
1

CrowdBC: A Blockchain-based Decentralized
Framework for Crowdsourcing

Ming Li and Jian Weng and Anjia Yang and Wei Lu

Abstract—Crowdsourcing systems have gained considerable interest and adoption in recent years. They coordinate the human
intelligence of individual and businesses together from all over the world to solve complex tasks. However, these central systems are
subject to the weaknesses of the trust based model like traditional financial institutions, such as single point of failure, high services fee
and privacy disclosure. In this paper, we conceptualize a blockchain-based decentralized framework for crowdsourcing, in which a
requester’s task can be solved by a crowd of workers without relying on central crowdsourcing systems or requiring users to access
services with registering true identities. In particular, we present the architecture of our proposed framework and separate CrowdBC
into three layer: application layer, blockchain layer and storage layer. Users can register, post or receive a task securely under this
structure. We enhance the scalability of crowdsourcing by depicting complex crowdsourcing logic with smart contract. Moreover, we
give a detailed scheme for the whole process of crowdsourcing and also discuss the security of decentralized crowdsourcing
framework. Finally, we implement a software prototype on Ethereum to show the validity and effectiveness of our proposed framework
design for crowdsourcing.

Index Terms—Crowdsourcing, blockchain, state machine, smart contract, reputation system.

F

1 INTRODUCTION

O VER the past few years, crowdsourcing has gained
considerable interest and adoption since it is coined

in 2006 by Jeff Howe [1]. It is a distributed problem-
solving model through an open call for solutions. Nowa-
days, many companies choose crowdsourcing as a problem-
solving method, ranging from web and mobile developing
to t-shirt designs. There are a number of famous crowd-
sourcing systems available, such as Upwork [2], Amazon
Mechanical Turk [3] and UBER [4]. We can expect that this
field will change the working style of people significantly.

Current crowdsourcing systems perform triangular
structure involving three groups of roles: requesters, work-
ers and the crowdsourcing system. The requester submits a
task which is challenging for computers but easy for human
to complete through the crowdsourcing system. Workers
who are interested in this task compete and submit solutions
to the requester who will then select a proper solution
and grant corresponding worker the reward. Take Upwork
for example, it contains a range of top talents from pro-
grammers to designers, writers, customer support reps [2].
Upwork requires clients (requesters) to deposit a milestone
payment into the escrow account before work begins. Then
the clients could interview or hire freelancers (workers) to
design or write. Freelancers who focus on these area of
expertise compete for the job and the winners will obtain
the reward. Additionally, winners are demanded to pay a

• Ming Li, Jian Weng and Anjia Yang are with the College of Information
Science and Technology and the College of Cyber Security, Jinan Universi-
ty, Guangzhou 510632, China. Jian Weng is the corresponding author. E-
mail: limjnu@gmail.com, cryptjweng@gmail.com, anjiayang@gmail.com

• Wei Lu is with the School of Data and Computer Science, Guangdong Key
Laboratory of Information Security Technology, Sun Yat-sen University,
Guangzhou 510006, China. e-mail: luwei3@mail.sysu.edu.cn

service fee of 5% to 20% and are evaluated via reviewing
their profile by requesters. Meanwhile, the client also pays
2.75% processing fee for this payment transaction.

Despite the success of these crowdsourcing systems, they
are subject to the weaknesses of the central point of trust like
traditional financial institutions, which brings about some
inevitable challenges. First, user’s sensitive information and
task answers are saved in the database of crowdsourcing
systems. For example, one of the most prevalent crowd-
sourcing systems Freelancer [5] was reported to breach the
Privacy Act for uncovering a user’s true identity which
contains IP addresses, active account and dummy accounts
by Office of the Australian Information Commissioner (OA-
IC) in December 2015. Furthermore, deposits are stored in
the crowdsourcing system, and requesters have to believe
that it would not go bankrupt by default. Unfortunately,
it may not always be the case, such as Quirky [6], an big
invention platform that uses the crowdsourcing to connect
inventors with companies in a specific product category
filed for bankruptcy. Second, crowdsourcing systems run
business on a centralized server, which might be temporar-
ily unavailable for suffering mischief and malicious attacks
from hackers. It is worth nothing that single point of failure
does exist in this centralized server inherently. In April
2015, a service outage emerged due to hardware failure in
Uber China, which caused passengers can’t stop the order
at the end of services [7]. Third, crowdsourcing companies
are interested in maximizing their own benefits and require
requesters paying for services, which in turn increases user’s
costs. Currently, most of the crowdsourcing systems could
demand a sliding services fee for 5% to 20%. Lastly, there
are no dispute mechanisms in place when requesters and
workers are in deadlock, and they need the crowdsourcing
system to help give an arbitration, which may lead to unfair
judgement sometimes.

2

This research is motivated by these discussions. We
address this question: Can we design a crowdsourcing system
which is not relying on an third party with trust, security
and low services fee? To answer this question, we design
a blockchain-based decentralized framework for crowd-
sourcing. Blockchain protocol has the potential to finish
several kinds of transaction and cooperation between the
mutual distrust parities. Besides, this framework has many
advantages such as increasing user security and service
availability (there is no single point of failure), enhancing
the scalability of crowdsourcing with programmable smart
contract and lowering cost (users do not need to pay the
crowdsourcing system). Therefore, we believe our frame-
work has the real potential to disrupt the traditional model
in crowdsourcing. In a nutshell, our contributions are in the
following.
• This paper conceptualizes a blockchain-based decen-

tralized framework (CrowdBC) for crowdsourcing. Crowd-
BC does not depend on any central third party to accomplish
crowdsourcing process which avoids the single point of
failure issue. Moreover, the user’s cost is significantly de-
creased by removing the costly service fees from traditional
crowdsourcing platform, though with a small amount of
transaction fees in CrowdBC. Besides, task evaluation is
completed with the confirmation of miners in blockchain,
and we could guarantee the evaluation fairness and data
privacy.
• We enhance the scalability of crowdsourcing by s-

mart contract to depict complex logic. We perform the
whole process of crowdsourcing task based on smart con-
tract and provide three standard contract in CrowdBC:
User Register Contract (URC), User Summary Contract
(USC), Requester-Worker Relationship Contract (RWRC).
Requester and worker reach an agreement by smart contract
without relying on any central authority.
• We design a reputation management method in

CrowdBC. In particular, CrowdBC assigns each worker with
a reputation which is gained based on their past behavior
on CrowdBC. The higher reputation of a worker, the higher
probability of the worker to get a job. And our protocols en-
sure that updating reputation is only related to a completed
task.
• We implement our framework to verify the feasibility

through a software prototype based on Ethereum and illus-
trate a discussion of future improvements to this scheme.

The remainder of the paper is organized as follows. In
section 2, we present the related work. The preliminaries of
blockchain, smart contract and digital signature are given in
section 3. In section 5, overview of our proposed framework
is given, and in section 4 we present the system model,
security assumptions and threat model. We present the
framework description and the details about decentralized
crowdsourcing protocols in section 6. After showing the im-
plementation results in section 7, we conclude and discuss
the future work of the paper in section 8.

2 RELATED WORK

Crowdsourcing has been a distributed problem-solving tool
over the past decade, with the object to reducing a com-
pany’s production costs and making more efficient use of

human intelligence. Research on crowdsourcing has become
an emerging trend with the explosive growth of the internet
and mobile device. And it mainly focused on the following
aspects: (1) the crowdsourcing application based on Web
2.0 technology, such as voting system [3], creative system
[2]. (2) Incentive protocols design [8], [9], [10]. An efficient
incentive protocol can attract more user participation in
crowdsourcing. (3) Answer and data collection in crowd-
sourcing [11], [12], [13]. (4) Quality evaluation of solutions
[14], [15]. It aims to detect malicious workers and we can
refer the evaluation result to the penalty standard. We refer
readers to a comprehensive survey on crowdsourcing for
more information [16], [17], [18], [19], [20].

Halder [21] and Yang [22] presented some security and
privacy challenges in crowdsourcing, such as data protec-
tion, privacy threats and availability threats. Toch [23] and
To [24] proposed frameworks which are secure crowdsourc-
ing models for privacy management of user information
in spatial crowdsourcing. However, the majority of these
traditional crowdsourcing models are built on central third
party and appear to be breakdown of trust.

Federico [25] proposed CrowdJury for court processing
of adjudication adopting the blockchain based on collec-
tive intelligence, which is most related to our approach.
However, the CrowdJury does not provide details about
the design of crowdsourcing protocols. Jacynycz [26] and
Zhu [27] presented a blockchain-based crowdfunding which
is a specific type of crowdsourcing. And the research on
blockchain-based crowdsourcing model has gained consid-
erable interest in industrial area recently, such as microwork
[28]. In summary, the above mentioned research is limited
to their specific application (i.e., CrowdJury with court
adjudication). In comparison, our framework is designed
with much broader goals, such as providing direction for
system designers to design a decentralized class of protocols
in crowdsourcing.

3 BACKGROUND

3.1 Blockchain
Bitcoin [29], as the first idea of a decentralized currency,
is not controlled by any central authority. The core of
blockchain is a distributed ledger which is public, im-
mutable and ordered. Users offer resources to compete to
obtain the right of recording transactions into blockchain,
and the winner will be rewarded with coin and transaction
fee. It can easily associate blockchain with the financial sec-
tor, but the innovative potential of blockchain applications is
much more than this. Micropayment schemes [30], naming
and storage system [31], secure multiparty computation [32]
and health records sharing [33] are based on blockchain
technology. It has the potential to reduce the role of one of
the most important economic and regulatory actors in our
society-the middleman [34].

Transaction:Defined as a message, transaction consists of
three segments: digital signature, inputs, outputs. It records
all of the blockchain transformation happening between
users. For a valid transaction, the input must be an output
of a previous transaction.

Consensus Protocol:After transactions are broadcasted
to the network, miners start to validate these transactions

3

and collect them into a new block. Each block includes the
hash of the prior block. In order to be accepted by the net-
work, the new block should contain a consensus protocol,
such as proof of work (PoW) [29], proof of stake(PoS) [35].

Network:Bitcoin uses the peer-to-peer network, which
is a distributed application architecture. Nodes have the
equally privileged without a central coordination by servers
or stable hosts. Unlike the traditional client-server mode,
nodes in this network are both suppliers and consumers of
resources.

Blockchain Paradigm:Blockchain can be viewed as a
transaction-based state machine [36]. The state includes
information like a nonce, account balances, data expressing
information of the physical world, etc. And it’s updated
from a genesis state to a final state after each transaction.
In this paper, we focus on smart contract execution and
state transition. We first describe a simplified transaction
that depicts a smart contract execution. Before giving the
description of blockchain paradigm, we define a number
of useful parameters as follows: nonce nonce, timestamp t,
contract data m, original address addr, transaction fee fee,
etc. Thus, the transaction can be denoted as the following
presentation:

T = {nonce, t,m, addr, SigR(m), fee}

where the transaction T could activate the code execution
of a contract. Then, a valid transition from σ to σt+1 via
transaction T is denoted as: σt+1 = F (σ, T), where F refers
to arbitrary computation which is carried out by blockchain,
and σ can store arbitrary state between transactions.

3.2 Smart Contract

Smart contract, which refers to the Blockchain 2.0 space
[37], is proposed by Nick Szabo in 1994 [38]. It depicts
complex logic by program common process into code and
represents the implementation of contract-based agreement.
It is essentially a self-executing digital contract in a secure
environment with no intervention and verified through
network peers. The main reason for unable to realize smart
contract is that it’s hard to find a secure environment which
is decentralized, unalterable and programmable. The advent
of blockchain technology could solve this problem perfectly.
Currently, there exist several blockchain platforms support-
ing smart contract, two famous of which are Ethereum
[36] and Hyperledger [39]. They are designed to run smart
contract without frauds, downtime or any third party inter-
ference.

3.3 Digital Signature

Digital signature is a mathematical scheme which provides
ownership. A sender sends an unforgeable digital message,
which will be used by a receiver to verify the sender’s
identity. A typical digital signature has the property of
authentication, integrity and non-repudiation. We sign s-
mart contracts and task solutions in CrowdBC by digital
signature, which can guarantee the integrity of transactions
and prevent any repudiation between the requester and
worker.

Posting task and paying

for workers and the

crowdsoucring system

Receiving task and

working for it

User Manager Task Manager

PoW Network Miner

Blockchain

Turing-complete Program

Fig. 1. The system model of CrowdBC.

4 SYSTEM AND THREAT MODELS AND ASSUMP-
TIONS

Section 4.1 presents the system model and the workflow
for blockchain-based crowdsourcing. Section 4.2 outlines
the security assumptions. Section 4.3 discusses the threat
models.

4.1 System model
Figure 1 illustrates the proposed framework of CrowdBC.
In this framework, users are classified into three types:
requester, worker and miner. There is no central server and
CrowdBC supports Turing-complete programs to depict the
process of crowdsourcing. The requester and worker should
register to get their credentials before obtaining services
from CrowdBC.

Requester: In CrowdBC, a requester doesn’t rely the
centralized crowdsourcing system to post a task, but can
transfer the task description with task reward into programs
by CrowdBC. Taking the advantages of programs which are
automatically executed on trustable blockchain platform,
the requester could choose proper workers and get the
wanted solution.

Worker: Each worker is associated with a reputation
representing the past behavior on solving tasks. Workers
who are qualified and interested in participating could work
on a task and submit solutions. Upon the evaluation of their
solutions, they are assigned with reward.

Miner: Miners add past transaction records to the
blockchain and validate a new block by consensus proto-
cols. They ensure the security of blockchain and can earn
transaction fees and mining rewards.

4.2 Security Assumptions
The security of task execution in CrowdBC is related with
the security of blockchain and we make the following
assumptions. We assume that the blockchain is a secure
environment, which means that there exist enough honest
miners to ensure the security of blockchain and adver-
saries can’t launch 51% attack, double-spending or rewrite
blockchain history. And we assume that the network has
low latency and messages are synchronous between the
honest miners.

In order to prevent ’false-reporting’, the requester is
required to deposit before a task starts and make a commit-
ment on blockchain [32]. The deposit cannot be redeemed

4

before deadline. If solutions satisfy the requester’s require-
ments, the task reward is sent to the worker automatically
at the end of the task. Meanwhile, to avoid the behavior
of ’free-riding’, we also require workers deposit with coins
or reputation, which could encourage workers to provide
enough efforts to solve the task.

Furthermore, we assume that the solution is encrypted
by the worker leveraging a secure public key encryption
algorithm, such as RSA. The worker uses the corresponding
requester’s public key to encrypt the solution. The requester
could decrypt the solution successfully by the secret key.
Specifically, solutions are saved in distributed database.

4.3 Threat Model

We consider several security challenges that exist in the
Crowdsourcing system.

(a) An attacker could flood the network with low reward
task and thus other requester’s task cannot be published
on the blockchain. This is a type of denial of service(DoS)
attack.

(b) An attacker could register many addresses to mount
a Sybil attack by receiving the low limit task without com-
pleting it, thus decreasing the participation of requesters.

(c) The dishonest worker can improve his reputation
with posting a task by himself.

(d) An adversary might submit a solution which can be
evaluated as high quality by miner, while it is low quality
in fact.

(e) Attacker could compromise a user’s computer and
download a comprised CrowdBC client, which could leak-
age the user’s private data.

(f) A user can’t redeem his coin in blockchain if he loses
the private key.

The use of the blockchain-based crowdsourcing model
can address some of the threats mentioned above. Intuitive-
ly, our main methodology is to discourage the attackers to
launch attacks by making the attack costs much more than
benefits they can obtain. For instance, if an attacker initiates
the denial of service attack at (a), he needs to deposit
sufficient coins in CrowdBC, and our design requires that
the deposit can’t be redeemed. Similarly, we can address
the threat (b) and (c). We also discuss how we can provide
security against brushing reputation. However, we note that
our proposed framework cannot solve the problem of key
missing and compromising the user’s computer.

5 CROWDBC: BLOCKCHAIN-BASED DECENTRAL-
IZED FRAMEWORK FOR CROWDSOURCING

5.1 Overview of CrowdBC

Combining the advantages of blockchain, we formalize a de-
centralized crowdsourcing framework (CrowdBC). Draw-
ing lessons from [31], we divide CrowdBC into three layers:
the application layer, blockchain layer and storage layer. As
shown in Figure 2, two layers (application and blockchain
layer) lie in the logic plane and one layer(storage layer)
in the data plane. Workers with some special skills could
query and compete tasks which are posted by requesters in
application layer. They do not need to provide true identity

User Register Contract

(URC)

User Summary

Contract (USC)
Requester-Worker Relationship

Contract (RWRC)

User Manager

Miner Miner

Program Compiler

PoW + PoS

Miner

Block

Metadata

· Pointer, Signature, etc.

Task Data

Network Transaction

Miner

Layer 3:

Storage

Layer

Layer 2:

Blockchain

Layer

Layer 1:

Application

Layer

Task Manager

block n block n+1 block n+2 block n+3

Fig. 2. Overview of CrowdBC’s architecture.

and just register with key pairs(a public key and private
key).

In our framework, we employ a generic blockchain
model where the blockchain can run any arbitrary Turing-
complete programs (such as smart contract). We assume that
each blockchain platform has a ’Compiler’ to compile its
programming language. And how to build a compiler is
out of the scope of this paper and we do not depict here.
We design an user interface module in application layer for
workers and requesters to interact with the programming
language and the blockchain. Besides, we construct a task
processing state machine which uses users’s effective oper-
ation as input, and only valid input written on blockchain
can trigger state machine transferring from current state to
next state. Each task generates a new state machine and the
global state of the task is updated when a new block is
created. Notice that, there exist lots of data collected from
workers, because of the limited data storage capacity in
blockchain, we separate the logic layer and the data layer,
and we believe this separation can improve CrowdBC’s data
storage significantly. We put the task metadata (such as data
size, owner, hash value, pointer) in the blockchain layer and
raw data in the storage layer. Thus, the users do not need
to trust the data saved in the data layer and they can verify
the integrity and authentication of data in the logic layer.

5.2 CrowdBC Layers
Now, we present the architecture of CrowdBC which con-
tains two planes: the logic plane and the data plane. The log-
ic plane, which consists of application layer and blockchain
layer, is used as providing user management and task man-
agement for requester and worker. The data plane which
is responsible for task solution storage mainly refers to the
storage layer.

5.2.1 Application Layer
We design the application layer contains two main modules:
User Manager (UM) and Task Manager (TM). We apply that

5

interfaces wrapper for UM and TM with smart contract,
users do not need to concern the detail of smart contracts
and just fill information with the client. UM can act as the
registration and user information management. User fills
the personal information mainly on key pairs by UM and
updates smart contract in blockchain with transaction fee.
Meanwhile, it will create a new contract which is related
to the coming user with default value. We design personal
information (such as reputation) updating automatically
based on their performance and user can’t change it by him-
self. TM is used to be the task management module, such as
task posting, task receiving, result submission and task eval-
uation. We will give the detailed description about contract-
based crowdsourcing protocols in section 6.4. CrowdBC
provides interfaces wrapper for UM and TM with smart
contract, there is no need for user understanding contract
and just filling the information with a client. Remarkably,
CrowdBC run correctly without relying on a central server
and the decentralized blockchain acts as the server, just like
bitcoin. This design can significantly improve the security
and scalability of crowdsourcing.

5.2.2 Blockchain Layer
The blockchain layer is the middle tier and serves two
purposes: providing consensus on the order in which smart
contracts are written and running state machine. Smart con-
tracts are sent to the blockchain layer after being compiled,
they are written to the blockchain after being confirmed by
Miners. CrowdBC introduces a state machine which depicts
the task life cycle to represent the global state of a task,
including address, time, requester, workers, status, etc. Each task
being posted in CrowdBC can be seems as generating a new
task state machine, and states transfer via cryptographically-
secured transactions. Figure 3 shows the different states a
task can be in and how the state transfers. We design that
there exist six states: Pending, Unclaimed, Claimed, Evaluating,
Canceled, Completed. The state is updating depend on the
valid input on blockchain automatically, users can query
and confirm the state recorded in blockchain at any time
by themselves.

Generally speaking, the block in blockchain layer should
not hold too much data, otherwise, it has an affect on the
network synchronization and takes too much disk space.
At 28 March 2017, a full mining node of Bitcoin needs
to dedicate 106G total disk space to synchronize with the
network [40]. So in order to reduce the data size stored on
blockchain, we separate the metadata (owner, time stamp,
pointer, etc.) from the actual storage of data. Data which is
produced by posting a task or submitting a result is sent
to the blockchain by smart contract. CrowdBC subsequently
routes them to an off-blockchain store, and a pointer to the
raw data in storage layer (the pointer is the hash value of the
data which is used for discovering data in storage layer). By
this way, we increase the data storage capacity of the system
obviously.

5.2.3 Storage Layer
The storage layer is the lowest tier, which is mainly used
to store the actual data values of task and solutions. We do
not adopt any particular storage in our framework, instead
allowing multiple storage providers to coexist, such as S3,

Completed

Claimed

 UnclaimedPending

Cancelled

Confirm

EvaluatingComplete

Not complete

Fig. 3. State machine model for a task.

IPFS [41] or a distributed Hashtable (such as Kademilia
[42]). Data values are signed by the public key of the owners.
Users don’t need to believe the data stored in the storage
layer, they could check the authentication and integrity of
the data values by data’s hash and digital signature in the
blockchain layer. In addition, workers can submit a solution
to the system and use requester’s public key to encrypt the
solution, which means only the owner can decrypt it. By
storing task data outside of the blockchain, CrowdBC allows
values of arbitrary size and satisfies crowdsourcing actual
demands.

5.3 The Crowdsourcing Process in CrowdBC
We describe the process of our framework in this section.
We need to first design a CrowdBC client to be used as the
user interface. The client can run locally on user’s personal
computer without depending on any central server, just like
Bitcoin Core. Based on the client, our framework consists of
six steps: the first step is performed at the user and is to
register for the new users. Each registered user is assigned
with a public key pair. The second step is performed at the
blockchain including transaction confirmation and status
transformation. The third step is to post tasks by requesters.
We require that requesters pay reward in advance on the
blockchain and the payment is deposited on the blockchain.
An evaluation function is required when the requester posts
the task, we design that the solution is evaluated by the
miners on the blockchain instead of the requester or the
crowdsourcing system. The fourth and five step is dealing
with task by workers. We design that each worker receives
the task should deposit a coin or the reputation to ensure the
quality of the task. The last two steps are solution collection,
reward assignment and task evaluation. The task solutions
are saved in the storage layer as we mentioned before.
Meanwhile, the reward is automatically assigned to workers
by the evaluation result.

The requester and worker first generate an identify up-
on a successful registration. Each identify is related with
a reputation. High reputation value denotes good perfor-
mance in the past. The requester could set the minimum
reputation value in order to get satisfying result. Specially,

6

there exist three main algorithm in CrowdBC: the solution
evaluation algorithm, the coin processing algorithm and
the reputation updating algorithm. The second algorithm
is to lock requester reward on the blockchain before the
deadline and assign reward to the workers upon the first
algorithm’s result. The third algorithm is used to manage
workers’s reputation, we design that the reputation updates
automatically only with the completed task.

6 A CONCRETE IMPLEMENTATION OF CROWDBC
6.1 Crowdsourcing Contracts

In this section, we present a concrete implementation of
CrowdBC based on smart contracts. To deal with complex
task process logic, we depict the whole crowdsourcing pro-
cess by smart contracts, and we implement three types of
contracts on the blockchain drawing lessons from [33]: User
Register Contract (URC), User Summary Contract (USC),
Requester-Worker Relationship Contract (RWRC). Figure 4
shows the contracts structures and relationships. Typical-
ly, there is only one URC contract which refers to all of
users registration information in CrowdBC, and each user
(requester or worker) in URC contract corresponds to an
USC contract which contains the summary information of
user. Moreover, any requester and worker could reach an
agreement in RWRC contract.

6.1.1 User Register Contract (URC)
We do not require users to submit their true identifies and
assign a public key and private key to users when they
register in CrowdBC at the first time. This global contract
produces a user’s address by generating a hash with the
public key. Each new user registered in URC will create an
USC contract simultaneously and has also mapping identity
to USC. We divide users into two categories: requesters who
post work and workers who receive work.

Remarkably, users posting or receiving tasks do not
depend on their true identities and they could choose
pseudonyms to finish transactions in CrowdBC, which is
just the advantage of blockchain. We suggest users to
register with true identity which can be authenticated in
certified institutions. We also set rules into URC contract
that registering new identities will be recognized and the
mapping of the user list could be updated. Beyond that,
updating or creating a contract need transaction fee and
it’s paid by the party who is the publisher of the contract.
Transaction fee is given to miners to confirm the transaction
and support CrowdBC running persistently. We omit the
details in the next section for USC and RWRC contract.

6.1.2 User Summary Contract (USC)
This contract is the general evaluation for requester
and worker by their performance. We establish multi-
dimensional rule of evaluation in USC for the sake of re-
ducing any subjective judgment, including profile, reputation,
task general description and activity. Profile mainly describes
user basic information, including skills, expertise, etc. Spe-
cially, if users register with true identities, profile also con-
tains a digital signature signed by certificate authority, and
users can authenticate identities by their public key. This

metric is set up when users register at the first time and can
be updated by themselves.

Reputation is an important parameter which is initialized
with default value and updated with the completion of
task. In this paper, we design CrowdBC reputation-based
incentive mechanism in crowdsourcing based on [8]. High
reputation reflects user’s good performance in the past.
Then, task general description refers to the summary infor-
mation about task statistics, including user’s proportion of
task-delay, biding number. Activity describes the level of
activity and working extent for users. High activity level
depicts hard working with tasks. USC contract also contains
a list of task addresses which can point to user’s previous
task in the Requester-Worker Relationship Contract (RWR-
C). It is worth nothing all of these metrics can be updated
automatically with the related completed task.

6.1.3 Requester-Worker Relationship Contract (RWRC)
Requester Worker Relationship Contract (RWRC) depicts
the process about task posting, task receiving, solution
evaluation, and reward assignment. It is created when a
requester posts a task in CrowdBC and records task infor-
mation such as description, owner address, reward, finish time,
status. We require that the requester signs a signature on the
task with his private key and other workers could check by
his public key. Besides, it provides the validation function
which is used to verify whether workers can receive the task
or not. We adopt a validation function which is related to
worker’s reputation, activity, task general description, etc.
The condition is set by requester, and generally speaking,
a minimum reputation value is set by requester to avoid
low reputation workers. The higher reputation and better
behavior in the past, the more likely worker gets the job. At
the same time, requester defines a fixed worker pool Wpool

to store worker’s address, the size of Wpool is corresponding
to required workers, and each worker who satisfies the
validation function would add his address to Wpool.

As mentioned earlier, we require that the information
saved in blockchain is not too large due to the limited
storage, and we put the task metadata on blockchain by
RWRC contract and the detail information to the distribut-
ed storage layer. Moreover, in order to prevent requester
from behaving as ’false-reporting’ in pursuit of self-interest
maximization, we construct a timed-commitment scheme on
blockchain [32], which means requesters deposit before the
task starts and cannot redeem task reward before the finish
time (unless the corresponding worker does not submit the
solution timely). Meanwhile, workers who want to receive
the task should also save some coin or reputation value as
a deposit in blockchain in order to prevent the ’free-riding’
and guarantee the fairness of contract. If a worker submits
an effective solution which is confirmed by a miner, the
deposit will be returned back to the worker, or the coin will
be deducted by the requester and the worker’s reputation
value will be reduced.

Different from the traditional model in which solutions
are evaluated by requester or the crowdsourcing system, we
design the solution evaluated by miners in blockchain. We
first assume that there exist an evaluation function posting
with the RWRC contract by requester and miners could help
to confirm the solution without knowing the solution detail.

7

Alice

Bob

...

User Register Contract

Alice address USC address

Bob address USC address

Alice address

Profile Reputation value

Task general description Activity Level

User Summary Contract

Requester-Worker Relationship Contract

taskid1 RWRC address

taskid2 RWRC address
...

Owner Status

Task pointer

Deposit Evaluation

Task list

URC

USC

worker1

USC

worker2

USC

requester1

USC

requester2

RWRC

worker1-requester1

RWRC

worker2-requester2

Taskid address taskid address taskid address

Type

Type

Address discovery

Receiving task Receiving task

Status

Status
...

Fig. 4. The structure of smart contracts on CrowdBC and data references.

As we know, there exist some emerged technologies sup-
porting this process, such as indistinguishability obfuscation
[43], homomorphic encryption [44]. And how to design an
appropriated evaluation mechanism is an important part in
our framework and we will extend this work in the future.

Workers find an uncompleted task by querying re-
quester’s task list in the USC contract. Tasks in the state
of Pending or Unclaimed illustrate that they still accept
solutions and the qualified workers can receive the task.
Meanwhile, workers also verify the task signature with
requester’s public key. They receive the task and update the
RWRC contract by publishing it to blockchain. The RWRC
contract cannot receive workers exceeding the size of Wpool,
and a requester can’t assign the task to workers more than
he paid, because contract is published on the network and
each miner would verify.

CrowdBC allocates a space in the storage layer for each
RWRC contract, workers can submit solutions to the space.
We record the hash of the solution in blockchain to guar-
antee solutions are not altered at the source. In particular,
to protect data privacy, workers use the requester’s public
key to encrypt the solution and requester does not need to
trust the storage layer because he can verify the integrity
of the data values in the logic layer. Once worker submits
the solution successfully, we require workers initiative to
demand the reward and redeem their deposit, which is
also the process of updating RWRC contract by calling the
redeem function, and we will give the details in next section.

6.2 Reputation Management

Our framework establishes an incentive mechanism based
on the past behavior. We assign each worker with a repu-
tation which can be viewed as an important reference for
requesters when they choose workers. A high reputation
with worker reflects his good behavior on solving tasks in
the past, and if workers have a low reputation, they will be
limited to participate in some tasks.

In CrowdBC, we address the reputation management
without relying on the crowdsourcing system. We define the
protocols and implement them in blockchain. We first define
some symbols to explain the protocols. Each worker is
tagged with a reputation θ. θ is an integer number from the
finite set set(0, 1, · · · , Repmax), where Repmax represents
the max size of this set. hk is the average reputation of whole
workers and updating of θ depends on the outcome of the
RWRC contract. If a miner confirms the transaction which
is updating reputation in RWRC contract and gives positive
evaluation, the reputation will be increased; otherwise, the
reputation will be decreased.

As mentioned before, we assume that
the task solution can be evaluated by a
function and use the evaluation function
V alidateSolution(SOLUTIONpointer, SOLUTIONpointer)
to check worker action. We let ’a’ refer to the output of the
evaluation function. If ’a = H ’ stands for high effort of
action and ’a = L’ stands for low effort of action. Thus, the
reputation scheme Θ we referenced is as follows:

Θ =


min(Repmax, θ + 1), if a = H and rep ≥ hk
θ − 1, if a = L and rep ≥ hk + 1

0, if a = L and rep = hk
θ + 1, if rep < hk + 1

(1)
In our reputation scheme, hk denotes the threshold of the s-
elected social strategy [8], and if worker’s reputation falls to
hk and receives a ’L’ feedback from the miner by using the
evaluation function, his reputation will fall to 0 and cannot
receive most of the tasks. He needs to receive enough low-
limit tasks and get positive feedback until his reputation
value reaching hk.

6.3 Contract General Flow

In this section, we describe the crowdsourcing process in
CrowdBC. The framework consists of six steps: register,

8

mining, post task, receive task, submit solution, evaluate solution,
assign reward. Users interact with blockchain by the Crowd-
BC client. Unlike traditional crowdsourcing systems, we
perform task assignment, quality evaluation automatically
by smart contracts and don’t rely on any third party. To
explain in more detail, we refer Figure 5 to depict the general
contract flow of CrowdBC.

Step1. In the first step, requester and worker should reg-
ister in CrowdBC. CrowdBC client transfers user’s informa-
tion into the input of the URC contract and sends updating
URC contract transaction to blockchain. Simultaneously, an
USC contract for the new user with default value is created
for recording user’s summary information.

Step2. Updating the URC/USC contract can be seen as
a transaction which needs to be confirmed by miners. And
all of following steps which contain the process of creating
or updating contract need miners to confirm and afford
transaction fee. We will omit this in the next steps for space
constraints.

Step3. After requester registers successfully, he/she can
post a task. In CrowdBC, the requester sets minimum repu-
tation of workers who are going to receive this task, which
is mainly to ensure the quality of the task. Task assignment
in CrowdBC does not depend on the third party. Once the
task is published on the blockchain, workers could find and
compete the task actively. We assume that requester affords
a function to evaluate the task solution and miners on
blockchain could confirm the effectiveness of task solution
by this function. Simultaneously, creating a RWRC contract
will update requester’s the USC contract.

Step4. Registered workers receive the posted task by in-
teracting with the RWRC contract. We allow worker query-
ing all of posted tasks, but only qualified workers could
receive the task. The worker adds address to workers pool
Wpool in RWRC contract and posts an updated RWRC con-
tract to blockchain if he satisfies the condition. Meanwhile,
the task of accepted number increases by one.

Step5. Once workers finish the task, they start to submit
solutions to CrowdBC. As the aforementioned, solutions are
submitted to the distributed storage, and the hash value and
pointer are stored on blockchain. Requester could find the
solution by the pointer.

Step6. Workers could publish a transaction which is the
task evaluation in the RWRC contract if they submit the
solution correctly, or the requester could publish the trans-
action if the finish time is up. In our design, we assume that
the evaluation result is given under the evaluation function
and miners could confirm.

Step7. Lastly, workers initiative to demand the task re-
ward with referring to the evaluation result. High effort and
good performance will get more reward. On the contrary,
worker will get less reward. And the evaluation result
will synchronize automatically the USC contract to update
worker reputation.

6.4 Decentralized Crowdsourcing Protocols

In the section, to model formally about the decentralized
crowdsourcing protocols, we adopt a designed notational
system such that readers may understand our constructions
without understanding the precise details of our formal

modeling. For most function and parameters, an uppercase
letter is used.

6.4.1 Register
We refer R and W to requester and worker, so the collection
of requesters and workers can be denoted as {Ri|i = 1...n}
and {W i|i = 1...m}. Protocol 1 illustrates the implemen-
tation for a user U (hence U = RiorW i) to register in
CrowdBC and belongs to URC contract. We denote key
pairs to public key and private key of requester by Rpk and
Rsk (hence Ri = (Ripk, R

i
sk)), correspondingly, the public

key and private key of worker by Wpk and Wsk (hence
W i = (W i

pk,W
i
sk)). Worker’s initial reputation value is θk

(θk is average reputation value of all workers in CrowdBC).
There are two types of user in CrowdBC and denote as
{REQUESTER,WORKER}. Then, the registration of a
user can be depicted as protocol 1.

Algorithm 1: Register and generate an identity in URC
Input: user name Uname , user type Utype, user description

Udesc that describe skills, register numbers
numRegistrants, user register pool Upool

Output: user public key and private key Upk, Usk , USC contract
address USCaddr , is registering success isSucc

1 isSucc← false ;
2 Upk, Usk = KeyGenerator();
3 if Upk is existing in Upool then
4 the address Upk has already been registered;
5 goto final;

6 Urep ← θk ;
7 Utype ← {REQUESTER, WORKER} ;
8 U ← {Upk, Usk, Uname, Utype, Udes, Urep, USCtaskList} ;
9 Upool put U ;

10 numRegistrants+ +;
11 USC ← U ;
12 isSucc← true ;
13 final ;
14 return U , USCaddr and isSucc;

6.4.2 Confirm Contract
The process of creating and updating a contract can be seen
as a transaction which needs to be confirmed in blockchain.
Miners can verify the effectiveness of the transaction. We
encourage workers and requesters to participate in the
blockchain as a ”miner” and contribute their resources to
achieve a trustworthy chain. They could get transaction
fees from the contracts, and we omit the transaction fee
in the following algorithm for it is calculated by the
blockchain. To model the confirmation of the transaction
and the execution of blocks, we define that a Blockchain
state as a pair {BCσ, BC} , where BCσ is the before
blocks and BC is as the current. We denote that BC =
{Maddr, (T1..Tc..Tk), timestamp, blockid, preblockhash},
Maddr is the address of miner, Tc is the contract which need
to be confirmed. We require that users wait a several blocks
to ensure contract is contained in blockchain. Thus, the
entire mining can be expressed as protocol 2.

6.4.3 Post Task
After registration, requester could post a task to CrowdBC.
We refer the task description (contains requirement, title,
etc.) is ψ and the task reward which is presented by digital

9

... ... CrowdBC Client Blockchain

Register

Register

Post task

Mining

Receive task

Submit

solution

Storage

Evaluate

result

Send Reward

Protocol 1

Protocol 1

Protocol 2

Protocol 3

Protocol 4

Protocol 5

Protocol 6

Protocol 6

Send meta data

Send original data

Read original data

Worker Requester

Fig. 5. The process of crowdsourcing in CrowdBC and smart contract updating.

Algorithm 2: Contract confirmation and block valida-
tion in Blockchain

Input: contract need to be confirmed Tc, blockchain as before
BCσ , timestamp t, miner address Maddr , incoming new
transactions Γ

Output: isPass which is refer that if Tc is confirmed
1 isPass← false ;
2 (T1...Tc...Tk)← Γ ;
3 BC← {Maddr ,(T1...Tc...Tk),t,blockid,preblockhash } ;
4 (BCσ , BC)← BC ;
5 if Tc is existing in (BCσ , BC) then
6 isPass← true ;

7 final ;
8 return isPass;

coin on the blockchain is Vψ . For each task, there is a
reputation limitation Repψ which means the minimum
reputation value of worker who can receive the task. It is
set by requester and setting too large or too small will have
an affect on the number of participants. Repψ is the average
reputation of the whole workers by default. Wnum refers
to the number of workers required to complete the task. In
order to avoid denial of payment by requester, we specify
that requester deposits a reward on the blockchain and
can’t withdraw the reward unless workers don’t submit
result on time. We assume that there exist a function
lockUtil(Rpk, Vψ, t) which could lock the Vψ of Rpk
on the blockchain for t time. Solution evaluation function
V alidateSolution(SOLUTIONponiter, SOLUTIONponiter)
is issued with the task at first. The worker will return
result pointer SOLUTIONponiter and hash value
SOLUTIONhash when he submits a result. The result
is encrypted with requester’s public key, and we assume
that the result can be expressed by code logic and miners
can confirm the result without knowing the detailed
information. To give a simplification, the output of the
evaluation function is ’H ’ or ’L’. Protocol 3 illustrates the
implementation of posting task.

Algorithm 3: Posting task in RWRC
Input: requester information Ri, task description ψ, task reward

V rψ , the minimum reputation of worker Repψ , finish time
tψ , maximum workers number Wnum, USC address
USCaddr

Ri

Output: RWRC contract RWRCψ , result validation function
V alidateSolution(ψ, SOLUTIONpointer, SOLUTIONhash),
update USCRi

1 if Ri is unregistered then
2 Ri has not been registered;
3 goto final;

4 if lockUtil(Ripk, V
r
ψ , tψ) is not success then

5 Ri deposit reward on blockchain failed ;
6 goto final;

7 sigRisk(ψ)← Digital signature on ψ by Risk ;
8 CheckWorkerQualification(Repψ ,W

i)← Repψ ;
9 V alidateSolution(ψ, SOLUTIONpointer, SOLUTIONhash)
← ψ ;

10 W list
ψ (1...Wnum)←Wnum ;

11 ReceivedWorkerNumψ ← 0 ;
12 RWRCψ ← Task(ψ,W list

ψ (1...Wnum), sigRisk(ψ), V rψ , tψ) ;

13 USC
Tpool

Ri put RWRCaddrψ ;
14 UpdateUSCContract(RWRCaddrψ , Unclaimed, USCRi) ;
15 final ;
16 return RWRCψ ,
V alidateSolution(ψ, SOLUTIONpointer, SOLUTIONhash);

6.4.4 Receive Task
As we mentioned before, workers could find uncompleted
tasks in requester’s USC contract by URC. It is worth
nothing that workers who receive the task need to sat-
isfy conditions set by requester. The condition function
CheckWorkerQualification(ψ,Repψ) means that a task
ψ can be received by a worker W i if his reputation value
W i
rep ≥ Repψ . Besides, for the sake of making workers do

the job industriously, we require that the worker chooses a
deposit between coin or reputation before he receives the
task. If he chooses coin V rψ as the deposit, we still use
the function lockUtil(W i

pk, V
r
ψ , tψ). Otherwise, reputation

10

is needed and will be reduced Repwψ within the process
of this task and be added after completing the task if he
gets positive feedback. Then, the worker signs a signature
on ψ for the task reward assignment when he receives the
task, and ψreceived increases by one. Protocol 4 illustrates
the implementation of receiving task.

Algorithm 4: Receiving task in RWRC
Input: RWRC contract RWRCψ , worker W i, worker deposit

coin V wψ , worker deposit reputation Repwψ , worker
USCW

Output: update RWRC contract RWRCψ and USC contract
USCW i

1 if W i is unregistered then
2 W i has not been registered;
3 goto final;

4 Task(Ri, ψ,W list
ψ (1...Wnum), sigRisk(ψ), V rψ , tψ)← RWRCψ

5 if CheckWorkerQualification(Repψ ,W
i) is not satisfied then

6 W i does not satisfy the condition;
7 goto final;

8 if ReceivedWorkerNumψ > Wnum then
9 RWRCψ can not be accepted anymore;

10 goto final;

11 if V wψ 6=0 & lockUtil(W i
pk, V

w
ψ , tψ) is success then

12 W i deposit reward on blockchain succeeded ;

13 else if repwψ 6=0 &

UpdateUSCReputation(USCW ,W i
pk, (Rep

w −Repwψ)) is
success then

14 W i deposit reputation on blockchain succeeded ;

15 else
16 W i make a deposit in blockchain failed ;
17 goto final;

18 sigW i
sk(ψ)← Digital signature on ψ by W i ;

19 Wlist(1...Wnum)(ψ) add sigW i
sk(ψ) ;

20 USC
Tpool

W put RWRCaddrψ ;
21 ReceivedWorkerNumψ++; ;
22 if ReceivedWorkerNumψ ≥Wnum then
23 UpdateUSCContract(RWRCaddrψ , Claimed, USCW i) ;

24 else
25 UpdateUSCContract(RWRCaddrψ , Unclaimed, USCW i) ;

26 final ;
27 return RWRCψ and USCW ;

6.4.5 Submit Result
Once worker completes the task, he could start to submit
solution to the requester as protocol 5. The task solution,
encrypted by requester’s public key Rpk, is submitted to
the distributed database (DHT). The hash and pointer of
the solution is stored on Blockchain. Requester could get
the solution by the pointer and decrypt it with using his
private key. And we require that worker signs a signature
on SOLUTIONψ by using his private key Wsk.

6.4.6 Evaluate Task and Send Reward
Once solution is submitted, worker could demand for the
process of task evaluation and reward payment, or the
requester starts to evaluate initiatively when the finish
time is up. In our design, we assume that the evaluation
result is given under the evaluation function and miners on
Blockchain could confirm. As shown in protocol 6, the task
reward paid to worker is quality-contingent payments. High
effort and good performance will get more reward. On the

Algorithm 5: Submit solution in RWRC
Input: RWRC contract RWRCψ , task solution SOLUTIONψ ,

worker W i, requester Ri
Output: result pointer SOLUTIONponiter , result hash value

SOLUTIONhash
1 sigW i

sk(SOLUTIONψ)← Digital signature on SOLUTIONψ
by W i ;

2 SOLUTIONencrypted
ψ ← Encrypt the solution

{SOLUTIONψ , sigW i
sk(SOLUTIONψ)} with Ripk

SOLUTIONW i

ψ (hash)← Hash(SOLUTIONencrypted
ψ)

SOLUTIONW i

ψ (poniter)←
SendDataToDHT (SOLUTIONencrypted

ψ) tsubmit ← now

RWRC
SOLUTIONlist
ψ ←

{SOLUTIONW i

ψ (hash), SOLUTIONW i

ψ (poniter), tsubmit} ;
3 UpdateUSCContract(RWRCaddrψ , Evaluating, USCW i) ;
4 UpdateUSCContract(RWRCaddrψ , Evaluating, USCRi) ;
5 final ;
6 return SOLUTIONponiter

ψ and SOLUTIONhash
ψ ;

contrary, worker will get less reward. And the evaluation
result will synchronize automatically with worker’s USC
contract to update his reputation.

6.5 Security and Privacy
In CrowdBC, the reputation value is an important factor
for worker receiving task, and high reputation means high
probability to receive task, so we should ensure that the
reputation value can’t be changed by workers easily. As
described above, we design reputation changed only when
a worker receives or finishes a work. Receiving a work may
decrease the worker’s reputation and after the worker fin-
ishes the work, his reputation will be increased in USC. USC
contract can’t be created by workers themselves and the
UpdateReputation(USCW ,W

i
pk,W

i
rep) function can only

be called by RWRC contract. It is worth nothing that creating
RWRC contract need do deposit and pay transaction fee. So
if a malicious user wants to brush his reputation, he may
pay a high cost. By this way, we can anticipate that users in
CrowdBC would work honestly and diligently.

7 IMPLEMENTATION

We implemented a software prototype on Ethereum to test
our framework and depict the complex process of crowd-
sourcing by smart contract. Client and contracts developed
for the needs of CrowdBC were executed on a private test
network, so no real Ether was spent. Each tasks’s life cycle
is controlled by the state machine.

We implemented CrowdBC on Ethereum in Solidity, Java
and Javascript with roughly 8000 lines of code. Solidity
is the object-oriented Programming language designed for
writing contracts in Ethereum. We developed three con-
tracts: URC, USC and RWRC by solidity. Based on Web3j,
a lightweight library for Java applications on the Ethereum
network, we can interact with Ethereum. Web3j allows us to
work with the Ethereum in Java without needing to write
additional integration codes for the platform. Especially, we
developed the complex logic which is no need for putting
on blockchain by Java and core logic put on blockchain
by Solidity. In addition, we developed a web client based

11

Algorithm 6: Evaluating task and sending reward in
RWRC

Input: RWRC contract RWRCψ , requester Ri, worker list Wlist

Output: update RWRC contract RWRCψ and USC contract
USCRi , USCW i , send reward to related workers W i

1 Task(Ri, ψ,W list
ψ (1...Wnum), sigRisk(ψ), SOLUTIONhash

ψ ,
SOLUTIONponiter

ψ , V rψ , V
w
ψ , tψ)← RWRCψ ;

2 rewardNeedSend← (V rψ/Wnum);
3 for each W i in Wlist do
4 if tisubmit ≤ tψ then
5 if CheckSignature(SOLUTION i

hash,W
i
pk) is not

success then
6 Check W i

pk signature failed ;
7 continue ;

8 EvaluationResulti ←
V alidateResult(ψ, SOLUTION i

poniter, SOLUTION
i
hash)

;
9 originalReputationV alue←W i

rep +Repwψ (i) ;
10 if originalReputationV alue ≥ hk &

EvaluationResulti ≡ H then
11 W i

rep ←
min{Repmax, originalReputationV alue+ 1} ;

12 rewardNeedSend← (V rψ + V wψ) ;

13 else if originalReputationV alue ≥ hk &
EvaluationResulti ≡ L then

14 W i
rep ← originalReputationV alue−Repwψ (i) ;

15 rewardNeedSend← V wψ ;

16 else if originalReputationV alue ≡ hk &
EvaluationResulti ≡ L then

17 W i
rep ← 0 ;

18 rewardNeedSend← V wψ ;

19 else if originalReputationV alue < hk then
20 W i

rep ← originalReputationV alue+ 1 ;
21 rewardNeedSend← V wψ ;

22 else
23 EvaluationResulti ← L ;
24 rewardNeedSend← V wψ ;
25 W i

rep ←W i
rep +Repwψ (i) ;

26 isSendRewardSuc←
SendReward(W i

pk, rewardNeedSend) ;
27 UpdateReputation(USCW ,W i

pk,W
i
rep) ;

28 UpdateUSCContract(RWRCaddrψ , Completed, USCW i) ;
29 UpdateUSCContract(RWRCaddrψ , Completed, USCRi) ;

30 UpdateAvgReputation(hk)
31 final ;
32 return RWRCψ , USCRi , USCW i ,isSendRewardSuc;

on Javascript to afford user interface. Unlike traditional
crowdsourcing system which is relying on a central server to
running client, CrowdBC client could run locally on user’s
personal computer, just like Bitcoin Core.

The CrowdBC client consists of three main modules: Us-
er Manager (UM), Task Manager (TM) and Contract Compil-
er (BCCompiler). UM and TM act as the interfaces for users
contacting with contracts. UM module is mainly used to
manage user personal information and contains two compo-
nents: User Register and User Summary Management. Note
that, the personal information is recorded in URC and USC
contract and some of them (such as reputation, finish task
number) cannot be updated by themselves. We construct
the personal information updating automatically with the
completion of related tasks. TM module is to do with the
task processing and contains two components: Task pool

management and Task process. We constructed BCCompiler
based on web3j. As above mentioned, each new registering
user and new task could create a new contract. We converted
user’s input into the contract, and compiled and deployed
it by BCCompiler.

We conducted an experiment to test the utility of Crowd-
BC as a crowdsourcing system. We used the CIFAR-10
dataset to ask workers to label objects found in an image.
The CIFAR-10 dataset contains five training batches and one
test batch, each with 10000 images. For our experiments, we
used the test batch for processing images. Requesters post
tasks asking workers to label objects found in an image.
We assume that workers in CrowdBC do not know the
actual result of the task. We random selected 1000 images
for the test batch. These images may contain different class
according to our prior knowledge, such as animal, plant,
car. In this experiment, we designed the evaluation function
if the result of a worker is contained is these class. This
is a type of multi-labeling tasks, and extensions to other
arbitrary tasks are also possible, requiring to change the
evaluation function to evaluate the result appropriately.

8 CONCLUSION AND FUTURE WORK

In this paper, we presented the design of CrowdBC, a
blockchain-based decentralized framework for crowdsourc-
ing. We analyzed that the traditional centralized crowd-
sourcing system suffers from privacy disclosure, single
point of failure, high services fee and so on. We formalized
CrowdBC to handle these centralized problems. Meanwhile,
we enhanced the scalability of crowdsourcing by smart
contract to depict complex crowdsourcing logic. A series of
design algorithms based on smart contract were proposed.
We evaluated our approach on Ethereum by implementing
components providing decentralized crowdsourcing ser-
vices.

We are still in the early stage of blockchain technology
and identify several meaningful future works. First, we only
implemented the basic process of crowdsourcing currently
and there exists much more complex scenes needing to han-
dle. Second, designing an efficient evaluation mechanism
is crucial in CrowdBC. We resume that requester could
provide an evaluation function when he posts the task.
However, we should also consider that the requester does
not know about the solution, giving an efficient evaluation
function is becoming difficult.

ACKNOWLEDGMENTS

This work was supported by National Science Foundation
of China (No. 61472165), Key Program for Guangdong
Province Applied Science and Technology R&D Special
Funds (No. 2016B010124009), Guangdong Key Laborato-
ry of Data Security and Privacy Preserving, Guangzhou
Key Laboratory of Data Security and Privacy Preserving
(No. 201705030004), Guangdong Engineering Technology
Research and Development Center of Network Security De-
tection and Protection, Guangdong Engineering Technology
Research Center of Privacy Preservation and Data Security
and the Guangdong Innovative and Entrepreneurial Re-
search Team Program (No. 2014ZT05D238).

12

REFERENCES

[1] J. Howe, “The rise of crowdsourcing,” Wired magazine, vol. 53,
no. 10, pp. 1–4, Oct. 2006.

[2] “Upwork,” ”https://www.upwork.com/”, [Online].
[3] “Amazon mechanical turk,” ”https://www.mturk.com/mturk/

welcome”, [Online].
[4] “Uber,” ”https://www.uber.com/”, [Online].
[5] “Freelancer,” ”http://www.smh.com.au/business/

freelancer-contests-20000-privacy-breach-fine-from-oaic-20160112-gm4aw2.
html”, [Online].

[6] “Quirky,” ”http://siliconangle.com/blog/2015/12/14/
bankruptcy-judge-approves-sale-of-quirky-assets”, ”[Online]”.

[7] “uber:failure,” ”http://shanghaiist.com/2015/04/18/uber\
chinese\ operations\ recently\ hacked.php/”, [Online].

[8] M. v. d. S. Yu Zhang, “Reputation-based incentive protocols in
crowdsourcing applications,” in 2012 Proceedings IEEE INFOCOM,
Florida, USC, 2012, pp. 2140–2148.

[9] X. F. J. T. Dejun Yang, Guoliang Xue, “Crowdsourcing to smart-
phones: incentive mechanism design for mobile phone sensing,”
in Proceedings of the 18th annual international conference on Mobile
computing and networking, Mobicom 2012, Istanbul, Turkey, 2012,
pp. 173–184.

[10] G. C. Dan Peng, Fan Wu, “Pay as how well you do: A quality
based incentive mechanism for crowdsensing,” in Proceedings of
the 16th ACM International Symposium on Mobile Ad Hoc Networking
and Computing, MobiHoc 2015, Hangzhou, China, 2015, pp. 177–
186.

[11] R. H. D. G. M. C. Tingxin Yan, Matt Marzilli, “mcrowd: a platform
for mobile crowdsourcing,” in Proceedings of the 7th ACM Confer-
ence on Embedded Networked Sensor Systems, SenSys 2009, Berkeley,
California, 2009, pp. 347–348.

[12] D. B. P. S. M. S. D. Joao Freitas, António Calado, “Crowdsourcing
platform for large-scale speech data collection,” Proc. FALA, 2010.

[13] M. E.-A. L. M. P. Suendermann, Crowdsourcing for speech processing:
Applications to data collection, transcription and assessment. John
Wiley & Sons, 2013.

[14] X. Z. Depeng Dang, Ying Liu, “A crowdsourcing worker quality
evaluation algorithm on mapreduce for big data applications,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27, no. 7,
pp. 1879–1888, July 2016.

[15] H. Z. B. Y. Z. Gang Wang, Tianyi Wang, “Man vs. machine: Practi-
cal adversarial detection of malicious crowdsourcing workers,” in
Proceedings of the 23rd USENIX Security Symposium. Usenix Security
2014, vol. 14, San Diego, CA, 2014.

[16] K.-S. L. Man-Ching Yuen, Irwin King, “A survey of crowdsourcing
systems,” Boston, MA, USA, Oct. 2011, pp. 766–773.

[17] A. W. M. E. N. W. Tara S. Behrend, David J. Sharek, “The viability
of crowdsourcing for survey research,” Behavior research methods,
vol. 43, no. 3, p. 800, September 2011.

[18] T. S. D. V. Kaufmann, Nicolas, “More than fun and money. worker
motivation in crowdsourcing-a study on mechanical turk,” De-
troit, Michigan, USA, Aug. 2011, pp. 1–11.

[19] B. B. B. Alexander J. Quinn, “Human computation: a survey and
taxonomy of a growing field,” Vancouver, BC, Canada, May 2011,
pp. 1403–1412.

[20] M. H. Y. J. Ke Mao, Licia Capra, “A survey of the use of crowd-
sourcing in software engineering,” Journal of Systems and Software,
vol. 126, pp. 57–84, April 2017.

[21] B. Halder, “Evolution of crowdsourcing: potential data protection,
privacy and security concerns under the new media age,” Revista
Democracia Digital e Governo Eletrônico, vol. 1, no. 10, pp. 377–393,
2014.

[22] J. R. Kan Yang, Kuan Zhang, “Security and privacy in mobile
crowdsourcing networks: challenges and opportunities,” IEEE
Communications Magazine, vol. 53, no. 8, pp. 75–81, 2015.

[23] E. Toch, “Crowdsourcing privacy preferences in context-aware
applications,” Personal and Ubiquitous Computing, vol. 18, no. 1,
pp. 129–141, 2014.

[24] C. S. Hien To, Gabriel Ghinita, “A framework for protecting
worker location privacy in spatial crowdsourcing, pvldb 2014,”
Proceedings of the VLDB Endowment, vol. 7, pp. 919–930, June 2014.

[25] A. S. Federico Ast, “The crowdjury, a crowdsourced justice system
for the collaboration era,” 2015.

[26] V. Jacynycz, A. Calvo, S. Hassan, and A. A. Sánchez-Ruiz, “Bet-
funding: A distributed bounty-based crowdfunding platform over
ethereum,” in Distributed Computing and Artificial Intelligence, 13th
International Conference, vol. 474, Sevilla, Spain, 2016, pp. 403–411.

[27] H. Zhu and Z. Z. Zhou, “Analysis and outlook of applications of
blockchain technology to equity crowdfunding in china,” Financial
Innovation, vol. 2, no. 1, p. 29, 2016.

[28] “Microwork,” ”http://www.microwork.io/”, ”[Online]”.
[29] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,”

2009.
[30] “Wikipedia. list of cryptocurrencies,” ”https://en.wikipedia.org/

wiki/List$\ of\ $cryptocurrencies”, [Online].
[31] R. S. M. J. F. Muneeb Ali, Jude Nelson, “Blockstack: A global

naming and storage system secured by blockchains,” in USENIX
Annual Technical Conference, USENIX ATC 2016, Denver, CO, 2016,
pp. 181–194.

[32] D. M. Marcin Andrychowicz, Stefan Dziembowski, “Secure mul-
tiparty computations on bitcoin,” in IEEE Symposium on Security
and Privacy, S&P 2014, San Jose, CA, 2014, pp. 443–458.

[33] T. V. Asaph Azaria, Ariel Ekblaw, “Medrec: Using blockchain
for medical data access and permission management,” in 2nd
International Conference on Open and Big Data, OBD 2016, Vienna,
Austria, Aug. 2016, pp. 25–30.

[34] A. Wright and P. De Filippi, “Decentralized blockchain technology
and the rise of lex cryptographia,” 2015.

[35] J. C. A. N. J. A. K. E. W. F. Joseph Bonneau, Andrew Miller, “Sok:
Research perspectives and challenges for bitcoin and cryptocur-
rencies,” in IEEE Symposium on Security and Privacy, S&P 2015,
CA, USA, May. 2015, pp. 17–21.

[36] W. Gavin, “Ethereum: A secure decentralised generalised transac-
tion ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[37] S. Melanie, Blockchain: Blueprint for a new economy. ”O’Reilly
Media, Inc.”, 2015.

[38] N. Szabo, “Formalizing and securing relationships on public net-
works,” First Monday, vol. 2, no. 9, 1997.

[39] “Hyperledger white paper (2015),” ”www.the-blockchain.com/
docs/Hyperledger\%20Whitepaper.pdf”, [Online].

[40] “Blockchain,” ”https://blockchain.info/charts/blocks-size”, [On-
line].

[41] J. Benet, “Ipfs-content addressed, versioned, p2p file system,”
arXiv preprint arXiv:1407.3561, 2014.

[42] D. M. Petar Maymounkov, “Kademlia: A peer-to-peer information
system based on the xor metric,” in International Workshop on Peer-
to-Peer Systems, vol. 2429, MA, USA, March 2002, pp. 53–65.

[43] B. W. Amit Sahai, “How to use indistinguishability obfuscation:
deniable encryption, and more,” in Proceedings of the forty-sixth
annual ACM symposium on Theory of computing, STOC 2014, New
York, USA, 2014, pp. 475–484.

[44] C. Gentry, “A fully homomorphic encryption scheme,” Ph.D.
dissertation, Stanford University, 2009.

