
Manticore: A User-Friendly Symbolic Execution
Framework for Binaries and Smart Contracts

Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce,
Gustavo Grieco, Josselin Feist, Trent Brunson, Artem Dinaburg

Trail of Bits, New York City, USA
Email: {mark, felipe, eric.hennenfent, alex.groce, gustavo.grieco, josselin, trent.brunson, artem}@trailofbits.com

Abstract—An effective way to maximize code coverage in
software tests is through dynamic symbolic execution—a tech-
nique that uses constraint solving to systematically explore a
program’s state space. We introduce an open-source dynamic
symbolic execution framework called Manticore for analyzing
binaries and Ethereum smart contracts. Manticore’s flexible
architecture allows it to support both traditional and exotic
execution environments, and its API allows users to customize
their analysis. Here, we discuss Manticore’s architecture and
demonstrate the capabilities we have used to find bugs and verify
the correctness of code for our commercial clients.

I. INTRODUCTION

Dynamic symbolic execution is a program analysis tech-
nique that explores a state space with a high degree of semantic
awareness [5]. For paths that are explored by the analysis,
dynamic symbolic execution identifies a set of path predicates:
constraints on the program’s input. These are used to generate
program inputs that will cause the associated paths to execute.
This approach produces no false positives in the sense that
all identified program states can be triggered during concrete
execution. For example, if the analysis finds a memory safety
violation, it is guaranteed to be reproducible.

Symbolic execution has been extensively researched in a
security context [3], but industry has been slow to adopt the
technique because of the limited availability of flexible, user-
friendly, tools. Furthermore, existing frameworks are tightly
coupled to traditional execution models, which makes sym-
bolic execution research challenging for alternative execution
environments, such as the Ethereum platform.

Manticore is a symbolic execution framework for analyzing
binaries and smart contracts. Trail of Bits has used this tool
internally in numerous code assessments [12]–[16], and in
program analysis research, including the DARPA Cyber Grand
Challenge [7] (CGC).

II. ARCHITECTURE

Manticore’s design is highly flexible and supports both
traditional computing environments (x86/64, ARM) and exotic
ones, such as the Ethereum platform. To our knowledge,
it is the only symbolic execution framework that caters to
such different environments. It is also simple, extensible, and
as self-contained as possible, avoiding unwarranted external
dependencies.

Figure 1a shows Manticore’s architecture. The primary
components are the Core Engine and Native and Ethereum
Execution Modules. Secondary components include the Satis-
fiability Modulo Theories (SMT-LIB) module, Event System,
and API.

A. Core Engine

The Core Engine is the source of Manticore’s flexibility.
It implements a generic platform-agnostic symbolic execution
engine that makes few assumptions about the underlying
execution model.

This Core Engine operates and manages program states
according to the State Life Cycle shown in Figure 1a. Program
states are abstract objects that represent the state of a program
at a point in execution. These objects expose an execution
interface that the Core Engine invokes to trigger one atomic
unit of program execution. For native binaries and Ethereum,
this is one instruction. During execution, states can interrupt
back to the Core Engine to signal that a life cycle event needs
to be handled.

The State Life Cycle, shown in Figure 1b, defines three
states: Ready, Busy, and Terminated and two events: Termina-
tion and Concretization. The Core Engine repeatedly selects
a Ready state and executes it (transitioning it to Busy). An
executing Busy state can either transition back to Ready or
signal a Life Cycle event for the Core to handle.

The Termination event occurs when a state reaches an end,
typically on program exit or a memory access violation, which
transitions the state to Terminated. Concretization happens
when a state signals that a symbolic object should be converted
into one or more concrete values, subject to the current
constraints on the State. For each concrete value, one new child
State is created and marked Ready. The most common case of
Concretization, called forking, occurs when a program counter
register becomes symbolic and is concretized to possible
concrete values. This causes new states to be generated for
each new program path.

State exploration can be customized using various policies,
which implement a variety of heuristics for Ready state
selection and Concretization. The Core Engine was designed
for parallelism and supports multiple processes for state queue
processing.

ar
X

iv
:1

90
7.

03
89

0v
3

 [
cs

.S
E

]
 1

8
N

ov
 2

01
9

MANTICORE

Native Binaries

API

Event
System

OS

LINUX DECREE

CPU

X86ARM

Smart Contracts

EVM
WORLD

EVM
CPU

Core Engine

Z3

SMT-LIB

Expressions

ConstraintSet

Solver

Manticore CLI Manticore Script

(a) A high-level architecture diagram.

READY

TERMINATED

BUSY

choose a
 state

concretize/
fork

terminate

Initial
State

(b) The state life cycle.

Fig. 1: Manticore Overview

B. Native Execution Module

The native binary symbolic execution module abstracts
hardware execution to implement the high-level execution
interface that the Core Engine expects, via symbolic emulation
of the CPU, memory, and operating system interfaces. Cur-
rently, the native execution module emulates Linux on x86,
x86 64, ARMv7, and AArch64 as well as DECREE [7] on
x86.

1) CPU Emulation: The symbolic CPU emulation is
straightforward and follows the ISA specification directly,
with no intermediate representation. Emulated registers and
instructions must support both concrete and symbolic values,
which they do by building a symbolic expression tree, as
opposed to performing computation directly.

2) Memory Emulation: Manticore has a simple virtual ad-
dress space emulation with interfaces for reading, writing, and
managing memory mappings. Different policies for handling
symbolic memory accesses are implemented. These include
fully symbolic and concretized memory models.

3) Operating System Emulation: Manticore includes OS
support for the Linux and DECREE operating systems, emu-
lating the system call (syscall) interface, interfaces related to
a process address space (e.g. auxiliary vectors, thread local
storage), and miscellaneous state setup (e.g. binary loading).
Syscalls must handle symbolic inputs, yet few can be reason-
ably modeled symbolically. Manticore therefore concretizes
system call arguments and (much like KLEE [6]) forwards
such calls to the real OS.

C. Ethereum Execution Module

Manticore supports Ethereum smart contracts, which are
applications compiled according to the Ethereum Virtual
Machine (EVM) specification that run on the Ethereum
blockchain. Smart contracts are essentially state machines,
commonly used to implement financial instruments, such as
auctions and wallets for custom currencies [4]. There are
many differences between EVM and traditional execution. A
few examples include a ”gas” cost for executing instructions,
radically different memory and persistent storage models, and

execution state rollbacks. Despite these differences, adding
Ethereum support did not require substantial architectural
changes to Manticore, since the Core Engine is completely
decoupled from all execution platform details.

1) Ethereum Symbolic Execution: Smart contracts receive
input as network transactions consisting of a value and a
data buffer. The transaction data buffer contains information
about which function should be executed in a contract, and its
arguments.

Symbolic execution of smart contracts involves symbolic
transactions, where both value and data are symbolic. Sym-
bolic transactions are applied to all Ready states, which
cause the symbolic execution of one transaction. Symbolic
transactions can be repeatedly executed to generically explore
the state space of a contract.

Manticore’s emulated environment for smart contract exe-
cution supports an arbitrary number of interacting contracts.
It is capable of tracking not only a single contract’s state, but
a full Ethereum ”world”, with multiple interacting contracts.
Manticore has support for handling symbolic indexing, and
can even support the SHA3 EVM instruction (despite the
inherent difficulty in symbolically executing hash functions)
using techniques derived from [9].

D. Auxiliary Modules

Manticore also has auxiliary modules like the SMT-LIB
module that supplies a custom symbolic expression object
model and an SMT solver interface. Different solvers can be
used seamlessly, since Manticore interacts with solvers via the
SMT-LIB language.

The Event System decouples Manticore as a whole from ex-
ternal instrumentation-based analyses. Arbitrary points within
Manticore can broadcast various symbolic execution events
(e.g. memory reads/writes, state forking, concretization) that
can be handled by an event subscriber outside of Manticore,
such as an API client. This provides the foundation for
Manticore’s plugin system allowing users to create modular,
event-based analyses.

III. USAGE

Manticore has a command-line interface and an API that
works for both binaries and smart contracts. An example
command follows,

$ manticore target ++ +++.txt --data AA
--procs 10

+The arguments target ++ +++.txt instruct Manti-
core to execute target with two arguments. Manticore uses
the ”+” character as a stand-in for a symbolic byte, so the first
argument is a 2-byte string of symbolic data. The second is
a mixed symbolic/concrete string with five bytes of symbolic
data followed by the concrete bytes .txt. --data specifies
concrete bytes to prefix the stdin input stream, which by de-
fault contain 256 symbolic bytes. --procs allocates 10 cores
to the analysis. Manticore’s output is a directory containing
generated inputs and information about each discovered state,
as shown below.

$ ls mcore_x2gncpcq/
test_00000000.argv test_00000000.input
test_00000000.messages test_00000000.smt
test_00000000.stdin test_00000000.trace
test_00000000.stdout ...

For example, test_00000000.stdin can be piped
directly to the stdin of the program during concrete ex-
ecution to trigger the execution state corresponding to
test_00000000.

Manticore’s Python API allows advanced users to customize
their analysis using various forms of instrumentation. Hooking
via the API lets users execute callbacks when a certain state
is reached. The callback can access the corresponding State
object, which allows complete control over the emulated
state. CPU registers, memory, and operating system state can
be read, written, filled with symbolic bytes, or concretized.
Moreover, states can be pruned, custom constraints can be
applied, and satisfiability queries can be sent to the solver.
Writing code using the hook API is relatively straightforward,
e.g.:

from manticore.native import Manticore
m = Manticore.linux(’./target’)
@m.hook(0x400ca0)
def hook(state):

Disregard state if RDX can be equal 0x44
(RDX could be symbolic)
if state.can_be_true(state.cpu.RDX == 0x44)

state.abandon()
input_buf = state.new_symbolic_buffer(32)
Apply arbitrary preconstraint on input

buffer
state.constrain(input_buf[0] != ord(’A’))
Write symbolic buffer at address RBX
state.cpu.write_bytes(state.cpu.RBX,

input_buf)

Ethereum usage is similar, including a simple command line
interface and extensive API for instrumentation. More details
on Manticore’s functionality are available online [1].

TABLE I: Logic bomb benchmark results (300s)

Manticore Angr Triton KLEE
Passed 16 17 3 10
Failed 33 28 57 37

Timed out 14 18 3 7
Inapplicable 0 0 0 9

IV. NATIVE BINARY ANALYSIS EVALUATION

We evaluated Manticore’s native binary analysis precision
and performance using the logic bomb benchmark suite for
symbolic execution engines [19]. This benchmark suite in-
cludes a set of 63 logic bombs. Logic bombs are small
programs designed to be triggered when certain conditions
are met. These were designed to test dynamic testing tools, in
particular symbolic execution ones. Logic bombs in this suite
are divided into symbolic-reasoning and path-explosion chal-
lenges. The symbolic-reasoning challenges include paths that
potentially produce incorrect test cases. The path-explosion
challenges are designed to produce too many potential paths,
exhausting the resources available for exploration.

We ran the latest revision of Manticore (revision 3ffafd5)
on all the logic bomb challenges, and compared the re-
sults with angr (8.19.4.5), Triton (0.5), and KLEE (revision
3ef59a4). We performed our experiments1 using Ubuntu
18.04 on an Intel i7 and 16 GB of RAM, with a 300 second
timeout as suggested by the authors of the benchmark.

Table I shows the results (Passed is the best result possible).
Manticore performs almost as effectively as angr, and solved
three logic bombs angr was unable to handle. Since angr sup-
ports the use of some IEEE 754 floating point instructions that
Manticore does not, we expect that Manticore may overtake
angr in the future, once it adds such support. If we compare the
current results with the ones reported by the original authors
of the benchmark [19], the precision of angr has decreased:
a few tests are no longer passing. For this benchmark, Triton
and KLEE perform relatively poorly.

Manticore is also fully integrated into the DeepState param-
eterized unit testing tool [10], where it has proved useful in
cases where angr failed to produce useful results.

V. ETHEREUM SMART CONTRACT ANALYSIS EVALUATION

We evaluated Manticore based on a corpus of 100
Ethereum smart contracts taken directly from the Ethereum
blockchainWe ran an analysis that repeatedly executes sym-
bolic transactions against a contract, and tracks the number of
states discovered and coverage of the contract code.

We report the results of running this analysis, with a timeout
of 90 minutes per contract, in Table II. Manticore produced
an average coverage of 65.64%, with an approximately equal
median. The mean total number of (symbolic) states reached
was 207.71, with median 52, showing that there were a number
of outliers where more states were discovered. Coverage
ranged from 0% to 100% (see Figure 2). Four contracts failed
in the account creation stage due to incorrect assumptions
our analysis script made about the the expected world state,

1The data and code to reproduce our experiments is available here:
https://gist.github.com/ggrieco-tob/76e41835681a59d91fd73b6f5bb7bbe4

https://gist.github.com/ggrieco-tob/76e41835681a59d91fd73b6f5bb7bbe4

0

5

10

15

20

0 25 50 75 100

Percent code coverage

E
th

er
eu

m
 c

on
tr

ac
ts

Fig. 2: Ethereum contract code coverage (n=100)

TABLE II: Ethereum smart contract evaluation results

Mean Median Std. Dev. Min Max
Coverage 66% 66% 27% 0% 100%
Running States 78 16 154 0 998
Terminated States 130 36 219 1 1129
Total States 208 52 356 1 2127

causing them to report 0% coverage. These assumptions were,
however, sufficient for Manticore to achieve greater than 90%
code coverage on 25 of the contracts. While useful as a
rough evaluation metric, analyzing random smart contracts
without context does not mirror our typical process for using
Manticore on real-world code-bases. Manticore can achieve
much higher code coverage when the initial Ethereum world
state is appropriately tailored to the contract’s expectations.
The results are nonetheless encouraging, given the lack of
assistance.

A. Smart Contract Security Assessments

Manticore has been used in a number of Trail of Bits
client engagements for bug discovery and verification of code
invariants. Code assessment reports [12]–[16] provide more
detail on using Manticore to find bugs or verify code on real-
world smart contracts.

VI. RELATED WORK

The past decade has seen a resurgence in interest in sym-
bolic execution and there are a variety of prominent existing
symbolic execution tools. Though not strictly a binary analysis
tool, KLEE [6] was one of the first widely-used symbolic
execution implementations. angr [18] is a well known binary
analysis framework, including extensive symbolic execution
functionality. Triton, binsec [8], and miasm are other well-
known binary symbolic execution tools.

Symbolic execution in the Ethereum space is much less
widely explored, but other tools do exist, including Mythril [2],
VerX [17], and KEVM [11]. Like Manticore, all of these tools
have been used in commercial software audits to some success.
To the best of our knowledge, Manticore is unique among
these tools as the only one that was not purpose-built for
Ethereum.

VII. CONCLUSION

In this paper, we present Manticore, a dynamic symbolic
execution framework. Manticore includes user-friendly inter-
faces and a flexible architecture that allows it to uniquely
support execution platforms as diverse as traditional binaries

and the Ethereum platform. This is primarily facilitated by
the Core Engine, whose symbolic engine logic is decoupled
from details of a particular execution environment. Manticore
is useful for leveraging symbolic execution to test programs,
and also perform symbolic execution research on alterna-
tive execution platforms. A simple command-line interface
is included as well as an API that allows the user to build
custom symbolic execution-based tools. Our evaluation shows
that Manticore performs comparably to another standard sym-
bolic execution tools for regular binaries, and on average
achieves 66% code coverage with a default smart contract
analysis. Manticore is open source, and can be found at:
https://github.com/trailofbits/manticore.

REFERENCES

[1] Manticore Documentation, 2017. https://manticore.readthedocs.io.
[2] Mythril Classic, 2017. https://github.com/ConsenSys/mythril-classic.
[3] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Deme-

trescu, and Irene Finocchi. A survey of symbolic execution techniques.
ACM Comput. Surv., 51(3):50:1–50:39, May 2018.

[4] Massimo Bartoletti and Livio Pompianu. An empirical analysis of
smart contracts: platforms, applications, and design patterns. CoRR,
abs/1703.06322, 2017.

[5] Robert S. Boyer, Bernard Elspas, and Karl N. Levitt. Select - a formal
system for testing and debugging programs by symbolic execution. In
Proceedings of the International Conference on Reliable Software, pages
234–245, 1975.

[6] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. Klee: Unassisted
and automatic generation of high-coverage tests for complex systems
programs. In OSDI. USENIX Association, 2008.

[7] DARPA. Cyber Grand Challenge. https://www.cybergrandchallenge.
com/, 2016.

[8] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier,
Josselin Feist, Marie-Laure Potet, and Jean-Yves Marion. Binsec/se: A
dynamic symbolic execution toolkit for binary-level analysis. In 2016
IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER), volume 1, pages 653–656. IEEE, 2016.

[9] Patrice Godefroid. Higher-order test generation. ACM SIGPLAN Notices,
46(6):258–269, 2011.

[10] Peter Goodman and Alex Groce. DeepState: Symbolic unit testing for
C and C++. In NDSS Workshop on Binary Analysis Research, 2018.

[11] Everett Hildenbrandt, Manasvi Saxena, Xiaoran Zhu, Nishant Rodrigues,
Philip Daian, Dwight Guth, and Grigore Rosu. Kevm: A complete
semantics of the ethereum virtual machine. Technical report, 2017.

[12] Trail of Bits. Security assessment - sai. appendix d: Manticore test
case. https://github.com/trailofbits/publications/blob/master/reviews/sai.
pdf, October 2017.

[13] Trail of Bits. Security assessment - ampleforth. appendix f: Manticore
formal verification, November 2018.

[14] Trail of Bits. Security assessment - gemini. https://github.com/trailofbits/
publications/blob/master/reviews/gemini-dollar.pdf, August 2018.

[15] Trail of Bits. Security assessment - paxos. appendix c: Manticore
testing. https://github.com/trailofbits/publications/blob/master/reviews/
paxos.pdf, November 2018.

[16] Trail of Bits. Security assessment- golem. appendix d: Manticore for-
mal verification. https://github.com/trailofbits/publications/blob/master/
reviews/golem.pdf, April 2018.

[17] Anton Permenev, Dimitar Dimitrov, Petar Tsankov, Dana Drachsler-
Cohen, and Martin Vechev. Verx: Safety verification of smart contracts.

[18] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick Stephens,
Mario Polino, Audrey Dutcher, John Grosen, Siji Feng, Christophe
Hauser, Christopher Kruegel, and Giovanni Vigna. SoK: (State of)
The Art of War: Offensive Techniques in Binary Analysis. In IEEE
Symposium on Security and Privacy, 2016.

[19] H. Xu, Z. Zhao, Y. Zhou, and M. R. Lyu. Benchmarking the capability
of symbolic execution tools with logic bombs. IEEE Transactions on
Dependable and Secure Computing, 2018.

https://manticore.readthedocs.io
https://github.com/ConsenSys/mythril-classic
https://www.cybergrandchallenge.com/
https://www.cybergrandchallenge.com/
https://github.com/trailofbits/publications/blob/master/reviews/sai.pdf
https://github.com/trailofbits/publications/blob/master/reviews/sai.pdf
https://github.com/trailofbits/publications/blob/master/reviews/gemini-dollar.pdf
https://github.com/trailofbits/publications/blob/master/reviews/gemini-dollar.pdf
https://github.com/trailofbits/publications/blob/master/reviews/paxos.pdf
https://github.com/trailofbits/publications/blob/master/reviews/paxos.pdf
https://github.com/trailofbits/publications/blob/master/reviews/golem.pdf
https://github.com/trailofbits/publications/blob/master/reviews/golem.pdf

	I Introduction
	II Architecture
	II-A Core Engine
	II-B Native Execution Module
	II-B1 CPU Emulation
	II-B2 Memory Emulation
	II-B3 Operating System Emulation

	II-C Ethereum Execution Module
	II-C1 Ethereum Symbolic Execution

	II-D Auxiliary Modules

	III Usage
	IV Native Binary Analysis Evaluation
	V Ethereum Smart Contract Analysis Evaluation
	V-A Smart Contract Security Assessments

	VI Related Work
	VII Conclusion
	References

