
Detective Mining: Selfish Mining Becomes
Unrealistic under Mining Pool Environment

Suhyeon Lee∗† and Seungjoo Kim∗‡
∗CIST(Center for Information Security Technologies), Korea University, Korea

†ADD(Agency for Defense Development), Korea

Abstract—One of Bitcoins core security guarantees is that, for
an attacker to be able to successfully interfere with the Bitcoin
network and reverse transactions, they need to control 51%
of total hash power. Eyal et al., however, significantly reduces
Bitcoins security guarantee by introducing another type of attack,
called “Selfish Mining”. The key idea behind selfish mining is for a
miner to keep its discovered blocks private, thereby intentionally
forking the chain. As a result of a selfish mining attack, even a
miner with 25% of the computation power can bias the agreed
chain with its blocks. After Eyal’s original paper, the concept
of selfish mining has been actively studied within the Bitcoin
community for several years. This paper studies a fundamental
problem regarding the selfish mining strategy under the existence
of mining pools. For this, we propose a new attack strategy,
called “Detective Mining”, and show that selfish mining pool is
not profitable anymore when other miners use our strategy.

Keywords—Blockchain, Bitcoin, Selfish mining, Mining pool, Se-
curity analysis

I. INTRODUCTION

A. Motivation

Bitcoin uses Proof-of-Work (PoW) to its block generation
mechanism [9]. It was designed to make fair mining competi-
tion which relies on each miner’s computing power. However,
for several years, PoW mechanism has met with some chal-
lenges. Especially, the “Selfish Mining” strategy by Eyal [4]
makes an adversary who has only more than 25% - this value
depends on the network environment - can get revenue over
its hashrate proportion. The existence of the selfish mining not
only means it is unfair to solve PoW puzzles but also a severe
flaw in the integrity of blockchain.

After Eyal’s paper, many researchers have studied various as-
pects of the selfish mining strategy. Nayak [10] and Sapirshtein
[14] optimized Eyal’s strategy respectively. Ritz [13] and Niu
[11] applied the selfish mining strategy in Ethereum [2] which
uses modified PoW mechanism with orphan blocks. Grunspan
[6] studied the selfish mining’s profitability under the more
realistic premises. Also some researches studied the defense
mechanisms against selfish mining [12], [15], [18]. However,
most of the proposed methods are not practical because they
require a lot of modifications of the Bitcoin protocol itself,
and so they are not widely used. For this reason, the selfish
mining attack is still destructive.

In this paper, we study a fundamental problem regarding
the selfish mining strategy under the existence of mining
pool. Though the selfish mining strategy is studied in various

‡ Corresponding author

aspects, we think that a more realistic mining environment
should be considered. In real environment, most of mining is
done by mining pools [17]. Therefore, when discussing selfish
mining strategy, we should consider the structure of mining
pool and the information shared among pool members for more
accurate analysis.

This paper is organized as follows. An overview of the selfish
mining researches will be given in section II. In section III,
we will analyze how the mining pool works, what information
is shared among its members, and how to get it. Based on
these, we propose a detective mining strategy against the
selfish mining in section IV. Our method can easily detect
selfish mining pool, and neutralize it. And then, we show the
simulation result on our strategy in section V. Discussion and
conclusions are given in the last sections.

B. Contributions

The main contributions of this paper are summarized as
follows:

• We propose the strongest mining strategy, named
“Detective Mining”, in pooled mining environment.
It gives big extra revenue to miners even under the
existence of selfish miners.

• We show that the selfish mining is not feasible in
the real environment of Bitcoin where pooled mining
power is dominant.

II. SELFISH MINING STRATEGY

A. Single selfish miner case

Eyal[4]’s model of selfish mining is illustrated in figure 1.
To clarify our description, we must define terms and relevant
states. There are two parameters, α and γ. Each definition is
given below the figure. Eyal’s research [4] fixed γ for ease
of evaluation. Of course, the γ value depends on the state of
the network, so it cannot be constant. However, our paper also
fixes this value for ease of evaluation.

The basic idea of the selfish mining is that one adversary does
not publish valid blocks to make others waste their mining
on the puzzle that was already solved. The blocks which the
adversary keeps in secret is referred as a private chain. We use
the term, lead when an adversary who does selfish mining has
a longer private chain. The lead is used only when attacker’s
chain is ahead, and can have negative values in some optimal
selfish mining models [10], [14].



Now we describe an ordinary selfish mining strategy with the
figure 1. When the adversary does not lead, it is the state S0
without fork. So miners are working on the same block. If there
are forked chains, it is the state S0’. The state S0’ indicates
they have different chains which have the same length and
these chains compete with each other.

Figure 1: State machine of selfish mining

where

α is hashrate of the selfish miner. (0 ≤ α ≤ 0.5)
γ is a proportion of the miners who mines on selfish

miner’s chain during fork. (0 ≤ γ ≤ 1)

Each state in the above figure means :

• State S0: The adversary mines the block on the public
chain with the highest height. If the adversary finds a
block, the adversary gets one lead by not publishing
it. If the others find a block, the adversary accepts this
block, and the state is still 0.

• State S0’: This state happens when the other miners
find a block A and the adversary had mined a block B
unpublished on lead 1. Then the adversary publishes
the block B to compete with the block A published
by others. All miners except the adversary freely mine
among two chains and one of two chains wins finally.

• State S1: If the adversary finds a block at S0, the
adversary gets lead by not publishing it. The number
of blocks the adversary leads is counted by variable
c. If the others find a block, the adversary’s next state
is decided by reference to the variable c. Provided
that the variable c is 1, the adversary’s state goes to
S0 and the adversary’s chain competes with another
chain. Provided that the variable c is 2, the adversary
published all blocks and get all revenue from them.
At the other positive c values, the adversary does not
change the state and just decrease c. If the adversary
finds a block at S1, the adversary increases c.

With this strategy, the selfish miner gets revenue by the
following condition :

Rselfish =
α(1− α)2(4α+ γ(1− 2α))− α3

1− α(1− (2− α)α)
(2.1)

1− γ
3− 2γ

< α <
1

2
(2.2)

B. Multiple selfish miners case

More general selfish mining model is shown in figure 2. Here
we assume that each selfish miner uses the same strategy.
The difference between figure 1 and figure 2 is in the state
transition of S1. In the case of single selfish miner, only one
block is published at a time. However, in case of multiple
selfish miners, many blocks can be suddenly published at a
time.

Assume that a selfish miner SMi leads by ci. If another selfish
miner SMj , whose cj > ci, publishes his hidden blocks at a
time, then SMi should give up all of his hidden blocks. Figure
3 illustrates this situation. Here, MAX(· · · ) function returns
the largest value from the lead values provided.

Figure 2: State machine of the general selfish mining

For example, let Bob and Cathy be selfish miners. Bob
and Cathy have three and four unpublished private blocks
respectively. Suppose one of the other honest miners finds and
publish a new block. The figure 3 illustrates this situation.
Then, Bob has only one lead so that he should publish his
three blocks. After that, Cathy has one lead so that she should
publish her four blocks. Consequently, one block caused the
publication of three blocks at once. Bob does not get any
revenue from his three hidden blocks. Among them, only Cathy
get revenue from her four blocks.

Figure 3: Serial disclosure of multiple selfish miners

Furthermore, there can be a fork situation. For example, Let’s
assume that there are three selfish miners. All of these selfish
miners have one lead (i.e., c = 1 and all of their states
are S1.). If a block is published in the public chain, other
selfish miners will not be able to reveal their hidden blocks,
consequently resulting in a fork situation with four different
chains. Now the honest miners should choose a chain to mine.
In the single selfish mining case, we use the parameter γ to
define how many miners work for the selfish miner’s chain.
However, in the multiple selfish mining case, we need more
parameters for each fork. In this paper, to simplify the proof,



we will not define all the parameters. Even so, there is no
significant changes in the final result. In figure 2, we omit
detailed description on the fork resolution transition (S0’ to
S0). Instead, for its simplicity, we assume that honest miners
choose where to mine fully randomly in fork situations.

Leelavimolsilp et al. [8] and Bai et al. [1] investigated the
situation with multiple selfish miners and their revenue. Their
works commonly show that multiple selfish miners compete
to each other and diminish revenue than single selfish mining
case. Similar results will be shown in section V.

III. ANALYSIS OF MINING POOL STRUCTURE AND ITS
LEAKED INFORMATION

In this section, we analyze the structure of the mining pool,
how it operates, and what information is inevitably leaked from
the pool manager to pool members.

Eyal proposed the selfish mining strategy and other researchers
have studied the optimized version of it. However, their
researches overlooked three aspects of the real modern mining
environment. First of all, most of miners work in mining pools.
The figure 4 shows the Bitcoin hashrate distribution. As can be
seen in the figure, most of the mining (at least 78.7%) is done
on a pool basis and not on an individual basis. Furthermore,
some mining pools have quite big hashrate, and this situation
will accelerate as Bitcoin’s mining difficulty level increases.
Second, most of mining pools are public, thus miners can
freely join and leave the pools. (The article [17] says only a
few pools are closed.) Third, miners in the same mining pool
are forced to share specific information with the pool manager
due to the structural nature of the pool.

Figure 4: Hashrate distribution by Blockchain.com

In the following subsections, we will sketch the block structure
of Bitcoin, and then explain the communication protocol
between a mining pool manager and miners. Parameters used
in this section are described in table I.

A. Bitcoin’s Block Structure

The Bitcoin block consists of two parts, header and transaction
as shown in Figure 5 [3].

The header part contains 6 elements. Version indicates the
current version of the Bitcoin protocol. PrevBlockHash is

Table I: Parameter explanation

Parameters Description
v the version of Bitcoin
r prevBlockHash
m a list of transactions
st timestamp
T the current difficulty target of Bitcoin network
H(m) MerkleRootHash
ctr nonce
q the size of the nonce value
D the difficulty value for share in a mining pool

Figure 5: Bitcoin block structure

the hash value of the previous Bitcoin block in order. By
containing the hash value of the previous block header, the next
block keeps the immutability of the context. MerkleRootHash
is the hash value of the transaction part. Timestamp is the
time when the block created. Nonce is the random value as a
solution to the PoW puzzle of Bitcoin. bits is the difficulty of
the current Bitcoin network.

The transaction part contains Bitcoin transactions with the
sender, the receiver and the amount of Bitcoin. All of the
transactions in the block are hashed. Its result value is the
Merkle root, MerkleRootHash. Among transactions, the first
transaction is a special transaction called Coinbase Transac-
tion. This transaction is for giving the Bitcoin reward to the
miner who first publishes a valid block in the Bitcoin network.
Since the coinbase transaction is a minting process, it does not
contain the sender information of that transaction. Here and
now, 12.5 Bitcoins are given to the publisher as a reward.

To publish a Bitcoin block, miners should find a proper
nonce value which satisfies the difficulty condition. According
to Garay’s work [5], we can describe this as the following
equation :

(H(v, r,H(m), st, T, ctr) < T ) ∧ (ctr ≤ q) (3.1)

Here, H(·) is a cryptographically secure hash function such
as SHA256. The hash output of the values in a block should
be less than a target difficulty. To meet this condition, mining
should involve a ton of brute force computing with the hash
function.



B. Mining Pool’s Communication Protocol

In order to explain the communication mechanism of mining
pools, we will use the Stratum mining protocol [16] which is
a text based communication protocol for mining pools. Figure
6 illustrates miners in mining pools. As we mentioned above,
miners can rarely find a valid block, even though they work
hard in a mining pool. Thus we need a new indicator in
order to check the contribution of each miner. Let D be this
indicator. This numerical value is bigger than difficulty (T in
the inequality 3.1) of the network. In other words, D is easier
to meet the condition than T . By using this, miners can solve
the easier PoW puzzles and the pool manager can check each
miner’s contribution. Sometimes the solution submitted by the
miner will satisfy difficulty T . Then the pool manager publish
it to the Bitcoin network as valid block. We call a solution
which meets the difficulty T as a full Proof-of-Work (fPoW),
and a solution meeting the indicator D of the pool as a partial
Proof-of-Work (pPoW) respectively.

Figure 6: Bitcoin mining pools

For miners, their PoW task w consists with v, r,m, st, q except
ctr which is a nonce to be found. Their mining pool manager
distributes PoW task as 3.2. Then each miner in that pool
should find a proper nonce which meets the inequality 3.3.

w = (v, r,m, st, q) (3.2)

(H(v, r,H(m), st, T, ctr) < D) ∧ (ctr ≤ q) (3.3)

C. Leaked Information in Mining Pool

According to [17], most of mining pools are public, so miners
can freely join and leave the pools. Also, miners in the same
mining pool are forced to share specific information with the
pool manager due to the structural nature of the pool.

There are many ways in which a third party can obtain this
shared (in other words, leaked) information. One of the simple
methods is infiltration [7]. In figure 7, the mining pool F try
to infiltrate into the mining pool S. The manager of the mining
pool F behaves as a proxy for the mining task of pool S, and
its miners work normally for the given task of S. Here we
should note that the manager of the infiltration mining pool
F can see all the information in the task given by the mining
pool S. The task includes all the information specified in the
expression 3.2.

In another example, a miner can split his mining power into
two parts. One is for his own mining and the other is for in-
filtrating into other mining pool which has big enough mining

power. Then the infiltrating miners can fetch information of
the target pool.

Figure 7: Leakage example: Infiltration between mining pools

IV. OUR PROPOSAL: DETECTIVE MINING

A. Basic idea

Generally, the selfish miner tries to keep its private chain
longer than the public chain. Since the honest miners do not
know the existence of the longer private chain, the selfish miner
can earn the maximized revenue than the honest miners.

However, if there is a way to know that there is a selfish
miner hiding the block, the situation changes. Moreover, if the
selfish miner does not know that we know it, the situation
becomes even more dramatic. We call this as “Detective
Mining” strategy. The term, detective mining (a.k.a. ghost
mining), originally means working old mines and finding gold
previous miners have left behind. Our strategy is very similar
with this.

As said before, nowadays, most of mining is done by pool basis
[17], and the miners in same mining pool have no choice but
to share some information such as Coinbase Transaction or
MerkleRootHash with the pool manager due to the structural
nature of the pool. By using this we can easily detect the
pooled selfish mining. If a mining pool is honest, then it does
mining on the last block of the longest public chain. But, if
a mining pool is selfish, it sometimes does mining with an
unknown previous block on its private chain. Therefore, if we
can distinguish these two cases, we are able to detect the selfish
mining.

After finding the selfish mining pool, to maximize our revenue,
we (called as ”Detective Miners”) can work on the selfish
mining pool’s hidden blocks stealthily. In section III, we
showed that the shared task among miners in the same pool
included the hash of the previous block, prevBlockHash. This
shared (in other words, leaked) information of the selfish
mining pool can be used for our detective mining. This mining
process is described in algorithm 1.

If the detective miners find a new valid block on the private
chain, they publish it, and then the selfish mining pool can
not keep its chain secret any more. If a block after the private
chain is published, the selfish mining pool should admit that
it is not in lead state anymore. In this situation, for getting
revenue, the smartest way is to open up all selfish mining



Figure 8: detective mining

Algorithm 1 Create a PoW task based on shared information

1: w: the shared PoW task
2: r: the shared prevBlockHash
3: m′: the new transaction list obtained by the coinbase of

the detective miner
4: w′: the counter PoW task
5:
6: procedure CREATETASKFROMSHAREDINFO
7: if w is unknown then
8: (v, r,m, st, T, q)← w
9: w′ ← CreateTask(v, r,m′, st, T, q)

10: return w′

pool’s private chain and pray for honest miners to choose its
chain.

Figure 8 illustrates the whole process of our detective mining.
The block A and the prior blocks of A consist the public chain.
Let’s assume that block B is on the private chain of selfish
mining pool. In general, honest miners work at the block A
which is the latest block of the public chain, and the selfish
mining pool work at its private block B. On the other hand,
the detective miners can work at block B by reconstructing
a new task from the leaked information (i.e., the shared hash
value of the private block B) from the selfish mining pool. If
the detective miners succeed to find and publish a new block
C which follows the block B, the selfish mining pool must
inevitably release its block B. Then the block B and C become
the public chain.

B. Simple model of detective mining

At first, we make a simple detective mining model against one
selfish miner. The model is shown in the following figure 9.

If the detective miners find a block after the private chain,
every positive lead state can transits to the state S0. We define
this possibility as δ, which means the hashrate of the detective
miners. For an intuitive understanding of the process, we add
a memory element c. The memory value c indicates how
far ahead the selfish miner’s chain. It is updated in several
transitions. The memory element reduces infinitely many states
into one state (S1). S0 means there is no advance on the

private chain. In S0, every miners work on the public chain.
S0’ means the height of the public chain and the selfish mining
pool’s chain is the same. State S1 means the private chain of
the selfish mining pool is longer than the public chain. For
example, if the selfish mining pool finds a block in advance
at S0, the state transits to S1 with setting c to 1. As another
example, in the state S1, miners find a new block in the public
chain with the probability of 1− α− δ. In this case, the next
transition depends on the memory value c. It transits to S0 if
c is 1 and sets c to 0. If c is 2, it transits to S0’ and sets c to
0. Otherwise, it just decreases c. Due to the detective mining,
the state machine model contains a transition to zero state (S0)
whenever the selfish mining pool has a longer chain (S1). This
transition by δ possibility indicates the success of the detective
mining. That is, detective mining disturbs the selfish mining
pool to maintain its long private chain. At the same time, the
detective miners’ revenue increase as their block become the
main chain. We will check their revenue variation at the next
section. At the competition state 0’, the detective miners can
randomly choose which chain to be mined. So the transitions
from the state 0’ is same with the previous figure.

Figure 9: Simple model of the detective mining

where

α is the hashrate of the selfish mining pool
δ is the hashrate of the detective miners
γ is a proportion of the miners on the selfish pool’s

chain in a fork situation.



C. General model of detective mining

In a general model, we apply the detective mining strategy
to the multiple selfish mining model at the section II. For
simplicity, we assume that the detective miner mines at the
longest chain among all the chains of selfish mining pools.
Also we assume that if the public chain and selfish mining
pools’ chains compete in fork situation, the detective miners
mine for the public chain. If only selfish mining pools’ chains
compete with each other in a fork situation, detective miners
randomly choose which chain to be mined for. There can be
an informal fork situation that plural selfish mining pools have
the same height of private chains. In this case, detective miners
also chooses a chain randomly.

Figure 10: General model of the detective mining

where

α is the total hashrate of the selfish mining pools
δ is the hashrate of the detective miners

V. SIMULATION AND RESULTS

To validate our strategy, we simulate the revenue variation
of the selfish mining in various settings. In the following
subsections, simulation results of one selfish mining pool
model and multiple selfish mining pools model are shown
respectively. All simulations are evaluated with 50,000 blocks,
which are the number of Bitcoin blocks mined during 2 years.
We will calculate the percent ratio of selfish mining pools
among entire blocks.

A. Simple model

The first simulation is based on the simple model with only
one selfish mining pool. To show detective mining suppresses
a selfish pool’s revenue, we check the ultimate (figure 11) and
the relative (figure 12) variation of revenue.

In figure 11, three plots are simulations under γ is 0, 0.5 and
1 respectively. In each plots, three lines indicates revenue of a
selfish mining pool under the different proportions of detective
miners. To explain with the simple model, three lines indicate
revenue of a selfish mining pool with δ value 0, 0.5

1−α , and
1

1−α respectively. For simplicity, let θ is the percent ratio of
detective miners except the selfish miners. Using θ, the three
lines indicate revenue of a selfish mining pool with θ = 0%,
50%, and 100% respectively. In figure 11, we use the below
symbols.

• HS is the hashrate of the selfish mining pool

• RH is the revenue of the honest mining

• RS is the revenue of the selfish mining pool when θ
is 0%

• RS50 is the revenue of the selfish mining pool when
θ is 50%

• RS100 is the revenue of the selfish mining pool when
θ is 100%

In the plot, the X-axis shows percent of the selfish mining
pool’s computing power. The Y-axis shows percent of the
selfish mining pool’s revenue among all miners. The black
solid line, RH , is the revenue of the honest mining. So it de-
termines whether the selfish mining strategy is extra profitable
or not. In the three lines except the black line RH , we can
see that the revenue decreases significantly as the detective
mining increases. As the ratio of detective miners decreases,
our strategy is more critical to the selfish mining pool. When
50% of the rest miners join to the detective mining (the double
dotted line, RS50), the selfish mining is not profitable than the
honest mining under 32% of computing power. Furthermore,
the threshold point that the selfish mining is extra profitable is
higher than there is no detective miners. For example, in the
line RS50, at γ = 0, 42%, at γ = 0.5, 37%, and at γ = 1,
32% are thresholds respectively.

The figure 12 shows variation of relative revenues of the selfish
pool, the detective miners, and the rest honest miners. The
three graphs are under α values 0.35, 0.4 and 0.45 respectively.
They are each red dot on the middle graph in figure 11 when
θ is 50%. Not to be biased, we choose these three points on
the graph when γ is 0.5. We use relative extra revenue (RER)
to evaluate the impact of the detective mining. It indicates the
proportion of the extra revenue to the honest mining. If RER
is negative, a miner earns less revenue than the honest mining.
Thus, only when RER is positive, our new strategy is effective.
It is given in formula 5.1.

RER =
Rn −Rh
Rh

(5.1)

where

Rn is the revenue of miners with our new strategy
Rh is the revenue of miners with the honest mining

In the figure 12, we use below symbols:

• RERS is RER of the selfish mining pool

• RERN is RER of the detective miners

• RERO is RER of the other miners except the selfish
mining pool and the detective miners

The simulation evaluated RER of the selfish mining pool, the
detective miners and the other miners. The X-axis of the graph
means variation of the ratio of the detective mining to the
miners except the selfish miners. It is performed with the
fixed value γ = 0.5. In total range, RER of the selfish mining
pool (the black solid line, RERS) decreases as the number of
detective miners increases. The detective miners (the double
dotted line, RERL) get high RER value. And the other honest
miners (the dotted line, RERO) who implement neither selfish



Figure 11: Simple model simulation and revenue

Figure 12: Simple model simulation and RER variance

mining or detective mining get negative RER value. Hence,
it is always advantageous to use the detective mining in the
presence of a selfish mining pool. The selfish mining pool gets
much smaller RER value than the detective miners, and this
gives enough motivation for miners to use our method.

To summarize, our detective mining is very effective against
the selfish mining pool. Furthermore, it gives much higher
revenue to the miners than the honest strategy. Provided that
there are enough detective miners, the selfish mining pool gets
less revenue than it uses the honest strategy.

B. General Model

In the above simple model simulation, we found the decrease
of the selfish pool’s revenue and big RER of the detective
miners. To analyze our method in general cases, we simulated
our proposal against multiple selfish mining pools. Here we
assume that multiple selfish mining pools follow the general
model at the previous sections.

We simulated two, three and four selfish pools respectively
with several join rate of detective mining. The first figure 13
is result under no detective miners (θ = 0%). The second
figure 14 is a result under half of the rest miners joining in the
detective mining (θ = 50%). The last figure 15 is a result under
all the miners joining in the detective mining except the selfish
mining pools (θ = 100%). The value N above graphs means
the number of selfish pools. In this simulation, we assume that
multiple selfish mining pools have the same computing power.
Take note that the range of X-axis are different. It is trivial if
there is any selfish miner with bigger hashpower than honest
miners, the selfish miner’s hidden chain won’t be published as
its chain is always longer than the public chain. The figure 16
illustrates this situation. Let Bob and Cathy be selfish miners
with bigger hashpower than the rest of the miners. As each
hashpower of them are bigger than others, their private chain
exceeds many blocks than the public chain at some time.
Furthermore, they don’t publish their private chain forever as
the public chain cannot catch the length of their chain. In this
case, we cannot count their revenue in normal ways.



Figure 13: General model simulation when θ is 0%

Figure 14: General model simulation when θ is 50%

Figure 15: General model simulation when θ is 100%



Figure 16: Endless private chains by two selfish miners

Therefore, we limit selfish miners’ hashpower not to exceed
honest miners’ hashpower. For example, when three selfish
miners have 25% hashpower respectively, the rest hashpower
is 25%. If selfish miners have more hashpower, the rest
hashpower is less than the selfish miner. To generalize, if
there are N selfish pools with the same hashpowers, their limit
is 1/(N + 1). Therefore, 33%, 25% and 20% are limits for
N = 2, 3, 4 respectively. In every graph, a block line shows
expected revenue by honest mining and it becomes a baseline
to evaluate revenue of selfish pools.

In figure 13, we can see selfish pools get less revenue than the
single selfish mining. We think they exploit each other and it
makes their blocks wasted. When there are four selfish pools,
they nearly don’t get extra revenue than honest mining. In the
conventional selfish mining, the threshold to be extra profitable
is near 25%. On the other hand, we found an interesting
fact that their threshold to get extra revenue decreases as the
number of selfish miners increases. For example, at N = 2,
27%, at N = 3, 2%, and at N = 4, 18% are thresholds
respectively.

Outstandingly, with θ is 50% or 100%, the selfish pools are
not extra profitable anymore. It means multiple selfish pools
will not be a valid strategy with enough detective miners.

VI. EXTENSIBILITY AND SECURITY ANALYSIS

Variations of Selfish Mining Strategies Optimal selfish min-
ing strategies were studied in Saprishtein [14] and Nayak [10].
In the middle of them, the optimal selfish mining [14] uses
dynamic selfish mining strategies. They depend on miner’s
hashrate and network environment to make their revenue
optimal. Basically, they share the basic structure of the selfish
mining strategy. Their optimal strategies are based on not
publishing blocks. Hence, we are sure that they are also
significantly affected by our detective mining.

Optimization of the Detective Mining The model of the
detective mining is quite complicated so that we did not make
theoretical calculation. Nevertheless, we believe our strategy
can be optimized and advanced more. We guess an optimized
form of the detective mining will be similar with the dynamic
selfish mining model of Saprishtein [14]. We leave it for the
future work.

Security We can consider an adversary who wants to bypass
the detective mining. This adversary needs to hide the core
information used to reconstruct the PoW task, PrevBlockHash.
This value is necessary for miners to solve PoW puzzles
in the Bitcoin. It is, therefore, impossible to distribute PoW
task without the hash of the previous block. For another

bypass method, we can consider the adversary who changes
the coinbase transaction in order to hinder detective miners
from reconstructing a new PoW task. In Stratum protocol, a
mining pool manager gives transaction information to miners
[16]. Not like the Stratum protocol, mining pools can create
a PoW task which does not include a transaction list. Miners
need the hash value of the merkle root, not the transaction
list in solving PoW directly. So, the detective miners should
create a transaction list and obtain MerkleRootHash from it.
If the selfish mining pools do not leak detailed transaction
information and already generated private blocks, the context
of a block generated by the detective miner can conflict with
transactions already contained in private blocks. For example,
let the transaction A be already included in a private block
B200 of height 200. Without this knowledge, the detective
miner can generate a block B201 of height 201. If the block
B201 also includes the transaction A, the block B201 cannot be
valid. In this case, the detective miner can avoid this integrity
problem by generating an empty block only with coinbase
transaction.

VII. CONCLUSION

In this paper, we proposed a new strategy, named detective
mining, to counter the selfish mining pools by investigation of
the selfish mining strategy and shared information in mining
pools. We designed our method with information in mining
pools can easily be shared to miners. In the result of simula-
tions, we show that selfish mining pools get big damage by
our strategy. Moreover, miners can get significant extra revenue
by adopting our method. It motivates that miners to apply our
method. Then selfish mining will not be feasible anymore in
the real Bitcoin environment.

REFERENCES

[1] Qianlan Bai, Xinyan Zhou, Xing Wang, Yuedong Xu, Xin Wang, and
Qingsheng Kong. A deep dive into blockchain selfish mining. arXiv
preprint arXiv:1811.08263, 2018.

[2] Vitalik Buterin. A next-generation smart contract and decentralized
application platform.

[3] Bitcoin Wiki Contributors. Bitcoin wiki : Bitcoin protocol documenta-
tion, 2019. [Online; accessed 29-March-2019].

[4] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining
is vulnerable. Communications of the ACM, 61(7):95–102, 2018.

[5] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin
backbone protocol: Analysis and applications. In Annual International
Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 281–310. Springer, 2015.

[6] Cyril Grunspan and Ricardo Pérez-Marco. On profitability of selfish
mining. arXiv preprint arXiv:1805.08281, 2018.

[7] Suhyeon Lee and Seungjoo Kim. Countering block withholding attack
efficiently. IEEE INFOCOM 2019 Workshops - CryBlock 2019 (Work-
shop on Cryptocurrencies and Blockchains for Distributed Systems),
April 2019. To be published.

[8] Tin Leelavimolsilp, Long Tran-Thanh, and Sebastian Stein. On the
preliminary investigation of selfish mining strategy with multiple selfish
miners. arXiv preprint arXiv:1802.02218, 2018.

[9] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
2008.

[10] Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn
mining: Generalizing selfish mining and combining with an eclipse
attack. In Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on, pages 305–320. IEEE, 2016.

[11] Jianyu Niu and Chen Feng. Selfish mining in ethereum. arXiv preprint
arXiv:1901.04620, 2019.



[12] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In Proceed-
ings of the ACM Symposium on Principles of Distributed Computing,
pages 315–324. ACM, 2017.

[13] Fabian Ritz and Alf Zugenmaier. The impact of uncle rewards on selfish
mining in ethereum. In 2018 IEEE European Symposium on Security
and Privacy Workshops (EuroS&PW), pages 50–57. IEEE, 2018.

[14] Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal
selfish mining strategies in bitcoin. In International Conference on
Financial Cryptography and Data Security, pages 515–532. Springer,
2016.

[15] Siamak Solat and Maria Potop-Butucaru. Zeroblock: Timestamp-free
prevention of block-withholding attack in bitcoin. arXiv preprint
arXiv:1605.02435, 2016.

[16] Slush Pool Team. Stratum mining potocol, 2019. [Online; accessed
29-March-2019].

[17] Jordan Tuwiner. 10 best and biggest bitcoin pools, 2019. [Online;
accessed 29-March-2019].

[18] Ren Zhang and Bart Preneel. Publish or perish: A backward-compatible
defense against selfish mining in bitcoin. In Cryptographers Track at
the RSA Conference, pages 277–292. Springer, 2017.


