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Abstract. In this paper, we explore the role of privacy-enhancing over-
lays in Bitcoin. To examine the effectiveness of different solutions, we first
propose a formal definitional framework for virtual currencies and put
forth a new notion of anonymity, taint resistance, that they can satisfy.
We then approach the problem from a theoretical angle, by proposing
various solutions to achieve provable taint resistance, and from a practi-
cal angle, by examining the taint resistance of the Coinjoin protocol.

1 Introduction

Virtual currencies have existed in various forms — e.g., customer loyalty pro-
grams — for decades, yet only in recent years have they exploded in popularity.
The initial virtual currency driving this success, Bitcoin, was introduced in Jan-
uary 2009; today, it boasts an exchange rate of over 250 EUR per bitcoin and
is in the process of integrating into the traditional banking system via payment
gateways such as Bitpay — which as of March 2014 had signed up 26,000 mer-
chants to accept the currency — and partnerships between Bitcoin exchanges
such as Bitcoin.de and banks such as Fidor Bank AG. This tremendous growth
has impelled regulators and law enforcement officials around the world to take a
stand on virtual currencies, with the European Central Bank calling Bitcoin “the
most successful — and probably most controversial — virtual currency scheme to
date” [7] and the Federal Bureau of Investigation cautioning that, within the
Bitcoin network, “law enforcement faces difficulties detecting suspicious activ-
ity, identifying users and obtaining transaction records” [8].

This tension between the growing popularity of virtual currencies and their
perceived anonymity provides a unique problem for both users of these currencies
and for regulators seeking to understand the true risks that they pose. The initial
perception of Bitcoin was arguably that it provided anonymity, as evidenced by
its adoption in the underground marketplace Silk Road (where bitcoins could
be exchanged for goods such as drugs, firearms, and assassins) and by criminals
running ransomware such as CryptoLocker or Ponzi schemes [18]. A recent line
of research [15,16,2,12,19], however, showed that it was often possible to trace
the movement of bitcoins throughout the network, so as a result the average
Bitcoin user was not achieving much anonymity at all.



Perhaps in reaction to these results, a variety of new privacy-enhancing tech-
niques have been proposed for virtual currencies. These techniques can be split
into roughly two types: the first type introduces a new virtual currency — such
as Zerocash [13,4] or DarkCoin — that seeks to improve on the anonymity prop-
erties of Bitcoin, and the second type proposes overlays that can be used without
modifying the existing Bitcoin protocol. It is this latter approach that we focus
on in this paper.

The main obstacle towards achieving anonymity in Bitcoin is its inherent
transparency: while peers can identify themselves using a variety of pseudonyms,
every transaction that has ever taken place — and thus the entire spending
history of any given bitcoin — is globally visible. One method for improving
anonymity in Bitcoin is to mix bitcoins together as follows: Alice holds 1 bitcoin
and wishes to send it to Charlie, and Bob holds 1 bitcoin and wishes to send it to
Dora. If Alice sends her bitcoin to Dora and Bob sends his to Charlie, then they
have now essentially swapped the spending histories of these bitcoins; if Alice is
a thief, Bob a legitimate user, and Charlie the exchange where Alice wants to
cash out her bitcoin, then this swap has effectively “cleaned” the stolen bitcoin.
To address the difficulty of finding users to mix with, mix services such as Bit-
coin Fog and BitLaundry accept bitcoins and — in exchange for a fee — promise
to send untainted bitcoins (i.e., bitcoins independent of the ones it received) to
any address provided by the user.

Until a year ago, mix services were fairly unattractive, as a fair amount of
trust was required to assume that a user would in fact receive his promised bit-
coins. In August 2013, however, Gregory Maxwell proposed Coinjoin [10], which
promised trustless mixing, and essentially provided a way for users like Alice and
Bob in the above example to mix their bitcoins in a single transaction, without
relying on either a central service or even any trust in each other. Since then,
numerous other trustless mix services have been introduced, such as SharedCoin
(sharedcoin.com) and CoinWitness [11], and SharedCoin has been integrated
into blockchain.info’s popular wallet service (as of November 2013).

Our contributions. In this paper, we examine the landscape of privacy-enhancing
overlays for Bitcoin in an attempt to determine the extent to which they suc-
ceed in achieving anonymity, and the extent to which their anonymity can be
strengthened. By looking at the problem from these dual perspectives, we can
obtain a picture of both what is feasible in theory and what happens in practice.

To understand the extent to which existing overlays achieve anonymity, it is
first necessary to have a common framework in which these techniques can be
analyzed. In Section 2, we propose such a framework and provide — to the best
of our knowledge — the first formal definition of anonymity, taint resistance, that
can be satisfied by Bitcoin and related virtual currencies. (The main previous
definition of anonymity for virtual currencies, unlinkability, cannot be met here.)
In Section 3, we then analyze how different mechanisms can provide taint resis-
tance. While our framework provides a way to analyze the security of protocols,
it is also important to understand the performance of these protocols in practice.
In Section 4, we thus perform an experimental analysis of the Coinjoin protocol.
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We do so from the perspective of both a passive adversary, who uses only the
publicly available data from the transaction ledger, and — by engaging in our
own coinjoin transactions — an active adversary, who uses its own participation
to attempt to de-anonymize the activity of other participants. We find that näıve
versions of these adversaries are not particularly successful in identifying which
input addresses taint a given output address, and moreover that their success is
heavily tied to the quirks of the Coinjoin protocol being used.

2 Definitions and Notation

We begin with formal specifications of decentralized electronic cash (or e-cash)
and Coinjoin. We then introduce a notion of anonymity for virtual currencies
that we call taint resistance.

2.1 Distributed electronic cash

To the best of our knowledge, the only existing formal definitions of anonymity
in electronic cash are either in a centralized setting or the definition put forth
for Zerocoin [13]. The former definitions are out of the scope of this work, as
all our currencies of interest are fundamentally decentralized. The Zerocoin def-
initions do explicitly consider decentralization, but are not applicable in our
setting because their definition of anonymity still closely matches the standard
cryptographic notion of unlinkability (where, briefly, a user should not be able
to distinguish between two coins), which is impossible to achieve for Bitcoin and
the many altcoins that it has inspired.

With these considerations in mind, we set out to create a formal defini-
tion that encompasses existing virtual currencies. We define a decentralized e-
cash protocol as a set of PT algorithms (KeyGen,Mint,Spend,Verify,KeyCheck,

HistCheck,ValCheck) that behave as follows: via (pk , sk)
$←− KeyGen(1λ) one can

generate a keypair; via (hist, {coini, sk i}i)
$←− Mint(hist, aux ) one can generate

coins and create a record of this generation; via tx
$←− Spend(hist, {coini, sk i}i∈[m],

{pk j , vj}j∈[n]) one can send vj coins to recipients pk j ; via accept/reject ←
Verify(hist, tx) one can (deterministically) decide if a transaction is valid or
not; via KeyCheck(sk , coin) one can (deterministically) determine if a coin is
compatible with a given secret key; via HistCheck(hist, coin) one can (deter-
ministically) determine if a coin is compatible with a given history; and via
ValCheck(v, {coini}i) one can (deterministically) determine if a set of coins is
compatible with a given value.

To define correctness of the protocol, we say that a set {(coini, sk i)}i is valid
with respect to a given history hist and value v if (1) KeyCheck(sk i, coini) =
accept for all i, (2) HistCheck(hist, coini) = accept for all i, and (3) ValCheck(v,
{coini}i) = accept. We say that the protocol achieves correctness if Verify(hist′,
Spend(hist, {(coini, sk i)}i, {(pk j , vj)}j)) = accept for all sets {(coini, sk i)}i that

are valid with respect to hist and
∑
j vj , and for all hist′ such that hist ⊆ hist′.



2.2 Coinjoin

The Coinjoin protocol is designed to make a simplistic taint tracking more
difficult. If we consider how bitcoins get spent (or the inputs to the Spend algo-
rithm specified above), we recall that the sender needs to create a transaction
using the secret key corresponding to each of the input public keys. One might
thus think that a party forming a transaction needs to know each of these keys,
so that the input keys in a transaction are all owned by the same entity. Indeed,
this observation has formed the basis of a number of heuristics used to cluster to-
gether different Bitcoin addresses [15,16,2,12,19]. In fact, the signatures required
in a transaction can be formed in a distributed manner, so that — while highly
indicative of single ownership until a year ago — multiple entities can come to-
gether to form an ordinary-looking transaction without having to share secret
signing keys at all. Coinjoin exploits this ability to distribute the generation of
a transaction, and in its simplest form operates as seen in Algorithm 2.1.

Algorithm 2.1: coinjoin: Output a transaction tx

Input: Sets
{
{coinsk,i}i∈[mk], {pkk,j , vk,j}j∈[nk]

}
k∈[N ]

belonging to each of N

parties.

1 Each party k sends the set {pkk,j , vk,j}j∈[nk] to all the other parties.

2 Define So = ∪k∈[N ],j∈[nk]{pkk,j , vk,j}; after the previous step, each party can

now compute So. Each party k further computes σk,i
$←− Sign(skk,i, hist, So) for

all i, 1 ≤ i ≤ mk.
3 Each party k sends the set {pkk,i, σk,i}i∈[mk] to all the other parties.

4 Define Si = ∪k∈[N ],i∈[mk]{pkk,i, σk,i}; after the previous step, each party can
now compute Si. The final transaction is tx = (Si, So), which each party can
broadcast to the Bitcoin network.

Briefly, each party broadcasts their desired output keys to the other parties,
individually signs the completed list, and then broadcasts the signatures to the
other parties; each party can then broadcast this list of signatures and recipi-
ents — presumably in randomized order to prevent trivial de-anonymization —
as the collective transaction. The way in which the order and the transaction
fees are determined can be used to identify the behavior of different Coinjoin
services, as we will see in Section 4.

To attempt to understand the growing popularity of coinjoin transactions,
we looked at how many transactions matched a rough pattern of what we might
expect coinjoins3 to look like. We defined this pattern as any transaction hav-
ing more than five inputs and more than five outputs, and looked at how many
transactions matched this pattern (which is admittedly only roughly correlated
with coinjoins, but as coinjoins are indistinguishable from other transactions we

3 In the rest of the paper, we follow the convention of called the protocol Coinjoin and
the resulting transactions coinjoins.



cannot do better than an approximation). Prior to August 2013, we saw an av-
erage of zero matching transactions per block, but afterwards we saw a steady
increase: first to an average of two matching transactions per block in December
2013, then to a peak of 14 in March 2014, and finally settling to an average of
10 in July 2014, where it has remained ever since.

2.3 Taint resistance

As mentioned above, the existing notions of unlinkability for electronic cash
require that a valid coin belonging to one user is indistinguishable from a valid
coin belonging to another. In Bitcoin, it is impossible to satisfy this definition: a
bitcoin essentially is its spending history, and it is thus trivial to distinguish two
valid bitcoins. Any notion of anonymity that is useful for Bitcoin must therefore
focus less on the coins themselves and more on ownership. Looking back at the
Coinjoin protocol in Section 2.2, we can see that it is attempting to obscure not
the individual origins of the bitcoins involved — as, again, this can be trivially
discerned using the public ledger — but rather the ownership of the bitcoins at
each point in their spending histories.

To focus more on ownership, we thus present a notion of anonymity called
taint resistance, which attempts to capture how well an adversary can discern
the ownership of a bitcoin based on its previous spending history. Our definition
has the advantage that we can not only provide proofs of security (i.e., prove that
a protocol achieves optimal taint resistance), but that it also provides a concrete
measurement of the degree to which a proposed solution such as Coinjoin is
effective in improving anonymity.

In order to define taint resistance, we must first define what it means for
bitcoins to be tainted at all. The näıve version of the definition is simple: if a
public key has received some bitcoins as the result of a transaction, then all the
inputs to that transaction have tainted those bitcoins (or, in a public-key-based
definition, have tainted that output public key). As this is exactly the type of
taint analysis that protocols like Coinjoin are designed to thwart, however, we
consider a more specific definition.

Definition 2.1 (Taint set). For a coinjoin tx produced as specified in Algo-
rithm 2.1 and a public key pk ∈ outputs(tx), the taint set for pk is the set
T = {pk i}i∈[m] such that vi,j 6= 0.

The definition of the taint set only makes sense when applied to “real” coin-
joins, since it explicitly mentions the values vi,j transferred from Ui to Uj . In
general, it is impossible to define a taint set unless we make some assumption on
how the transaction was generated; to see why, recall the example in the intro-
duction, where Alice and Bob pay 1 coin each to Charlie and Dora. If one looks
only at the transaction, there are potentially exponentially many explanations
for the transaction; i.e., for each value v < 1, Alice and Bob could have been
paying (v, 1− v) respectively to Charlie and (1− v, v) to Dora (or vice versa).



To consider the success of an adversary, we use the Matthews correlation
coefficient (MCC), which is a way to measure the quality of a binary classifier.
This fits well with an adversary attempting to de-anonymize transactions, as
we can view it as assigning a ‘yes’ value to an input if it thinks it taints a
given output, and a ‘no’ value if it does not. The MCC ranges from −1 to
+1: −1 indicates a complete mismatch between the underlying truth and the
classification, 0 indicates that the classifier does no better than random, and +1
indicates a perfect match. (We define 0/0 = 0.)

For our purposes, we can define all the relevant terms in the original MCC
formula using the set A output by an adversary, the underlying taint set T , and
the full set of input keys S. Plugging these in, we get the following definition:

Definition 2.2 (Accuracy). For a transaction tx, a public key pk ∈ outputs(tx)
and its corresponding taint set T , auxiliary information aux ∈ {0, 1}∗, and an
adversary A, we say that the adversary achieves ε-accuracy with respect to aux ,
where

ε =
|A ∩ T | · |S \ (A ∪ T )| − |A \ T | · |T \A|√

|A| · |T | · |S \ T | · |S \A|

for S ← inputs(tx) and A
$←− A(tx, aux ).

Definition 2.3 (Taint resistance). For a transaction tx, a public key pk ∈
outputs(tx), auxiliary information aux ∈ {0, 1}∗, and a set of public keys S ⊆
inputs(tx), we say that tx achieves ε-taint resistance with respect to aux if no
(potentially unbounded) adversary A can achieve more than (1− ε)-accuracy.

Unlike accuracy, taint resistance is quantified over all possible adversaries (it
is a property of the transaction, not the adversary), and taint resistance ranges
from 0 to 1 since there is always a trivial adversary that outputs S or the empty
set and thus achieves accuracy 0. In the sequel, we first identity constructive
solutions for achieving taint resistance, and then attempt to analyze the effect
that the auxiliary information aux can have on a transaction’s taint resistance.

3 Achieving Taint Resistance

In this section, we describe and analyze different mechanisms for achieving taint
resistance. All of the solutions use well-known methods from the cryptographic
literature; i.e., we do not claim any novelty in the cryptographic tools, but instead
seek to explore how they can be used to achieve taint resistance.

It is instructive to start our discussion by describing how an adversary can
identify the taint set of a given public key in a coinjoin; this will also be useful
in our experimental analysis in Section 4. We describe a few scenarios below:

– The transaction itself. A coinjoin has two input values x and y and two
output values x − Fx and y − Fy (where the transaction fee is Fx + Fy). If
x 6= y and Fx and Fy are small, the adversary can use this information to
increase his belief in which input address transferred value to a given output
address.



– Participating in coinjoins. An unlucky user performs a coinjoin with
the adversary as his sole mixing partner. Regardless of how the coinjoin is
performed, the adversary — who controls one input address and one output
address — can trivially compute the taint set of the other output address
(assuming one input and one output address per participant).

– Influencing the creation of coinjoins. An adversary can learn informa-
tion about the taint set of an output address in a coinjoin by maliciously
influencing the way in which a coinjoin is created. This includes not only
the protocol for generating the coinjoin, but also the process of choosing the
other participants (where, for example, the adversary might try to force an
honest user to perform coinjoins with adversarially controlled addresses).

3.1 Using a trusted server

We describe now an ideal setting for performing coinjoins; i.e., one that leads
to optimal taint resistance. We then proceed to replace some of the (unrealistic)
assumptions using cryptographic tools.

To start, we assume a central trusted server, which partitions users into
different coinjoins, permutes their addresses at random, and transfers an amount
equal to the minimum of all input values (and returns the differences to change
addresses).

Grouping users: A user U j who wish to perform a coinjoin sends his addresses
(pkji , pk

j
o, pk

j
c) (for input address, output address and change address respec-

tively) to a central server S, where pkjo and pkcj are freshly generated ad-
dresses. The server S randomly assigns the user to a bucket ` of size n.

Performing transactions: Let U1, . . . , Un be the users assigned to a certain
bucket `. Let vji be the values associated to pkji and v∗ = min(vji ). The server
S prepares a transaction with input addresses (pk1i , . . . , pk

n
i ) and outputs

addresses (pk
π(1)
o , pk

π(n)
o , pk1c , . . . , pk

n
c ), for a random permutation π. Let F

be the transaction fee: then for each j, the address pkjc receives vjc = vji −
v∗ − F/n coins, and all pkjo receive the same value v∗.

Signing transactions: The server S sends the transactions tx to all users U j

in the bucket `. If U j ’s output address is present in the transaction and
the amount received by the change address of U j is correct, U j signs the
transaction and sends it back to the server.

Claim 1 Any tx generated using the above protocol achieves an expected 1-taint
resistance for the first n output addresses, against every adversary who does not
control (U1, . . . , Un, S).

The proof of the claim is trivial: the first n output addresses are fresh unused
addresses in a randomly permuted order, are generated independently, and all
receive the same amount of bitcoins. Since the adversary does not control any
other user participating in the transaction nor the server, the adversary has no
auxiliary information about the permutation π.



3.2 Reducing trust in the central server

The solution presented in the previous section offers taint resistance against
only simplistic adversaries. We propose here a solution that also works against
a partially corrupted server. The solution uses anonymous channels in a crucial
way and is a simple application of the results of [9] in this setting.

Grouping users: User U j sends his input and change address (pkji , pk
j
c) to the

server S, which replies with the index ` of the bucket to which the user has
been assigned. Now, using a (different) anonymous channel,4 user U j sends
the pair (`, pkjo) to the server.

Performing Transactions: As before.
Signing Transaction: As before.

Intuitively, since the users communicate the input and output key to the
server using two distinct anonymous channels, the server cannot link those ad-
dresses together.

Claim 2 Any tx generated using the above protocol achieves an expected (1−ε)-
taint resistance for the first n output addresses, against every adversary who
does not control (U1, . . . , Un) and corrupts S in a passive way.

Since S is passively corrupted, we need to add S’s view to the auxiliary
information aux given to the adversary. The main idea is that, since each user
sends its output public key using a fresh anonymous channel, even the central
server does not learn the mapping between the input keys and output keys.

More formally, as shown by [9], our use of the anonymous channel is a secure
implementation of an ideal functionality that performs a secure shuffle. There-
fore, the view of the server can be efficiently simulated, which implies that any
adversary that can achieve non-negligible accuracy in this protocol can be used
to do so in the previous protocol as well.

3.3 Removing the central server

Finally, we sketch a solution that does not require any central server. Here we
think of a high number of users N who want to perform coinjoins and have
access to some broadcast channel. It is at this point (conceptually) trivial to let
all parties run a secure computation protocol to replace the central server; in
practice, however, this is quite cumbersome, as it requires high communication
and computational resources.

Instead, we seek a solution that allows the users to partition themselves in
smaller sets of (expected) size n and then perform simple “mix-nets” between
them (a very similar solution has also been described in [17]). Here it is crucial
that users are assigned to groups at random (even in the presence of other
actively corrupted users) to guarantee that an adversary who controls few (say
n − 1) parties cannot force an honest user to perform a coinjoin with those
addresses. Let H : {0, 1}∗ → [n] be a cryptographic hash function.

4 This can implemented by creating a new identity on Tor.



Grouping users: All users perform a simultaneous exchange of their input
and change addresses (pkji , pk

j
c). (This can be implemented by having all

parties commit to their addresses, and then send the opening only after all
commitments have been received). Each user j is assigned to group H(pkji ).

Performing transactions: Let U1, . . . , Un be the users assigned to a cer-
tain bucket `. Now these users can perform a simple mix-nets as follows:
User U1 encrypts his output address pkjo under all the public keys of the
other parties — i.e., forms C1

2 = Epk2(Epk3(· · · (Epkn(pkjo)))) — and sends it
to U2. Now U2 samples a random permutation π of {1, 2}, decrypts the

received ciphertexts and computes C
π(1)
3 = Dsk2(C1

2 ) as well as C
π(2)
3 =

Epk3(Epk4(· · · (Epkn(pkjo)))) and so on. That is, at every step user U j re-
moves one layer of encryption from all the ciphertexts he receives, encrypts
his own output public key under the public keys of the next users, shuffles
the ciphertexts and sends them on to the next user. Finally, Un decrypts
and obtains the full list of the output addresses, and prepares a transaction
tx in the same way as the server did in the previous solutions.

Signing Transaction: The user Un sends the transactions tx to all users U j

in the bucket `. If pk jo is present in the transaction and the amount received
by pk jc is correct, U j signs the transaction and sends it back to Un.

Claim 3 Any tx generated using the above protocol achieves an expected (1 −
nτn−1)-taint resistance for the first n output addresses, against every adversary
who controls a fraction τ of parties.

There are two key ideas here. First, there is no guarantee that a user will
perform the correct decryption and shuffle. Still, it suffices to use a passively
secure mix-nets protocol, as users will sign the transaction only if their address
is present in the final transaction. Second, unless the adversary controls exactly
n−1 users in a given bucket, then the resulting mix between the two hones user
will leave the adversary without any information to do any better than guessing.
Since the adversary cannot control how the users are assigned into buckets (due
to the use of commitments and the hash function), assuming that the adversary
controls less than τ ·N parties then the probability that he controls exactly the
other n − 1 users in the bucket assigned to the target public key is less than
n · τn−1.

4 Experimental Analysis

In the previous section, we saw methods for achieving taint resistance. All of
these approaches, however, achieved security only with respect to the auxiliary
information that an adversary could obtain. In this section, we explore this
auxiliary information and consider how much it could affect taint resistance.

We consider different forms of auxiliary information from two perspectives.
First, we consider a minimal passive adversary that can glean information about
coinjoins based only on what it sees in the block chain. To emulate such an



adversary, we need only download the Bitcoin block chain, which we did as
recently as 2 September 2014 (at which point there were 318,768 blocks, 45.84
million transactions, and 45.79 million distinct public keys).

Next, we consider an active adversary that participates in coinjoins. To em-
ulate this adversary, we used blockchain.info’s SharedCoin service to partici-
pate in our own coinjoins. We used this service 54 times between 30 June 2014
and 11 August 2014; in each transaction, we sent 0.02 BTC from a single ad-
dress we owned to a new one (freshly generated). As blockchain.info requires
at least two repetitions of the Coinjoin protocol (in their own words, “a higher
number of repetitions makes the transaction more difficult to trace and improves
privacy”), this resulted in two transactions: in the first 0.0205 BTC was sent to
a freshly generated intermediate address and the remainder was sent to a freshly
generated change address, and in the second 0.02 BTC was sent to the address
we specified. We therefore ended up with 108 distinct coinjoins, each of which
took between 8 and 74 seconds to complete (on average, 30), and had between 4
and 40 input addresses (on average, 14.5) and between 4 and 42 output addresses
(on average, 25.8).

4.1 Auxiliary information based on value

One bitcoin is divisible down to the eighth decimal place, meaning that it is
often possible to end up with “jagged” bitcoin values. If each user in a coinjoin
sends different jagged values, then — as discussed in Section 3 — these values
might help an adversary discover the permutation between input and output
addresses. This is an acknowledged limitation of the Coinjoin protocol, and the
only solution for achieving full taint resistance is to ensure that all participants
send the same amount of bitcoins. From a usability perspective, however, this
is not particularly desirable, so it is useful to understand the degree to which
differing amounts really degrade taint resistance.

We first consider the different behaviors in which coinjoin users might engage.
For example, a user might aggregate bitcoins by combining the balances of m
separate addresses into one address, and a user might split bitcoins by moving
the balance of one address into n separate addresses. (This latter case often
arises in the case of making change, where n = 2.) We attempt to correlate the
values in a coinjoin by identifying subsets of the input values whose sum adds
up to an output value (the m-to-1 scenario) and which output values are part
of a subset whose sum adds up to an input value (the 1-to-n scenario). As these
are the only two behaviors that we engaged in in our own coinjoins (and because
the subset sum problem is NP-complete), we do not consider the more general
m-to-n setting.

Finally, because transactions have fees, we perform a noisy subset sum by
allowing the sum of the subsets to potentially exceed the target value by at most
the transaction fee. We present our algorithm in Algorithm 4.1.

As a sanity check, we ran this algorithm using the ground truth data collected
from our coinjoins; i.e., for each of our known output addresses. (As we knew
that we engaged only in 1-to-2 or 1-to-1 transactions, we also “cheated” by



Algorithm 4.1: find taint: Output the taint set for a public key

Input: a transaction tx and a public key pk ∈ outputs(tx).
1 Compute the fee F for tx
2 Compute Sm-to-1 ← noisy subset sum(inputs(tx), val(pk), F )
3 S1-to-n ← ∅
4 forall the pk ′ ∈ inputs(tx) do
5 Compute S ← noisy subset sum(outputs(tx), val(pk ′), F )
6 if pk ∈ S then
7 S1-to-n ← S1-to-n ∪ {pk ′}
8 return Sm-to-1 ∪ S1-to-n

considering only subsets of size at most 2.) We then compared this to the known
taint set to get the accuracy (see Definition 2.2) of an adversary running this
algorithm, and plotted the results in Figure 1.

As we can see, the algorithm was fairly inconsistent in its accuracy. This is
due in part to a quirk of blockchain.info’s service: in the first step, 0.0205 BTC
was sent to an intermediate address, but in the second step, only 0.02 BTC was
sent to the final address; the remainder was kept by blockchain.info as a
service charge. As a result, our algorithm did not positively associate the input
and output addresses, so any non-empty set it output was a false positive (as
indicated by the largely non-positive MCC for the m-to-1 taint). For the first
type of transaction, in which the initial address split its value between the change
and intermediate addresses, we see that (unsurprisingly) the 1-to-n and combined
taint did fairly well overall, and — especially for transactions with fewer input
keys and thus fewer options — often found the taint set perfectly (as indicated
by the points with an MCC of 1).

Active adversaries. To emulate the benefit that an active adversary has — that in
a coinjoin in which it participated, it can rule out its own addresses — we started
with our own coinjoins, eliminated our own addresses, and ran Algorithm 4.1
on the remainder. As we could no longer use ground truth data to compute the
accuracy, we instead plotted the size of the set S. The results are in Figure 2.

On average, we can see that the set S was of a fairly small size; in the many
cases that it was 0, either (1) a more general m-to-n Coinjoin was used, (2) the
input subset was of size larger than 4, or (3) most likely, our basic algorithm did
not take into account some quirk of the blockchain.info service (as was the
case with our own transactions). In the cases where S was larger, we ultimately
do not know whether it truly captured the taint set or whether it was simply
capturing “noise” from other inputs that happened to sum to the target value.
To nevertheless attempt to capture some of this noise, we considered for the case
of m-to-1 taint not the possible taint set but rather how many subsets of input
addresses summed to the correct output value. Here, a lower value indicates that
the algorithm is more sure about which input addresses taint the given output
(as there are fewer options), while a larger number of subsets indicates noise
from the inputs (for example, if many of the inputs have the same value), and
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Fig. 1: For our known output addresses, the MCC for Algorithm 4.1 when run on coin-
joins with differing numbers of input addresses. The points in blue represent the MCC
when considering just m-to-1 taint (Sm-to-1), the points in red 1-to-n taint (S1-to-n),
and the points in green the combined taint set S. All use a maximum subset size of 2
when running noisy subset sum.

consequently less certainty. Of our 5156 data points, only 62 had exactly one
matching subset (again, using only the m-to-1 taint), and 4812 had no matching
subsets at all. Our simple active adversary was thus not particularly successful at
identifying the taint set, although it did at least manage to avoid false positives.

Passive adversaries. Finally, we consider a passive adversary; i.e., one that does
not participate in any coinjoins, but instead tries to infer from an examination
of the block chain which transactions are coinjoins and which coinjoin input ad-
dresses taint which output addresses. To do this, we considered the same pattern
used in Section 2.2: a potential coinjoin has more than five inputs, more than
five outputs, and took place after 30 August 2013. This is of course a very rough
heuristic, and before using this data we eliminated any obvious mismatches; this
included behavior such as a user combining funds to place bets on different odds
in dice and other gambling games. From this set, we then randomly sampled
100 transactions (to match the size of our set of real coinjoins). We again ran
Algorithm 4.1 and recorded the size of the set S; the results are in Figure 3.

Again, we ultimately cannot know how successfully the analysis identified the
taint set. We can, however, see a clear increase in the size of the set S for these
passively identified coinjoins over the size for the definite coinjoins. Running the
same analysis to determine the number of possible subsets in the m-to-1 scenario,
we found that of our 3476 data points, 278 had exactly one matching subset and
2513 had no matching subsets. The subsets produced by the algorithm were thus
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Fig. 2: For the unknown addresses in known coinjoins, the size of the set output by
Algorithm 4.1. The points in blue consider just m-to-1 taint (Sm-to-1), the points in
red 1-to-n taint (S1-to-n), and the points in green the combined taint set S. The value
of s is the maximum subset size when running noisy subset sum.

far noisier than the ones produced for the definite coinjoins, indicating that an
active adversary has a distinct advantage over a passive one.

5 Related Work

We consider related work that both proposes ways to enhance privacy in virtual
currencies and attempts to analyze the existing anonymity in Bitcoin.

In terms of the latter, perhaps the work most similar to our own is Coinjoin
Sudoku [3], in which Atlas analyzes the same mixing service (namely, the Shared-
Coin one provided by blockchain.info) and finds that it “offers only limited
privacy to users due to weaknesses in its design.” As we did, Atlas performed his
own coinjoins and examined possible relationships between input and output ad-
dresses based on the values. He claims to be able to taint the majority of inputs
and outputs, but the details of the analysis are not given and as of this writing
no source code or tool is available, despite a promised release date of 23 June
2014. A recent line of research has examined anonymity in the overall Bitcoin
network [15,16,2,12,19], and a recent paper by Möser et al. found that centralized
mix services do make tracing transactions significantly more difficult [14].

In terms of privacy enhancements, alternative virtual currencies have been
proposed such as Zerocash [13,4] and Darkcoin [1]. There are also a number of
proposed overlays for Bitcoin, such as Pinocchio Coin [6], Mixcoin [5], CoinWit-
ness [11], and CoinShuffle [17]. None of these papers formally prove the security
of their proposed constructions, but our decentralized construction is almost

blockchain.info
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Fig. 3: For potential coinjoins, the size of the set output by Algorithm 4.1. The points
in blue consider just m-to-1 taint (Sm-to-1), the points in red 1-to-n taint (S1-to-n), and
the points in green the combined taint set S. The value of s is the maximum subset
size when running noisy subset sum.

identical to the one in CoinShuffle and our centralized construction is related to
the one in Mixcoin.

6 Conclusions and Open Problems

In this paper, we presented a definitional framework for the anonymity that vir-
tual currencies such as Bitcoin provide. We then provided constructive solutions
for achieving this new notion of anonymity, and analyzed the extent to which it
was already being achieved by existing Bitcoin overlays. For both of our results,
several interesting open problems and extensions remain. Our constructions re-
quire additional cryptographic techniques, and it is important to understand the
overhead that these techniques require. Similarly, our analysis of SharedCoin was
relatively simplistic and did not take into account certain quirks of the service
being used. Extending the analysis to consider these quirks — or understanding
the extent to which doing so would affect scalability — would provide a more
complete picture of the successes and limitations of the Coinjoin protocol.
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