
Designing Secure Ethereum Smart Contracts:
A Finite State Machine Based Approach

Anastasia Mavridou1 and Aron Laszka2

1 Vanderbilt University
2 University of Houston

Abstract. The adoption of blockchain-based distributed computation
platforms is growing fast. Some of these platforms, such as Ethereum,
provide support for implementing smart contracts, which are envisioned
to have novel applications in a broad range of areas, including finance
and the Internet-of-Things. However, a significant number of smart con-
tracts deployed in practice suffer from security vulnerabilities, which en-
able malicious users to steal assets from a contract or to cause damage.
Vulnerabilities present a serious issue since contracts may handle finan-
cial assets of considerable value, and contract bugs are non-fixable by
design. To help developers create more secure smart contracts, we intro-
duce FSolidM, a framework rooted in rigorous semantics for designing
contracts as Finite State Machines (FSM). We present a tool for creating
FSM on an easy-to-use graphical interface and for automatically gener-
ating Ethereum contracts. Further, we introduce a set of design patterns,
which we implement as plugins that developers can easily add to their
contracts to enhance security and functionality.

Keywords: smart contract, security, finite state machine, Ethereum,
Solidity, automatic code generation, design patterns

1 Introduction

The adoption and importance of blockchain based distributed ledgers are grow-
ing fast. For example, the market capitalization of Bitcoin, the most-popular
cryptocurrency, has exceeded $70 billion in 2017.3 While the first generation
of blockchain systems were designed to provide only cryptocurrencies, later
systems, such as Ethereum, can also function as distributed computing plat-
forms [1,2]. These distributed and trustworthy platforms enable the implemen-
tation smart contracts, which can automatically execute or enforce their contrac-
tual terms [3]. Beyond financial applications, blockchains are envisioned to have
a wide range of applications, such as asset tracking for the Internet-of-Things [4].
Due to their unique advantages, blockchain based platforms and smart contracts
are embraced by an increasing number of organizations and companies. For in-
stance, the project HyperLedger4, which aims to develop open-source blockchain

3 https://coinmarketcap.com/currencies/bitcoin/
4 https://www.hyperledger.org/

https://coinmarketcap.com/currencies/bitcoin/
https://www.hyperledger.org/

2 Anastasia Mavridou and Aron Laszka

tools, is backed by major technology companies and financial firms, such as IBM,
Cisco, J.P. Morgan, and Wells Fargo [5].

At the same time, smart contracts deployed in practice are riddled with
bugs and security vulnerabilities. A recent automated analysis of 19,336 smart
contracts deployed on the public Ethereum blockchain found that 8,333 contracts
suffer from at least one security issue [6]. While not all of these issues lead to
security vulnerabilities, many of them enable cyber-criminals to steal digital
assets, such as cryptocurrencies. For example, the perpetrator(s) of the infamous
2016 “The DAO” attack exploited a combination of vulnerabilities to steal 3.6
million Ethers, which was worth around $50 million at the time of the attack [7].
More recently, $31 million worth of Ether was stolen due to a critical security
flaw in a digital wallet contract [8]. Furthermore, malicious attackers might be
able to cause damage even without stealing any assets, e.g., by leading a smart
contract into a deadlocked state, which does not allow the rightful owners to
spend or withdraw their assets.

Security vulnerabilities in smart contracts present a serious issue for multiple
reasons. Firstly, smart contracts deployed in practice handle financial assets of
significant value. For example, at the time of writing, the combined value held
by Ethereum contracts deployed on the public blockchain is 12,205,760 Ethers,
which is worth more than $3 billion.5 Secondly, smart-contract bugs cannot
be patched. By design, once a contract is deployed, its functionality cannot be
altered even by its creator. Finally, once a faulty or malicious transaction is
recorded, it cannot be removed from the blockchain (“code is law” principle [9]).
The only way to roll back a transaction is by performing a hard fork of the
blockchain, which requires consensus among the stakeholders and undermines
the trustworthiness of the platform [10].

In practice, these vulnerabilities often arise due to the semantic gap between
the assumptions contract writers make about the underlying execution semantics
and the actual semantics of smart contracts [6]. Prior work focused on addressing
these issues in existing contracts by providing tools for verifying correctness [9]
and for identifying common vulnerabilities [6]. In this paper, we explore a dif-
ferent avenue by proposing and implementing FSolidM, a novel framework for
creating secure smart contracts:

– We introduce a formal, finite-state machine (FSM) based model for smart
contracts. We designed our model primarily to support Ethereum smart
contracts, but it may be applied on other platforms as well.

– We provide an easy-to-use graphical editor that enables developers to design
smart contracts as FSMs.

– We provide a tool for translating FSMs into Solidity code.6

– We provide a set of plugins that implement security features and design
patterns, which developers can easily add to their model.

5 https://etherscan.io/accounts/c
6 Solidity is the most widely used high-level language for developing Ethereum con-

tracts. Solidity code can be translated into Ethereum Virtual Machine bytecode,
which can be deployed and executed on the platform.

https://etherscan.io/accounts/c

Designing Secure Ethereum Smart Contracts 3

Table 1. Common Smart-Contract Vulnerabilities and Design Patterns

Type Common Name FSolidM Plugin

Vulnerabilities

reentrancy [6,13] locking (Section 5.1)

transaction ordering [6] transition counter (Section 5.2)

a.k.a. unpredictable state [13]

Patterns
time constraint [14] timed transitions (Section 5.3)

authorization [14] access control (Section 5.4)

Our tool is open-source and available online (see Section 6 for details).
The advantages of our approach, which aims to help developers create secure

contracts rather than to fix existing ones, are threefold. First, we provide a
formal model with clear semantics and an easy-to-use graphical editor, thereby
decreasing the semantic gap and eliminating the issues arising from it. Second,
rooting the whole process in rigorous semantics allows the connection of our
framework to formal analysis tools [11,12]. Finally, our code generator—coupled
with the plugins provided in our tool—enables developers to implement smart
contracts with minimal amount of error-prone manual coding.

The remainder of this paper is organized as follows. In Section 2, we give a
brief overview of related work on smart contracts and common vulnerabilities.
In Section 3, we first present blind auction as a motivating example problem,
which can be implemented as a smart contract, and then introduce our finite-
state machine based contract model. In Section 4, we describe our FSM-to-
Solidity code transformation. In Section 5, we introduce plugins that extend the
contract model with additional functionality and security features. In Section 6,
we describe our FSolidM tool and provide numerical results on computational
cost. Finally, in Section 7, we offer concluding remarks and outline future work.

2 Related Work

2.1 Common Vulnerabilities and Design Patterns

Multiple studies investigate and provide taxonomies for common security vul-
nerabilities and design patterns in Ethereum smart contracts. In Table 1, we list
the vulnerabilities that we address and the patterns that we implement in our
framework using plugins.

Atzei et al. provide a detailed taxonomy of security vulnerabilities in Ethereum
smart contracts, identifying twelve distinct types [13]. For nine vulnerability
types, they show how an attacker could exploit the vulnerability to steal assets
or to cause damage. Luu et al. discuss four of these vulnerability types in more
detail, proposing various techniques for mitigating them (see Section 2.2) [6]. In
this paper, we focus on two types of these common vulnerabilities:
– Reentrancy Vulnerability: Reentrancy is one of the most well-known vulner-

abilities, which was also exploited in the infamous “The DAO” attack. In

4 Anastasia Mavridou and Aron Laszka

Ethereum, when a contract calls a function in another contract, the caller
has to wait for the call to finish. This allows the callee, who may be mali-
cious, to take advantage of the intermediate state in which the caller is, e.g.,
by invoking a function in the caller.

– Transaction-Ordering Dependence: If multiple users invoke functions in the
same contract, the order in which these calls are executed cannot be pre-
dicted. Consequently, the users have uncertain knowledge of the state in
which the contract will be when their individual calls are executed.
Bartoletti and Pompianu identify nine common design patterns in Ethereum

smart contracts, and measure how many contracts use these patterns in prac-
tice [14]. Their results show that the two most common patterns are autho-
rization and time constraint, which are used in 61% and 33% of all contracts,
respectively. The also provide a taxonomy of Bitcoin and Ethereum contracts,
dividing them into five categories based on their application domain. Based on
their categorization, they find that the most common Ethereum contracts de-
ployed in practice are financial, notary, and games.

2.2 Verification and Automated Vulnerability Discovery

Multiple research efforts attempt to identify and fix these vulnerabilities through
verification and vulnerability discovery. For example, Hirai first performs a for-
mal verification of a smart contract that is used by the Ethereum Name Ser-
vice [15].7 However, this verification proves only one particular property and
it involves relatively large amount of manual analysis. In later work, Hirai de-
fines the complete instruction set of the Ethereum Virtual Machine in Lem, a
language that can be compiled for interactive theorem provers [16]. Using this
definition, certain safety properties can be proven for existing contracts.

Bhargavan et al. outline a framework for analyzing and verifying the safety
and correctness of Ethereum smart contracts [9]. The framework is built on
tools for translating Solidity and Ethereum Virtual Machine bytecode contracts
into F ∗, a functional programming language aimed at program verification. Us-
ing the F ∗ representations, the framework can verify the correctness of the
Solidity-to-bytecode compilation as well as detect certain vulnerable patterns.

Luu et al. propose two approaches for mitigating common vulnerabilities in
smart contracts [6]. First, they recommend changes to the execution semantics
of Ethereum, which eliminate vulnerabilities from the four classes that they
identify in their paper. However, these changes would need to be adopted by all
Ethereum clients. As a solution that does not require changing Ethereum, they
provide a tool called Oyente, which can analyze smart contracts and detect
certain security vulnerabilities.

Fröwis and Böhme define a heuristic indicator of control flow immutability to
quantify the prevalence of contractual loopholes based on modifying the control
flow of Ethereum contracts [17]. Based on an evaluation of all the contracts

7 The Ethereum Name Service is a decentralized service, built on smart contracts, for
addressing resources using human-readable names.

Designing Secure Ethereum Smart Contracts 5

deployed on Ethereum, they find that two out of five contracts require trust in
at least one third party.

3 Defining Smart Contracts as FSMs

Let us consider a blind auction (similar to the one presented in [18]), in which a
bidder does not send her actual bid but only a hashed version of it. The bidder
is also required make a deposit—which does not need to be equal to her actual
bid—to prevent the bidder from not sending the money after she has won the
auction. A deposit is considered valid if its value is higher than or equal to the
actual bid. We consider that a blind auction has four main states:

1. AcceptingBlindedBids, in which blind bids and deposits are accepted by
the contract;

2. RevealingBids, in which bidders reveal their bids, i.e., they send their actual
bids and the contract checks whether the hash value is the same as the one
provided during the AcceptingBlindedBids state and whether sufficient
deposit has been provided;

3. Finished, in which the highest bid wins the auction. Bidders can withdraw
their deposits except for the winner, who can withdraw only the difference
between her deposit and bid;

4. Canceled, in which bidders can retract bids and withdraw their deposits.

Our approach relies on the following observations. Smart contracts have
states (e.g., AcceptingBlindedBids, RevealingBids). Furthermore, contracts
provide functions that allow other entities (e.g., contracts or users) to invoke
actions and change the state of the smart contracts. Thus, smart contracts can
be naturally represented by FSMs [19]. An FSM has a finite set of states and
a finite set of transitions between these states. A transition forces a contract to
take a set of actions if the associated conditions, which are called the guards
of the transition, are satisfied. Since such states and transitions have intuitive
meaning for developers, representing contracts as FSMs provides an adequate
level of abstraction for reasoning about their behavior.

Figure 1 presents the blind auction example in the form of an FSM. For sim-
plicity, we have abbreviated AcceptingBlindedBids, RevealingBids, Finished,
and Canceled to ABB, RB, F, and C, respectively. ABB is the initial state of the
FSM. Each transition (e.g., bid, reveal, cancel) is associated to a set of ac-
tions that a user can perform during the blind auction. For instance, a bidder
can execute the bid transition at the ABB state to send a blind bid and a de-
posit value. Similarly, a user can execute the close transition, which signals
the end of the bidding period, if the associated guard now >= creationTime

+ 5 days evaluates to true. To differentiate transition names from guards, we
use square brackets for the latter. A bidder can reveal her bids by executing
the reveal transition. The finish transition signals the completion of the auc-
tion, while the cancelABB and cancelRB transitions signal the cancellation of
the auction. Finally, the unbid and withdraw transitions can be executed by

6 Anastasia Mavridou and Aron Laszka

9/22/2017 demo / BIP_test

https://editor.webgme.org/?project=demo%2BBIP_test&branch=master&node=%2Ff%2F1%2FD&visualizer=BIPEditor&tab=1&layout=DefaultLayout&selection= 1/1

cancelABB

withdraw

bid
reveal
[values.length == secret.length]

cancelRB

close
[now > creationTime + 5 days]

unbid

finish
[now >= creationTime + 10 days]

C F

RBABB

Fig. 1. Example FSM for blinded auctions.

the bidders to withdraw their deposits. For ease of presentation, we omit from
Figure 1 the actions that correspond to each transition. For instance, during the
execution of the withdraw transition, the following action is performed amount

= pendingReturns[msg.sender].
Guards are based on a set of variables, e.g., creationTime, values, and

actions are also based on a set of variables, e.g., amount. These variable sets
store data, that can be of type:
– contract data, which is stored within the contract;
– input data, which is received as transition input;
– output data, which is returned as transition output.

We denote by C, I, and O the three sets of the contract, input, and output
variables of a smart contract. We additionally denote:

B[C, I] , the set of Boolean predicates on contract and input variables;

E[C, I,O] , the set of statements that can be defined by the full Solidity syntax.

Notice that E[C, I,O] represents the set of actions of all transitions. Next, we
formally define a contract as an FSM.

Definition 1. A Smart Contract is a tuple (S, s0, C, I,O,→), where:
– S is a finite set of states;
– s0 ∈ S is the initial state;
– C, I, and O are disjoint finite sets of, respectively, contract, input, and

output variables;
– →⊆ S × G × F × S is a transition relation, where:
• G = B[C, I] is a set of guards;
• F is a set of action sets, i.e., a set of all ordered powersets of E[C, I,O].

4 FSM-to-Solidity Transformation

To automatically generate a contract using our framework, developers can pro-
vide the corresponding FSM in a graphical form. Each transition of the FSM is

Designing Secure Ethereum Smart Contracts 7

implemented as a Solidity function, where an element of G and a list of state-
ments from F form the body. The input I and output C variables correspond
to the arguments and the return values, respectively, of these functions. In this
section, we describe the basic transformation formally, while in Section 5, we
present a set of extensions, which we call plugins.

First, let us list the input that must be provided by the developer:
– name: name of the FSM;
– S: set of states;
– s0 ∈ S: initial state;
– C: set of contract variables;
– for each contract variable c ∈ C, access(c) ∈ {public, private}: visibility

of the variable;
– →: set of transitions;
– for each transition t ∈→:
• tname: name of the transition;
• tguards ∈ G: guard conditions of the transition;
• tinput ⊆ I: input variables (i.e., parameters) of the transition;
• tstatements ∈ F : statements of the transition;
• toutput ⊆ O: output (i.e., return values) of the transition;
• tfrom ∈ S: previous state;
• tto ∈ S: next state;
• ttags ⊆ {payable, admin, event}: set of transition properties specified by

the developer (note that without plugins, only payable is supported);
– T custom: set of complex types defined by the developer in the form of structs.

For any variable v ∈ C ∪ I ∪ O, we let type(v) ∈ T denote the domain of the
variable, where T denotes the set of all built-in Solidity types and developer-
defined struct types.

We use fixed-width font for the output generated by the transformation,
and italic font for elements that are replaced with input or specified later. An
FSM is transformed into a Solidity contract as follows:

Contract ::= contract name {
StatesDefinition

uint private creationTime = now;

VariablesDefinition

Plugins

Transition(t1)

. . .

Transition(t|→|)

}

where {t1, . . . , t|→|} = →. Without any security extensions or design patterns
added (see Section 5), Plugins is empty. The complete generated code for the
blind-auction example presented in Figure 1 can be found in [20] (with the
locking and transition-counter security-extension plugins added).

8 Anastasia Mavridou and Aron Laszka

StatesDefinition ::= enum States {s0, . . . ,s|S|−1}
States private state = States.s0;

where {s0, . . . , s|S|−1} = S.

Example 1. The following snippet of Solidity code presents the StatesDefinition
code generated for the blind auction example (see Figure 1).

enum States {
ABB ,
RB,
F,
C

}
States private state = States.ABB;

VariablesDefinition ::= T custom

type(c1) access(c1) c1;

. . .

type(c|C|) access(c|C|) c|C|;

where {c1, . . . , c|C|} = C.

Example 2. The following snippet of Solidity code presents the VariablesDefinition
code of the blind auction example (see Figure 1).

struct Bid {
bytes32 blindedBid;
uint deposit;

}
mapping(address => Bid[]) private bids;
mapping(address => uint) private pendingReturns;
address private highestBidder;
uint private highestBid;

Transition(t) ::= function tname(type(i1) i1, . . . , type(i|tinput|) i|tinput|)

TransitionPlugins(t)

Payable(t) Returns(t) {
require(state == States.tfrom);

Guards(t)

Statements(t)

state = States.tto;

}

Designing Secure Ethereum Smart Contracts 9

where
{
i1, . . . , i|tinput|

}
= tinput. Without any security extensions or design

patterns (see Section 5), TransitionPlugins(t) is empty, similar to Plugins. If
payable ∈ ttags, then Payable(t) = payable; otherwise, it is empty. If tto = tfrom

then the line state = States.tto; is not generated.

If toutput = ∅, then Returns(t) is empty. Otherwise, it is as follows:

Returns(t) ::= returns (type(o1) o1, . . . , type(o|toutput|) o|toutput|)

where
{
o1, . . . , o|toutput|

}
= toutput.

Further,

Guards(t) ::= require((g1) && (g2) && . . . && (g|tguards|));

Statements(t) ::= a1

. . .

a|tstatements|

where {g1, . . . , g|tguards|} = tguards and {a1, . . . , a|tstatements|} = tstatements.

Example 3. The following snippet of Solidity code shows the generated bid tran-
sition (see Figure 1). The bid transition does not have any guards and the state
of the FSM does not change, i.e., it remains ABB after the execution of the tran-
sition.

// Transition bid
function bid(bytes32 blindedBid)

payable
{

require(state == States.ABB);
// Actions
bids[msg.sender].push(Bid({

blindedBid: blindedBid ,
deposit: msg.value

}));
}

Example 4. The following snippet of Solidity code shows the generated close

transition (see Figure 1). The close transition does not have any associated
actions but the state of the FSM changes from ABB to RB after the execution of
the transition.

// Transition close
function close ()
{

require(state == States.ABB);
// Guards
require(now >= creationTime + 5 days);
//State change
state = States.RB;

}

10 Anastasia Mavridou and Aron Laszka

5 Security Extensions and Patterns

Building on the FSM model and the FSM-to-Solidity transformation introduced
in the previous sections, we next provide extensions and patterns for enhancing
the security and functionality of contracts. These extensions and patterns are im-
plemented as plugins, which are appended to the Plugins and TransitionPlugins
elements. Developers can easily add plugins to a contract (or some of its transi-
tions) using our tool, without writing code manually.8

5.1 Locking

To prevent reentrancy vulnerabilities, we provide a security plugin for locking
the smart contract. 9 The locking feature eliminates reentrancy vulnerabilities
in a “foolproof” manner: functions within the contract cannot be nested within
each other in any way.

Implementation If the locking plugin is enabled, then

Plugins += bool private locked = false;

modifier locking {
require(!locked);

locked = true;

_;

locked = false;

}

and for every transition t,

TransitionPlugins(t) += locking

Before a transition is executed, the locking modifier first checks if the contract is
locked. If it is not locked, then the modifier locks it, executes the transition, and
unlocks it after the transition has finished. Note that the locking plugin must be
applied before the other plugins so that it can prevent reentrancy vulnerabilities
in the other plugins. Our tool always applies plugins in the correct order.

5.2 Transition Counter

Recall from Section 2.1 that the state and the values of the variables stored in an
Ethereum contract may be unpredictable: when a user invokes a function (i.e.,
transition in an FSM), she cannot be sure that the contract does not change in

8 Please note that we introduce an additional plugin in Appendix A.
9 http://solidity.readthedocs.io/en/develop/contracts.html?highlight=

mutex#function-modifiers

http://solidity.readthedocs.io/en/develop/contracts.html?highlight=mutex#function-modifiers
http://solidity.readthedocs.io/en/develop/contracts.html?highlight=mutex#function-modifiers

Designing Secure Ethereum Smart Contracts 11

some way before the function is actually executed. This issue has been referred
to as “transaction-ordering dependence” [6] and “unpredictable state” [13], and
it can lead to various security issues. Furthermore, it is rather difficult to prevent
since multiple users may invoke functions at the same time, and these function
invocations might be executed in any order.

We provide a plugin that can prevent unpredictable-state vulnerabilities by
enforcing a strict ordering on function executions. The plugin expects a transition
number in every function as a parameter (i.e., as a transition input variable) and
ensures that the number is incremented by one for each function execution. As
a result, when a user invokes a function with the next transition number in
sequence, she can be sure that the function is executed before any other state
changes can take place (or that the function is not executed).

Implementation If the transition counter plugin is enabled, then

Plugins += uint private transitionCounter = 0;

modifier transitionCounting(uint nextTransitionNumber) {
require(nextTransitionNumber == transitionCounter);

transitionCounter += 1;

_;

}

and for every transition t,

TransitionPlugins(t) += transitionCounting(nextTransitionNumber)

Note that due to the inclusion of the above modifier, tinput—and hence the pa-
rameter list of every function implementing a transition— includes the parameter
nextTransitionNumber of type uint.

5.3 Automatic Timed Transitions

Next, we provide a plugin for implementing time-constraint patterns. We first
need to extend our FSM model: a Smart Contract with Timed Transitions is a
tuple C = (S, s0, C, I,O,→,

T→), where
T→⊆ S × GT × N × FT × S is a timed

transition relation such that:

– GT = B[C] is a set of guards (without any input data);
– N is the set of natural numbers, which is used to specify the time of the

transition in seconds;
– FT is a set of action sets, i.e., a set of all ordered powerset of E[C].

Notice that timed transitions are similar to non-timed transitions, but 1) their
guards and assignments do not use input or output data and 2) they include a
number specifying the transition time.

12 Anastasia Mavridou and Aron Laszka

We implement timed transitions as a modifier that is applied to every func-
tion. When a transition is invoked, the modifier checks whether any timed tran-
sitions must be executed before the invoked transition is executed. If so, the
modifier executes the timed transitions before the invoked transition.

Writing such modifiers for automatic timed transitions manually may lead
to vulnerabilities. For example, a developer might forget to add a modifier to a
function, which enables malicious users to invoke functions without the contract
progressing to the correct state (e.g., place bids in an auction even though the
auction should have already been closed due to a time limit).

Implementation For every timed transition tt ∈ T→, the developer specifies a
time tttime ∈ N at which the transition will automatically happen (given that
the guard condition is met). This time is measured in the number of seconds
elapsed since the creation (i.e., instantiation) of the contract. We let tt1, tt2, . . .
denote the list of timed transitions in ascending order based on their specified
times. When the plugin is enabled,

Plugins += modifier timedTransitions {
TimedTransition(tt1)

TimedTransition(tt2)

. . .

_;

}

where

TimedTransition(t) ::= if ((state == States.tfrom)

&& (now >= creationTime + ttime)

&& (Guard(t))) {
Statements(t)

state = States.tto;

}

Finally, for every non-timed transition t ∈→, let

TransitionPlugins(t) += timedTransitions

5.4 Access Control

In many contracts, access to certain transitions (i.e., functions) needs to be
controlled and restricted. 10 For example, any user can participate in a typical

10 http://solidity.readthedocs.io/en/develop/common-patterns.html#

restricting-access

http://solidity.readthedocs.io/en/develop/common-patterns.html#restricting-access
http://solidity.readthedocs.io/en/develop/common-patterns.html#restricting-access

Designing Secure Ethereum Smart Contracts 13

blind auction by submitting a bid, but only the creator should be able to can-
cel the auction. To facilitate the enforcement of such constraints, we provide a
plugin that 1) manages a list of administrators at runtime (identified by their
addresses) and 2) enables developers to forbid non-administrators from access-
ing certain functions. This plugin implements management functions (addAdmin,
removeAdmin) for only one privileged group, but it could easily be extended to
support more fine-grained access control.

Implementation If the access control plugin is enabled, then

Plugins += mapping(address => bool) private isAdmin;

uint private numAdmins = 1;

function name() {
isAdmin[msg.sender] = true;

}

modifier onlyAdmin {
require(isAdmin[msg.sender]);

_;

}

function addAdmin(address admin) onlyAdmin {
require(!isAdmin[admin]);

isAdmin[admin] = true;

numAdmins += 1;

}

function removeAdmin(address admin) onlyAdmin {
require(isAdmin[admin]);

require(numAdmins > 1);

isAdmin[admin] = false;

numAdmins -= 1;

}

For transitions t such that admin ∈ ttags (i.e., transitions that are tagged “only
admin” by the developer),

TransitionPlugins(t) += onlyAdmin

14 Anastasia Mavridou and Aron Laszka

6 The FSolidM Tool

We present the FSolidM tool, which is build on top of WebGME [21], a web-
based, collaborative, versioned, model editing framework. FSolidM enables col-
laboration between multiple users during the development of smart contracts.
Changes in FSolidM are committed and versioned, which enables branching,
merging, and viewing the history of a contract. FSolidM is open-source 11 and
available online 12.

To use FSolidM, a developer must provide some input (see Section 4). To do
so, the developer can use the graphical editor of FSolidM to specify the states,
transitions, guards, etc. of a contract. The full input of the smart-contract code
generator can be defined entirely through the FSolidM graphical editor. For the
convenience of the developers, we have also implemented a Solidity code editor,
since part of the input e.g., variable definitions and function statements, might
be easier to directly write in a code editor. Figure 2 shows the two editors of the
tool. We have integrated a Solidity parser13 to check the syntax of the Solidity
code that is given as input by the developers.

Fig. 2. The graphical and code editors provided by FSolidM.

The FSolidM code editor cannot be used to completely specify the required
input. Notice that in Figure 2, parts of the code shown in the code editor are
darker (lines 1-10) than other parts (lines 12-15). The darker lines of code include

11 https://github.com/anmavrid/smart-contracts
12 https://cps-vo.org/group/SmartContracts
13 https://github.com/ConsenSys/solidity-parser

https://github.com/anmavrid/smart-contracts
https://cps-vo.org/group/SmartContracts
https://github.com/ConsenSys/solidity-parser

Designing Secure Ethereum Smart Contracts 15

code that was generated from the FSM model defined in the graphical editor and
are locked—cannot be altered in the code editor. The non-dark parts indicate
code that was directly specified in the code editor.

FSolidM provides mechanisms for checking if the FSM is correctly specified
(e.g., whether an initial state exists or not). FSolidM notifies developers of errors
and provides links to the erroneous nodes of the model (e.g., a transition or a
guard). Additionally, FSolidM provides an FSM-to-Solidity code generator and
mechanisms for easily integrating the plugins introduced in Section 5. We present
the FSolidM tool in greater detail in [20].

6.1 Numerical Results on Computational Cost

Plugins not only enhance security but also increase the computational cost of
transitions. Since users must pay a relatively high price for computation per-
formed on the public Ethereum platform, the computational cost of plugins is a
critical question. Here, we measure and compare the computational cost of tran-
sitions in our blind-auction contract without and with the locking and transition
counter plugins. We focus on these security feature plugins because they intro-
duce overhead, while the design pattern plugins introduce useful functionality.

For this experiment, we use Solidity compiler version 0.4.17 with optimiza-
tions enabled. In all cases, we quantify computational cost of a transition as the
gas cost of an Ethereum transaction that invokes the function implementing the
transition.14 The cost of deploying our smart contract was 504,672 gas without
any plugins, 577,514 gas with locking plugin, 562,800 gas with transition counter
plugin, and 637,518 gas with both plugins.15

Figure 3 shows the gas cost of each transition for all four combinations of
the two plugins. We make two key observations. First, computational overhead
is almost constant for both plugins and also for their combination. For example,
the computational overhead introduced by locking varies between 10,668 and
10,686 gas. For the simplest transition, unbid, this constitutes a 54% increase in
computational cost, while for the most complex transition, reveal, the increase
is 16%. Second, the computational overhead of the two plugins is additive. The
increase in computational cost for enabling locking, transition counter, and both
are around 10,672 gas, 5,648 gas, and 16,319 gas, respectively.

7 Conclusion and Future Work

Distributed computing platforms with smart-contract functionality are envi-
sioned to have a significant technological and economic impact in the future.
However, if we are to avoid an equally significant risk of security incidents, we
must ensure that smart contracts are secure. While previous research efforts fo-
cused on identifying vulnerabilities in existing contracts, we explored a different

14 Gas measures the cost of executing computation on the Ethereum platform.
15 At the time of writing, this cost of deployment was well below $1 (if the deployment

does not need to be prioritized).

16 Anastasia Mavridou and Aron Laszka

bid cancelABB unbid close reveal finish withdraw
0

2

4

6

8

·104

T
ra

n
sa

ct
io

n
co

st
[g

a
s]

without plugins

with locking

with counter

with both

Fig. 3. Transaction costs in gas without plugins (blue), with locking plugin (red),
with transition counter plugin (brown), and with both plugins (dark gray).

avenue by proposing and implementing a novel framework for creating secure
smart contracts. We introduced a formal, FSM based model of smart contracts.
Based on this model, we implemented a graphical editor for designing contracts
as FSMs and an automatic code generator. We also provided a set of plugins
that developers can add to their contracts. Two of these plugins, locking and
transition counter, implement security features for preventing common vulnera-
bilities (i.e., reentrancy and unpredictable state). The other two plugins, auto-
matic timed transitions and access control, implement common design patterns
to facilitate the development of correct contracts with complex functionality.

We plan to extend our framework in multiple directions. First, we will in-
troduce a number of plugins, implementing various security features and design
patterns. We will provide security plugins for all the vulnerability types iden-
tified in [13] that can be addressed on the level of Solidity code. We will also
provide plugins implementing the most popular design patterns surveyed in [14].

Second, we will integrate verification tools [11,12] and correctness-by-design
techniques [22] into our framework. This will enable developers to easily verify
the security and safety properties of their contracts. For example, developers
will be able to verify if a malicious user could lead a contract into a deadlocked
state. Recall that deadlocks present a serious issue since it may be impossible to
recover the functionality or assets of a deadlocked contract.

Third, we will enable developers to model and verify multiple interacting
contracts as a set of interacting FSMs. By verifying multiple contracts together,
developers will be able to identify a wider range of issues. For example, a set of
interacting contracts may get stuck in a deadlock even if the individual contracts
are deadlock free.

Designing Secure Ethereum Smart Contracts 17

Acknowledgements

We thank the anonymous reviewers for their invaluable suggestions and feedback.

References

1. Underwood, S.: Blockchain beyond Bitcoin. Communications of the ACM 59(11)
(2016) 15–17

2. Wood, G.: Ethereum: A secure decentralised generalised transaction ledger. Tech-
nical Report EIP-150, Ethereum Project - Yellow Paper (April 2014)

3. Clack, C.D., Bakshi, V.A., Braine, L.: Smart contract templates: Foundations,
design landscape and research directions. arXiv preprint arXiv:1608.00771 (2016)

4. Christidis, K., Devetsikiotis, M.: Blockchains and smart contracts for the internet
of things. IEEE Access 4 (2016) 2292–2303

5. Vukolić, M.: Rethinking permissioned blockchains. In: Proceedings of the ACM
Workshop on Blockchain, Cryptocurrencies and Contracts, ACM (2017) 3–7

6. Luu, L., Chu, D.H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS), ACM (October 2016) 254–269

7. Finley, K.: A $50 million hack just showed that the DAO was all too hu-
man. Wired https://www.wired.com/2016/06/50-million-hack-just-showed-

dao-human/ (June 2016)
8. Qureshi, H.: A hacker stole $31m of ether – How it happened, and what it means

for Ethereum. freeCodeCamp https://medium.freecodecamp.org/a-hacker-

stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-

9e5dc29e33ce (July 2017)
9. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G.,

Kobeissi, N., Rastogi, A., Sibut-Pinote, T., Swamy, N., Zanella-Béguelin, S.: Short
paper: Formal verification of smart contracts. In: Proceedings of the 11th ACM
Workshop on Programming Languages and Analysis for Security (PLAS), in con-
junction with ACM CCS 2016. (October 2016) 91–96

10. Leising, M.: The Ether thief. Bloomberg Markets https://www.bloomberg.com/

features/2017-the-ether-thief/ (June 2017)
11. Bensalem, S., Bozga, M., Nguyen, T.H., Sifakis, J.: D-Finder: A tool for composi-

tional deadlock detection and verification. In: Proceedings of the 21st International
Conference on Computer Aided Verification (CAV), Springer (2009) 614–619

12. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In:
Proceedings of the 16th International Conference on Computer Aided Verification
(CAV). Volume 8559., Springer (2014) 334–342

13. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on Ethereum smart
contracts (sok). In: Proceedings of the 6th International Conference on Principles
of Security and Trust (POST), Springer (April 2017) 164–186

14. Bartoletti, M., Pompianu, L.: An empirical analysis of smart contracts: Platforms,
applications, and design patterns. In: Proceedings of the 1st Workshop on Trusted
Smart Contracts, in conjunction with the 21st International Conference of Finan-
cial Cryptography and Data Security (FC). (April 2017)

15. Hirai, Y.: Formal verification of deed contract in Ethereum name service. https:

//yoichihirai.com/deed.pdf (November 2016)

https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce
https://medium.freecodecamp.org/a-hacker-stole-31m-of-ether-how-it-happened-and-what-it-means-for-ethereum-9e5dc29e33ce
https://www.bloomberg.com/features/2017-the-ether-thief/
https://www.bloomberg.com/features/2017-the-ether-thief/
https://yoichihirai.com/deed.pdf
https://yoichihirai.com/deed.pdf

18 Anastasia Mavridou and Aron Laszka

16. Hirai, Y.: Defining the Ethereum Virtual Machine for interactive theorem provers.
In: Proceedings of the 1st Workshop on Trusted Smart Contracts, in conjunction
with the 21st International Conference of Financial Cryptography and Data Secu-
rity (FC). (April 2017)

17. Fröwis, M., Böhme, R.: In code we trust? In: International Workshop on Cryptocur-
rencies and Blockchain Technology (CBT), Springer (September 2017) 357–372

18. Solidity by Example: Blind auction. http://solidity.readthedocs.io/en/

develop/solidity-by-example.html Accessed on 9/5/2017.
19. Solidity Documentation: Common patterns. http://solidity.readthedocs.io/

en/develop/common-patterns.html#state-machine Accessed on 9/5/2017.
20. Mavridou, A., Laszka, A.: Designing secure ethereum smart contracts: A finite

state machine based approach. arXiv preprint arXiv:1711.09327 (2017)
21. Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi, P., Jurácz, L., Leven-

dovszky, T., Lédeczi, Á.: Next generation (meta) modeling: Web-and cloud-based
collaborative tool infrastructure. In: Proceedings of the MPM@ MoDELS. (2014)
41–60

22. Mavridou, A., Emmanouela, S., Bliudze, S., Ivanov, A., Katsaros, P., Sifakis, J.:
Architecture-based design: A satellite on-board software case study. In: Proceed-
ings of the 13th International Conference on Formal Aspects of Component Soft-
ware (FACS). (October 2016) 260–279

A Event Plugin

In this section, we introduce an additional plugin, which developers can use to
notify users of transition executions. The event plugin uses the event feature of
Solidity, which provides a convenient interface to the Ethereum logging facilities.
If this plugin is enabled, transitions tagged with event emit a Solidity event after
they are executed. Ethereum clients can listen to these events, allowing them to
be notified when a tagged transition is executed on the platform.

Implementation If the event plugin is enabled, then

Plugins += TransitionEvent(t1)

TransitionEvent(t2)

. . .

where {t1, t2, . . .} is the set of transitions with the tag event.

TransitionEvent(t) ::= event Eventtname;

modifier eventtname {
_;

Eventtname();

}

For every transition t such that event ∈ ttags (i.e., transitions that are tagged
to emit an event),

TransitionPlugins(t) += eventtname

http://solidity.readthedocs.io/en/develop/solidity-by-example.html
http://solidity.readthedocs.io/en/develop/solidity-by-example.html
http://solidity.readthedocs.io/en/develop/common-patterns.html#state-machine
http://solidity.readthedocs.io/en/develop/common-patterns.html#state-machine

	Designing Secure Ethereum Smart Contracts:A Finite State Machine Based Approach

