costly communication, π into an
incentive compatible protocol SmartBAR(π). As an application, in Section 3.4 we apply this
transformation to yield an incentive-compatible consensus protocol, called SmartCast.

At a high level, SmartBAR(·) adds a smart contract layer to π that implements a re-
ward/punishment mechanism. In an ordinary protocol (i.e., without this incentive mecha-
nism in place), parties may be able to profit by deviating from the protocol — in particular
by withholding messages to reduce their costs (i.e., by acting “lazy”). To ensure that lazi-
ness is not profitable, our protocol enlists the honest parties to detect lazy nodes and the
smart contract to punish them.

The transformation works for an arbitrary synchronous protocol π that satisfy the fol-
lowing assumptions. First, each correct party in π terminates after a bounded number of
rounds r∗, for some parameter r∗. Second, the total number of bits between any pair of
parties is bounded by a value M . We call a protocol that satisfies these an (r∗,M)−bounded
synchronous protocol.

Since the transformation runs π in place, any fault tolerance properties of π still carry
over to SmartBAR(π). In particular, if π tolerates b faults, and we prove that running is
a b-worst-case equilibrium, then the security of the overall protocol security reduces to the
assumption of strategic behavior among the rational remaining parties.

3.1 The Protocol Transformer SmartBAR(·)
The transformed protocol SmartBAR(π) runs π with the following minimal modifications:

• Modification 1: We impose a predictable communication pattern so that nodes can detect
if another is cutting costs by not forwarding messages. Our predictable communication
pattern requires that in each protocol instance, node p must send every node q the
maximum possible total message size M . If fewer than M message bits are sent by the
end of the protocol, then dummy messages are sent to make up the difference.

• Modification 2: We impose a penalty on nodes that fail to forward messages, by imple-
menting the following rules:

– Each node keeps track of the total message bits received from each other node.
– At the end of the protocol, if fewer than M bits have been received by p from q, then p

sends a report Rp,q = enemy to the smart contract. Otherwise, if at least M bits have
been received, then p sends a report Rp,q = friend.

– The smart contract waits until the final round of the protocol r∗ to collect status reports
from all nodes p ∈ N . Finally, the smart contract determines the payout to each party
by deducting a penalty of θ (a parameter discussed shortly) for each enemy report about
that party.

Alternative definitions of enemy Note that we propose a relatively lenient definition
for enemy as a node that does not send at least M bits. This protects honest nodes with
harmless or negligible deviations from being marked as dishonest by other honest nodes.
On the other hand, we can follow a much stricter definition of enemy by marking nodes
that do not send at least M bits, send incorrect bits, send more than M bits, and so on.
This leads to additional protocol security by barring more forms of misbehavior, but may

5

Protocol Smart(π) for a bounded synchronous protocol π, a set of parties N , and a maxi-
mum number of Byzantine nodes b < |N | − 2.

Let r∗ be a bound on the final round before π terminates.
Let M bound the total size of messages sent between any pair of parties in π.

Local program (for node p).

• Run the given protocol πp.
• For each received message m, parse m as either an ordinary message PASS(m′) (in which

case pass m′ through to πp) or else a padding message DUMMY(0∗), in which case discard
this message.

• For each outgoing message m generated by πp, intended for player q, send PASS(m) to
q.

• At the final round r∗, let Mp,q be the total size of messages sent so far to q (including
any messages sent during this round). If Mp,q < M , then send a padding message
DUMMY(0M−Mp,q).

• After r∗, for each player q 6= p, let Mq,p be the total size of messages received from q.
If Mq,p < M , then set Rp,q := 0 (an enemy report). Otherwise, set Rp,q := θ (a friend
report). Finally, send a transaction containing report(~Rp) to the smart contract, where
~Rp = {Rp,q}q 6=p is the vector of all of the reports from p about each other player q.

Smart contract program.

• The contract is parameterized by a set of players N , identified by their addresses (i.e.,
public keys).

• The contract must be initialized with an endowment (a quantity of digital currency) of
at least E ≥ (|N |)(|N | − 1) · θ, where θ = |N |−1

|N |−1−bM .
• The contract contains an entry point report(~Rp), which when invoked by party p, stores

the argument vector ~Rp.
• By a fixed deadline time T , the contract receives a report Rp,q ∈ [0, θ] from each party
p ∈ N about each other party q ∈ N . Any reports that are not received in time are
treated as a default value of 0.

• After time T , for each p ∈ N ,

– determine the reward as the sum of reports about p, so rewardp :=
∑

q∈N|q 6=p

Rq,p,

and send rewardp to player p

Figure 1: Our protocol transformer, Smart(·), which provides incentive-compatibility for an
arbitrary synchronous protocol. Each party pads outgoing messages to the maximum size,
and reports to the smart contract about any “lazy” peers.

6

unnecessarily penalize honest nodes that perform harmless or negligible deviations.

The entire SmartBAR(·) protocol is defined in Figure 1. For simplicity, we assume the
smart contract is initialized with an endowment E ≥ N(N − 1) · θ. In practice, this endow-
ment might be provided by collecting collateral deposits from the participants or collecting
usage fees from users of the system, as described shortly in Section 3.5. We next describe
how the parameter θ is determined in order to satisfy the worst-case equilibrium notion.

3.2 Rationality Analysis
We now prove that following the SmartBAR protocol is a worst-case weak Nash equilibrium.
The utility for party p ∈ N as a function of a strategy vector ~σ is up(~σ) = benefitsp(~σ) −
costsp(~σ). The overall benefits will be decided by rewardp and the overall cost is costmsg +
costreport. In the following, we use the notation ~σN−{p} + ~σp to denote the union of the
strategy vectors ~σN−{p} + ~σp.

In order to prove that rational parties gain the highest utility by following the recom-
mended protocol, we take the following steps: First we show a lower bound that following
the protocol earns p a minimum utility u∗, regardless of the adversary’s choice of strategies.
Next, we partition the space of alternative strategies into classes based on how they behave
towards honest nodes. We define a simple family of strategies, called the “indiscriminate”
strategies, which act as representatives of these classes. We can prove that the indiscrim-
inate strategies perform just as well (in the worst-case) as any other strategy. Finally, we
show how to choose the protocol parameter θ so that u∗ is an upper bound for the utility of
any indiscriminate strategy. The setting of θ directly determines the overall collateral cost
(i.e., the required endowment) for the protocol.

Lemma 1. Regardless of the strategy ~τB followed by Byzantine parties, if p follows ~ρp, then
p obtains at least ūp(ρ) ≥ u∗ where u∗ , (N − 1)θ − (N − 1)M − bθ.

Proof. The ideal reward of the protocol is initially set to be (N − 1)θ. The prescribed
strategy sends all possible messages, incurring the maximum message cost (N −1)M . Since
all the non-Byzantine nodes report p as a friend, the maximum report cost can be at most
bθ, which occurs when all b Byzantine nodes report enemy.

This bound holds regardless of how the protocol parameter θ is chosen. This worst-case
utility is incurred when the Byzantine parties follow the spiteful strategy.

The indiscriminate strategies, αγ. We next turn towards proving an upper bound on
the utility of deviating from the prescribed strategy ρ. We first define a family of simple
strategies, α, which we call the indiscriminate strategies. Looking ahead, these strategies
will serve as representatives for a partioning of the overal strategy space. The indiscriminate
strategies α by a fraction 0 ≤ γ ≤ 1, such that αγ misbehaves towards each other node with
probability γ. More precisely, αγ is defined as follows: At the beginning of the game, for
each other party q a coin is flipped with probability γ (for some arbitrary percentage γ). If
the coin flip succeeds, then p refuses to send any messages to q; otherwise p sends messages
to q according to the ordinary protocol.

The strategy αγ clearly causes p to incur a message cost of (1 − γ)(N − 1)M . Since
this strategy witholds messages from exactly γ(N − 1 − b) honest uncorrupted parties in

7

expectation, the worst-case expected report cost is (b+ γ(N − 1− b))θ. We therefore have
the following claim:
Claim 1. The worst-case expected utility for the strategy αγ is

ūp(αγ) = (N − 1)θ − (N − 1)(1− γ)M − (b+ γ(N − 1− b))θ (2)

The Spiteful Strategy, δ. Following Clement et al. [8], we define a particular adversarial
strategy, called the spiteful strategy, which serves as a worst-case adversary (as we will see
shortly). The spiteful strategy initially behaves according to the prescribed strategy, but in
the final round it always reports enemy for player p, causing p to be punished.

If rational party p could determine which nodes were corrupted, then p would be able
to cut his losses by withholding messages from just the nodes in B. The spiteful strategy,
however, blends in with the honest parties. As shown by the following lemma, this means p
can do no better than to withhold messages from other nodes chosen uniformly at random,
as with the indiscriminate strategy αγ . In the following, we say that player p follows an
acceptable message sequence towards player q if p sends q a total of at least M bits.
Lemma 2. Consider a strategy σγ , such that in an execution with all honest parties (i.e.,
with the strategy vector {σγ}+ ρN−{p}), party p sends an unacceptable message sequence to
exactly γ(N − 1) nodes in expectation. Then the worst-case utility ū(σγ) is at most ū(αγ).
Proof. Let γq be the probability that σγ sends an unacceptable message sequence to party
q ∈ N − {p} when all parties besides p follow the protocol. By assumption, we know that∑

q∈N−{p}

γq = γ.

First, note that against the spiteful adversary, p incurs an expected message cost of at least
(1− γ)(N − 1)M . Next, to bound the report cost, we will choose B ⊆ N−{p}, with |B| = b,
such that we minimize

∑
q∈B

γq. This minimization guarantees that p sends an unacceptable

message sequence to at least (N − 1− b)γ honest nodes in expectation, resulting in an
expected report cost of at least (b+ (N − 1− b)(γ))θ.

Note the above proof above holds regardless of whether probabilities γq are independent.

Choosing the parameter θ. We want to choose θ so that deviating from ρ cannot
improve the worst-case expected utility. Starting from Lemma 2, it will suffice if we can
guarantee that ūp(ρ) ≥ ūp(αγ) for all γ. We therefore solve the following:

ūp(ρ) ≥ ūp(αγ) (3)
(N − 1)M + bθ ≤ (N − 1)(1− γ)M + (b+ (N − 1− b)(γ))θ (4)

N − 1
N − 1− bM ≤ θ (5)

Theorem 1. If π is a synchronous protocol that terminates after r∗ rounds and each party
sends a maximum of M message bits to each other party, then the transformed protocol
Smart(π) is a worst-case weak Nash equilibrium.

Proof. When the SmartTRB protocol is instantiated with θ defined as in Equation 5, from
Lemma 1 we have that the worst-case expected utility when p follows the protocol ūp(ρ) is
at least as good as any indiscriminate strategy ūp(αγ). And from Lemma 2, we know that
the indiscriminate strategies perform as well in the worst-case as any other strategies.

8

3.3 Comparison with the BAR Primer [8].
Our protocol and analytical framework is adapted from the bar model of Clement et al. [8],
but with several significant differences.

While Clement’s model requires an infinitely repeated game, our model considers the
bounded case. In the infinite settings, rational parties simply play tit-for-tat, immediately
and irrevocably “retaliating” against nodes that misbehave, preventing them from all future
rewards. In a finite setting, a node could misbehave in the final round without fear of
retaliation.

Additionally Clement’s model assumes that nodes gain a positive utility from the correc-
tion execution of the protocol itself. Alternatively, in our model, nodes gain a positive utility
monetary payments disbursed by the smart contract. We believe our utility model is more
realistic, especially in a marketplace setting (like that discussed in Section 3.5) where the
participants in a protocol instance are randomly assigned from some population of available
workers.

Together, these two modelling differences require a significant change to the protocol
and proof. First, while “retaliation” in Clement’s model involves requiring nodes to send
expensive “penance” messages (since that is the only way to inflict a punishment in their
model), the smart contract provides a direct alternative. Second, in the finite setting we must
rule out deviant strategies that withhold messages in a possibly randomized way, even in the
last round, as though “guessing” at which parties might be corrupted. We overcome this by
introducing a new family of “indiscriminate strategies” that serve as simple representatives
of the full strategy space. Finally, like Clement, our proof involves a “spiteful strategy,” that
acts as a worst case adversary. However, the “spiteful strategy” is different in our model: it
misbehaves only in the final round, after it is too late for the victim p to retaliate.

3.4 SmartCast: An Incentive Compatible Consensus Protocol
As an application of our general protocol transformation, we now describe how to apply our
SmartBAR(·) transformation to a classic synchronous protocol, DolevStrong [11], in order to
obtain an incentive-compatible off-chain consensus protocol.

The Dolev-Strong protocol for Terminating Reliable Broadcast. The Dolev-Strong
protocol is a classic algorithm for synchronous byzantine agreement using signatures, that
achieves optimal resilience by tolerating N − 1. However, it provides no explicit incentives
for participants to follow. As seen in Clements et al., individual participants in the protocol
can reduce their computational cost by omitting messages.

The protocol runs for b+1 rounds, where the leader D sends a signed message containing
its input to each of the other nodes in the first round. Each node that receives the leader’s
message in the first round “accepts” the message, and then appends their own signature and
relays the message to every other node. If the leader fails to send a message to some node p,
some other node q will relay the message to p in any round r, as long as the relay contains
at least r signatures. p will then continue to relay the message. If the leader equivocates, it
is possible that a node accepts two or more distinct values. In this case, a node outputs ⊥,
and only relays the first two such values received. In total, each node must therefore send a
maximum of 2N total messages, each containing an input value and up to b+ 1 signatures.

We provide a listing of the Dolev-Strong algorithm in Figure 2, adapted from Kumare-
san’s thesis [14]. For a proof of security we refer the reader to [11, 14].

9

We let D ∈ N denote a designated leader. We let m ∈ {0, 1}C denote the sender D’s
input, and skD its secret key.

• (Stage 1): The leader D sends (m, signskD
(m)) to every party. It then outputs m and

terminates the protocol. Each other party p initializes ACCp := ∅, and SETp := (v 7→ ∅),
a mapping from values to (initially empty) sets of signatures.

• (Stage 2): In rounds r = 1, ..., b+ 1, perform the following:
– If a pair (v,SET) is received from some q, with v ∈ {0, 1}C , and if SET contains

valid signatures on v from at least r distinct parties including the leader D, and
if ACCp contains only 0 or 1 values, then p updates ACCp := ACCp ∪ {v}, and
SETp[v] := SETp[v] ∪ SET.

– Each party p checks whether any value v ∈ {0, 1}C was newly added to the set of
accepted values ACCp during round r− 1. In this case, p computes signskp

(v), and
sends (v,SETp[v] ∪ {signskp

(v)} to every other party.
• (Stage 3): If ACCp = {v} for some v, then p outputs v. Otherwise p outputs ⊥.

Figure 2: Definition of the DolevStrong protocol [11] for Terminating Reliable Broadcast
(adapted from Kumaresan [14])

From Reliable Broadcast to Atomic Broadcast. Atomic broadcast further guaran-
tees that messages can be committed by any node, not just a leader. In a synchronous
network, atomic broadcast can be easily built from terminating reliable broadcast, simply
by having nodes take turns becoming leaders. In brief, each node maintains a buffer of
input values that have not been committed yet. When it is node p’s turn as leader, p broad-
casts the set of elements in its buffer. When each turn ends, the nodes remove any newly
committed elements from their buffers.

3.5 Deploying Consensus Protocols with Smart Contracts
So far, we have discussed protocols assuming a fixed set of parties, with collateral provided
abstractly by a benefactor. We now describe an alternative deployment scenario where many
independent SmartCast instances are run concurrently, and where the participants in each
are randomly drawn from a large population of potential workers. Our idea is to build a
smart contract-based marketplace, SmartCast-Market, that matches up workers to protocol
instances.

A näıve approach might be to allow participants to join a SmartCast instance a first-
come-first-serve basis. This näıve solution would be vulnerable to Sybil attacks, where
malicious nodes join as fast as they can with numerous pseudonyms, hoping to fill up all
of the slots in a protocol and therefore crowd out honest nodes. Instead, our solution is to
allow nodes to join a pool of workers, and to allow task creators to deposit collateral and
add to a pool of pending tasks. Every epoch, workers are assigned to tasks in a randomized
batch. This prevents nodes from gaining too much influence within any particular protocol
instance.

If all participants in an instance follow the protocol, then the total payment for a task
must be P = N(N − 1)θ. In principle, this could be collected from a combination of up-
front payment from the task creator, along with collateral deposits from the participants
themselves. Since participation is voluntary, we should ensure as a guideline that workers
never lose money by participating in the protocol. Thus if they deposit collateral, they must

10

c o n t r a c t SmartCast {
mapping (address => ui nt) playermap ;
bool [] r e p o r t e d ;
address [] p l a y e r s ;
u i nt [] rewards ;
u i nt theta ;
u i nt d e a d l i n e ; // Deadl ine to r e c e i v e r e p o r t s

f u n c t i o n a s s e r t (bool b) i n t e r n a l { i f (! b) throw ; }
m o d i f i e r a f t e r (u in t T) { i f (b lock . number >= T) ; e l s e throw ; }
m o d i f i e r b e f o r e (u i nt T) { i f (b lock . number < T) ; e l s e throw ; }
m o d i f i e r o n l y p l a y e r () { i f (playermap [msg . sender] != 0) ; e l s e throw ; }

f u n c t i o n SmartCast (address [] p l a y e r s , u int theta , u int d e a d l i n e) {
var N = p l a y e r s . l e n g t h ;
// Each p l a y e r earns up to N ∗ theta i f they r e c e i v e a l l good r e p o r t s
a s s e r t (msg . va lue == N ∗ N ∗ t h e t a) ;
theta = t h e t a ;
d e a d l i n e = d e a d l i n e ;
f o r (var p = 0 ; p < p l a y e r s . l e n g t h ; p++) {

p l a y e r s . push (p l a y e r s [p]) ;
rewards . push (0) ;
playermap [p l a y e r s [p]] = (p+1);

}
}
f u n c t i o n r e p o r t (u i nt [] r e p o r t s) o n l y p l a y e r b e f o r e (d e a d l i n e) {

var p = playermap [msg . sender] − 1 ;
a s s e r t (! r e p o r t e d [p]) ; r e p o r t e d [p] = t rue ; // only r e p o r t once
a s s e r t (p e n a l t i e s . l e n g t h == p l a y e r s . l e n g t h) ;
f o r (var q = 0 ; q < r e p o r t s . l e n g t h ; q++) {

var r e p o r t = r e p o r t s [q] ;
a s s e r t (r e p o r t >= 0) ;
a s s e r t (r e p o r t <= theta) ;
rewards [q] += r e p o r t ;

}
}
f u n c t i o n withdraw () o n l y p l a y e r a f t e r (d e a d l i n e) {

var i = playermap [msg . sender] − 1 ;
i f (! msg . sender . send (balance [i])) throw ;
balance [i] = 0 ;

}
}

Figure 3: Implementation of the Smart contract in Solidity.

get at least that collateral back (in expectation) despite a worst-case adversary. However,
since the parameter θ = N−1

N−1−bM is chosen minimally, in the worst-case each honest party
just breaks even, receiving only (N − 1 − b)θ in payment but incurring an equal message
cost of (N − 1)M . Therefore there is no opportunity for collateral deposits to contribute to
the necessary endowment. Thus the task creator must pay up-front the maximum payment
N(N − 1)θ, although the maximum total message cost is only N(N − 1)M . Hence, the task
creator potentially pays an overhead of N−1

N−1−b above the raw cost of the resources used.

4 Implementation and Evaluation
To evaluate the practical limitations of the SmartCast protocol, we develop a prototype
implementation of both the Dolev-Strong consensus algorithm and an Ethereum smart con-
tract capable of assigning various nodes to arbitrary consensus tasks.

Our Dolev-Strong implementation is written in Python, using ordinary threads and
TCP sockets, with messages signed using the ed25519 signature scheme. We evaluated our
protocol by running on a network of up to 16 Amazon EC2 instances. To simulate realistic

11

Figure 4: Penalties imposed on nodes vs.
message failure probability.

Figure 5: Consistency failure vs. message
failure probability (analytic only).

network delays, we used the Linux traffic control tool to limit bandwidth to 5mbps and
impose a 100ms latency per message.

In the synchronous network model, messages between honest parties are simply guar-
anteed to be delivered within a given time bound. However, in reality, it is necessary to
choose this timeout parameter concretely, based on estimates of network performance and
on a tolerance for failure. Too short a timeout, and messages between otherwise-honest
parties may fail to be delivered in time. In our experiments the payload for each broadcast
is a constant size of 1 megabyte (i.e., the size of a Bitcoin block today). We benchmarked
the network and computation load by performing several trial computations and measuring
the resulting message delivery time, and then fitting a normal distribution to the results.

We first analyze the effects of message failure on the individual participants bottom line.
If a node p fails to deliver a message to q in time, then q will inflict a punishment on p.
Since each node is required to send 2 messages, if each message fails with probability ζ, we
expect the expected cost of punishments to be (N−1)(1−(1−ζ)2). In Figure 4 we compare
the actual punishment incurred in our experiment with this expected line.

Message delivery failures can also lead to inconsistent outputs. In the worst case, if the
maximum number of b nodes are actively attacking the network, then even a single failed
message among the remaining nodes can lead to inconsistency. This occurs in the following
scenario: suppose b nodes (including the leader) are corrupted, and send no messages at all
until round b (the next-to-last round). At the beginning of round b, one of the corrupted
nodes sends a message to a single honest node p containing a value v and b signatures.
The node p will accept (and output) the value v, and relay it to the remaining N − 1 − b
honest nodes. If even one of these nodes fails to receive this final-round message, then it will
output an inconsistent value ⊥. Thus given b malicious nodes, and assuming messages fail
independently with probability ζ, the uncorrupted nodes could output inconsistent values
with probability 1− (1−N2) probability (these are plotted in Figure 5).

4.1 Ethereum Smart Contract
We implemented the smart contract component of SmartCast in Ethereum’s Solidity pro-
gramming language. Our implementation includes:

• A smart contract for collecting reports, and handling payments. The entire program
listing is shown in Figure 3.

12

• A smart contract implementing the “Marketplace” described in Section 3.5.
• A test framework using pyethereum, allowing us to measure the “gas costs” (i.e., trans-

action fees) for varying numbers of parties.

The Solidity language syntax resembles Javascript, and the intended effect of each line
should be clear in context (though we imagine readers may be skeptical of the details, given
several recent high-profile failures caused by subtle Solidity quirks [17, 9, 16]). Fortunately,
the Smart Contract program listing in 3 fairly closely matches the pseudocode in Figure 1.
We explain a few Solidity idioms that readers are likely to be unfamiliar with. Solidity
supports “modifier” macros, which are convenient for specifying preconditions which must
hold before a function is called (or else they throw an error). Furthermore, although the
pseudocode disburses all rewards immediately upon the deadline, Ethereum does not directly
support time-triggered events, thus the indirect withdraw function is necessary.

The Marketplace Contract. We also implemented a Solidity version of the “market-
place” smart contract described in Section 3.5. Below we describe its high level functions.
For space, we omit the full Solidity code listing; the full code will be made available online.

• registerTask: creates a new task, configured with any application-specific parameters
(e.g., description of a validation condition or a list of approved clients). The task creator
must include payment sufficient to pay the workers for the task.

• registerWorker: allows a worker to sign up, depositing any necessary collateral.
• finalize: shuffles the list of workers and list of tasks, and then assigns workers to tasks

until either a) no tasks are remaining, or b) not enough workers are available to fill the
remaining task. For each fully-assigned task, spawn a new instance of the SmartCast
contract. Return any deposited collateral to workers who were not assigned to a task,
and refund payment to task creators whose tasks were not fulfilled.

Our protocol relies on a random beacon; our prototype simply uses block.blockhash(0)
as a source of randomness, although this is known to be manipulable by miners [4, 19].

Ethereum Benchmarks. We tested our smart contract implementation using the
pyethereum.tester framework. Table 1 shows the required gas costs for varying con-
figurations of our application. We show results for only a few possible configurations: we
increase the number of parties P , but always fill two tasks with two workers left over. The
finalize method is the most expensive, since it grows with O(N) when shuffling the list
of workers. However, the registerWorker and registerTask methods are each invoked N
times, and thus contribute about equally to the total.

Ethereum imposes a per-block (and hence, per-transaction) gas limit, which miners can
vote to change gradually over time. Although the simulator easily supports these large
transactions, today’s Ethereum blockchain enforces a limit of approximately 2 million gas
units, which the finalize operation busts when P ≥ 20 (as underlined in Table 1). To avoid
this limit, an alternative approach would be to spread the finalize operation over several
contract invocations. This would require more complicated code, since each invocation would
need to explicitly load and save its internal state. Our application provides a motivation for
higher-level programming abstractions for transactions spanning multiple blocks.

13

Table 1: Smart contract gas costs (normalized to dollars, based on current Ethereum param-
eters and price (as of Nov 14 2016)). Underlined costs are infeasible, exceeding Ethereum’s
current per-block gas limit.

(N,P,T) registerWorker registerTask finalize Tot
Gas (USD) Gas (USD) Gas (USD) Gas (USD)

(4, 10, 2) 110743 2.7/c 153347 3.8/c 1215702 30.4/c 2614826 65.4/c
(8, 18, 2) 110743 2.7/c 153347 3.8/c 1863111 46.6/c 4234665 $1.05

(16, 34, 2) 110743 2.7/c 153347 3.8/c 2966784 74.0/c 6678740 $1.70
(32, 66, 2) 110743 2.7/c 153347 3.8/c 5271727 $1.32 12047459 $3.01

Alternative implementation in Bitcoin. Our SmartBar protocol could still function
using only Bitcoin’s multi-signature transactions. The parties and the benefactor would
generate N2 transactions, where each transaction Tp,q rewards θ to party q conditionally on
a signature from p.

5 Conclusion and Future Work
We have adapted the work of Clement et al. [8] to the “smart contract” world, using cryp-
tocurrencies to provide incentive compatibility for off-chain consensus protocols. Though
we give a specific instantiation based on the Dolev-Strong protocol for reliable broadcast,
our protocol is expressed as a generic transformation for arbitrary synchronous protocols.

Although the incentive compatibility notion we have adapted from Clement et al. [8] is
described as “worst-case,” modeling arbitrary Byzantine failures, many plausible attacks yet
lie outside this model. In particular, our definition counterintuitively rules out “bribery”
attacks, which are well-known though have not been observed in practice [3, 20]. Notice that
the “worst-case” notion is from the point of view of an individual participant; since accepting
a bribe makes an individual party richer, this is excluded by definition. Additionally, our
utility model assumes unilateral deviation, which rules out collusion attacks. Incorporating
both bribery and collusion into our model remains an important open problem.

References
[1] Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols. In

International Cryptology Conference, pages 421–439. Springer, 2014.

[2] Iddo Bentov and Ranjit Kumaresan. How to Use Bitcoin to Design Fair Protocols. In
CRYPTO, 2014.

[3] Joseph Bonneau. Why buy when you can rent? bribery attacks on bitcoin consensus.
Bitcoin Research Workshop, 2016.

[4] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public random-
ness source. Cryptology ePrint Archive, Report 2015/1015, 2015. http://eprint.
iacr.org/2015/1015.

[5] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A. Kroll,
and Edward W. Felten. Research Perspectives and Challenges for Bitcoin and Cryp-
tocurrencies. IEEE Symposium on Security and Privacy, 2015.

14

http://eprint.iacr.org/2015/1015
http://eprint.iacr.org/2015/1015

[6] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

[7] Melissa Chase and Sarah Meiklejohn. Transparency overlays and applications. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 168–179. ACM, 2016.

[8] Allen Clement, Harry Li, Jeff Napper, Jean-Philippe Martin, Lorenzo Alvisi, and Mike
Dahlin. Bar primer. In 2008 IEEE International Conference on Dependable Systems
and Networks With FTCS and DCC (DSN), pages 287–296. IEEE, 2008.

[9] Kevin Delmolino, Mitchell Arnett, Ahmed E Kosba, Andrew Miller, and Elaine Shi.
Step by step towards creating a safe smart contract: Lessons and insights from a
cryptocurrency lab. Bitcoin Research Workshop, 2016.

[10] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation
onion router. Technical report, DTIC Document, 2004.

[11] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agree-
ment. SIAM Journal on Computing, 12(4):656–666, 1983.

[12] Juan Garay, Jonathan Katz, Ueli Maurer, Bjoern Tackmann, and Vassilis Zikas. Ra-
tional protocol design: Cryptography against incentive-driven adversaries. Cryptology
ePrint Archive, Report 2013/496, 2013. http://eprint.iacr.org/2013/496.

[13] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain model
of cryptography and privacy-preserving smart contracts. In 2016 IEEE Symposium on
Security and Privacy (SP), pages 839–858, May 2016.

[14] Ranjit Kumaresan. Broadcast and verifiable secret sharing: New security models and
round optimal constructions. 2012.

[15] Ben Laurie, Adam Langley, and E Kasper. Certificate transparency. Network Working
Group Internet-Draft, v12, work in progress. http://tools. ietf. org/html/draft-laurie-
pki-sunlight-12, 2013.

[16] Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making
smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 254–269. ACM, 2016.

[17] David Z. Morris. Blockchain-based venture capital fund hacked for $60 million. http:
//fortune.com/2016/06/18/blockchain-vc-fund-hacked/, June 2016.

[18] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. http://bitcoin.
org/bitcoin.pdf, 2008.

[19] Cecile Pierrot and Benjamin Wesolowski. Malleability of the blockchain’s entropy.
Cryptology ePrint Archive, Report 2016/370, 2016. http://eprint.iacr.org/2016/
370.

[20] Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies mine their
own business. Bitcoin Research Workshop, 2016.

[21] Gavin Wood. Ethereum: A secure decentralized transaction ledger. http://gavwood.
com/paper.pdf, 2014.

15

http://eprint.iacr.org/2013/496
http://fortune.com/2016/06/18/blockchain-vc-fund-hacked/
http://fortune.com/2016/06/18/blockchain-vc-fund-hacked/
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/370
http://eprint.iacr.org/2016/370
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

	Introduction
	Related Works

	Background and Preliminaries
	Network Model
	Smart Contract Protocols
	Utilities in the BAR Model.
	Synchronous Byzantine Agreement

	Smart Contracts for Incentive Compatible Protocols
	The Protocol Transformer SmartBAR()
	Rationality Analysis
	Comparison with the BAR Primer barprimer.
	SmartCast: An Incentive Compatible Consensus Protocol
	Deploying Consensus Protocols with Smart Contracts

	Implementation and Evaluation
	Ethereum Smart Contract

	Conclusion and Future Work

