1706.04507v1 [cs.CR] 14 Jun 2017

arxXiv

A Blockchain-based Approach for Data Accountability and
Provenance Tracking

Ricardo Neisse, Gary Steri, and Igor Nai-Fovino
European Commission Joint Research Centre (JRC)
Via E. Fermi 2749
Ispra (VA), Italy I-21027
{ricardo.neisse,gary.steri,igor.nai-fovino}@ec.europa.eu

ABSTRACT

The recent approval of the General Data Protection Regulation
(GDPR) imposes new data protection requirements on data con-
trollers and processors with respect to the processing of European
Union (EU) residents’ data. These requirements consist of a single
set of rules that have binding legal status and should be enforced in
all EU member states. In light of these requirements, we propose in
this paper the use of a blockchain-based approach to support data
accountability and provenance tracking. Our approach relies on the
use of publicly auditable contracts deployed in a blockchain that in-
crease the transparency with respect to the access and usage of data.
We identify and discuss three different models for our approach
with different granularity and scalability requirements where con-
tracts can be used to encode data usage policies and provenance
tracking information in a privacy-friendly way. From these three
models we designed, implemented, and evaluated a model where
contracts are deployed by data subjects for each data controller, and
a model where subjects join contracts deployed by data controllers
in case they accept the data handling conditions. Our implementa-
tions show in practice the feasibility and limitations of contracts
for the purposes identified in this paper.

KEYWORDS

data accountability, blockchain, smart contracts

1 INTRODUCTION

The recent approval of the new General Data Protection Regulation
(GDPR) [5] in 2016 by the European Commission (EC) imposes
new obligations on data controllers and processors in contrast to
the previously adopted Data Protection Directive (DPR) [4]. In a
nutshell, the key changes in the scope of the European Union (EU)
data protection law introduced by the GDPR in contrast to the
DPR that are relevant considering the contributions of this paper
are: it applies to organizations based outside the EU that process
personal data of EU residents, it proposes a single set of rules for all
EU member states, it extends the responsibility and accountability
requirements of organizations, it requires explicit consent with the
possibility of withdraw, and it replaces the right to be forgotten by
a more limited right to erasure.

The main roles defined in the context of the GDPR are a data
subject (person) that authorizes a data controller (organization)
to access his/her personal data, with the possibility of forwarding
them to a data processor (organization) that will be responsible for

processing the data on behalf of the controller!. It is the task of
the controller to determine the purpose and the manner in which
the personal data will be processed according to the constraints
imposed by the GDPR. However, the GDPR also considers automatic
delegation of further statutory obligations also to processors that
operate as service providers for controllers and process subjects’
data.

In light of these new requirements introduced by the GDPR, our
focus in this paper is the lack of solutions, from a subject point of
view, supporting data accountability and provenance tracking when
the subject’s data is accessed by controllers and possibly forwarded
to data processors. Subjects should be empowered using a trusted
and transparent solution in order to be able to track the controllers
and processors that have directly or indirectly accessed their per-
sonal data, to verify if the data was accessed, used, and transferred
without violating their consent, and to withdraw their consent arbi-
trarily in case they change their mind or in case they misinterpret
the conditions for data usage given in their consent. An important
aspect of such a solution is to enable trust and transparency on
data accountability and provenance tracking in a privacy friendly
way without increasing the exposure of subjects. From a controller
point of view our solution provides a way to prove they received
the consent from the subjects to collect their data.

In this context, our goal in this paper is to provide a blockchain-
based platform for data accountability and provenance tracking.
We analyze the design issues of this platform and show the design
and implementation of two different models. In the first model we
implemented the subjects express their consent rules by means
of usage control policies that are embedded in specific contracts
deployed in the blockchain, which are defined for each controller
or processor receiving their data. In the second model instead, each
controller expresses its usage control policies in a blockchain con-
tract with an interface allowing users to join or leave the contract,
meaning they are giving or withdrawing their consent for each
data controller or processor. These policies, which can be selected
beforehand or on request from a library of policy templates, express
the conditions for data access, usage, and transfer to data processors.
With respect to user privacy, data accountability, and data tracking
granularity each model provides different properties that are dis-
cussed throughout the paper. Our contribution is the analysis of
design choices, implementation, and performance/scalability analy-
sis of these blockchain-based data accountability and provenance
tracking solutions.

!From this point on we refer to these entities in this paper simply as subject, controller,
and processor

This paper is organized as follows. In section 2 we present back-
ground information about blockchain technology, data provenance
tracking, and a security policy language that are used as building
blocks of our solution. Section 3 discusses design choices and intro-
duces the different models identified by us for data accountability
and provenance tracking using blockchain-based contracts. Section
4 and 5 describes the two models we have designed, implemented,
and evaluated with different cardinalities of smart contracts and
granularities of data accountability and provenance tracking for
data subjects, controllers, and processors. In section 6 we compare
our proposal with related approaches proposing to use blockchain
for data usage accountability. Section 7 summarizes the conclusions
and future work topics.

2 BACKGROUND

In this section we present background information about blockchain-
based distributed ledgers and contracts, the adopted data prove-
nance tracking model, and the usage control policy language used
to encode the data accountability rules in our approach. These
elements are the building blocks of the data accountability and
provenance tracking solution we propose in this paper.

2.1 Blockchain-based Distributed Ledgers
Technology

The solution for data accountability and provenance tracking pro-
posed in this paper relies on a public blockchain-based distributed
ledger platform, namely the open source Ethereum Virtual Ma-
chine (EVM) [17]2. Public blockchain platforms such as the EVM
can be seen as a distributed database of transactions that can be
accessed/managed by many people that do not necessarily trust
each other and that do not share a common trusted third party. The
goal of the EVM is twofold: (1) to keep a decentralized ledger of
transactions performed using Ether (ETH), which is the Ethereum
virtual currency; (2) to support the decentralized execution of smart
contracts®, which are applications that can be assured to run ex-
actly as programed. Therefore, transactions in the EVM can be
transfers of the virtual currency (ETH) from one account to an-
other or execution of contract functions. In contrast to other public
blockchain-based platforms such as Bitcoin [7] that only support
mining of the digital currency and transaction management, the
EVM also provides a contract functionality. At the time of writ-
ing Bitcoin and Ethereum are respectively the first and second
cryptocurrencies with the largest market capitalization [3].

Users submitting transactions to the EVM hold a private key
(512 bits), which is used to generate a public key (160 bits). The
generated public key is then used to generate a 256 bits EVM address
that serves as public user identifiers. EVM addresses are also used
to identify the deployed contracts, however, in contrast to users,
contracts do not hold a private/public key pair. The transactions
submitted to the EVM are organized in blocks that are transitively
chained to each other using a cryptographic hash function, starting
from a pre-computed genesis block. Once a block of transactions is

2The Ethereum public blockchain is implemented using the open source EVM, which
can also be used independetly to implement other private or public blockchains. Our
focus on this paper is on the use of the EVM technology.

3From this point on we refer to smart contract simply as a contract always meaning a
smart contract deployed in an EVM blockchain

added to the chain of blocks (a.k.a. blockchain) it cannot be modified
or removed since the verification of the chain of hashes would not
anymore be valid. The verification and addition of transactions to
blockchains based on the proof-of-work paradigm, is done through
the so called "mining" process, which is the consensus algorithm
establishing the node entitled to add a new block to the chain. In
this process, miners have to solve a cryptographic challenge, and
the winner (the first miner that solves it) is rewarded with a certain
amount of coins (5 ETH in Ethereum) plus the transaction fees
included in the block. The core idea of the challenge is to regulate
the creation of new digital currency and also to reward miners for
helping verifying and building the blockchain.

For what concerns the contract functionality implemented by
the EVM, it simply consists of the capability of allowing the verified
deployment and execution of stateful turing-complete programs.
When a contract is deployed, it is assigned a random address that
is used in future transactions as a reference to invoke the contract
functions. The invocation of functions that change the contract
state must be done using paid transactions; however, EVM nodes
can also invoke read-only functions without paying transaction
costs, for example, to check the current state of the contract. The
execution fees for contract is computed using a unit named gas
(short for "gasoline"), and a dynamic market exchange value is
defined in relation to ETH*. When deploying or invoking contract
functions users can specify a gas limit for the transaction in order
to restrict the amount of ETH they will be willing to pay for the
transaction. A gas limit is also set per block added to the chain,
which is currently set to around 4 million gas per block, with a
mining rate of approximately 10 seconds per block, which for simply
transfers of ETH excluding more expensive contract transactions is
capable of processing around 15 transactions per second. This limit
isneeded in order to address non-deterministic issues in the creation
or execution of a function, for example, the non-termination or
excessive usage of blockchain resources since all transactions must
be executed and verified by the miners. In addition to storing the
state, contracts may also signal events, which are certified and
stored in the blockchain but do not cost as much as a contract state
variable. Contracts can be implemented on an online compiler®,
which also allows simulated execution to allow fast testing without
the need to deploy in the real or test blockchain.

Many challenges need to be addressed in order to enable such
virtual platform including synchronization issues, security, and
soundness of the distributed protocol. Most of these challenges
have been addressed and it is out of the scope of this paper to dis-
cuss the details about the EVM design and implementation. Our
focus is on the use of the EVM as a distributed platform for track-
ing data provenance and evaluation of usage control policies in
a trustworthy and verifiable way using the contract concept. We
restrict ourselves in this section to a high-level overview of the
EVM concepts, and we introduce additional details about contracts
as needed to understand our proposed solution in the following
sections.

4 At the time of writing 1 million gas was priced at 0.02 ETH or €0.8. Live stats about
the Ethereum blockchain including gas price are available at https://ethstats.net.
Shttps://ethereum.github.io/browser-solidity/

https://ethstats.net
https://ethereum.github.io/browser-solidity/

2.2 Data Provenance Tracking Model

In order to enable data provenance tracking with smart contracts
we follow a structured data model including the specification of
data types, data instantiations, and data instances. In our model
primitive and composite data types can be specified, where a com-
posite type includes a named list of contained data instantiations.
For example, date and string can be specified as primitive data types
while a user identity can be defined as a list of fullname and date of
birth instantiations of these data types. When data instances about
a subject is exchanged with controllers the data model should be
agreed beforehand using a data modelling language. For the pur-
poses of this paper we adopt the data modeling approach used in the
Model-based Security Toolkit (SecKit) [9], which also supports the
specification of user identities. The data provenance tracking model
is simply a list maintained by subjects where, for each controller, a
list of references to the data provided is updated whenever data is
transferred. When the controller forwards the subject’s data to a
processor, an entry for the processor with the list of data received
is created in the data provenance tracking model. Since our goal
is to store this model in a public blockchain, for privacy reasons
we obfuscate the references to the data types, instantiations, and
instances. In the following sections we describe in details how our
data provenance tracking model is realized for the two possible
models we considered.

2.3 Usage Control Policy Language

Data accountability smart contracts specify restrictions on the us-
age of the subject’s data transferred to controllers. In our approach
we specify these restrictions using the security policy language pro-
posed by the Model-based Security Toolkit (SecKit) [9], already ap-
plied also to Internet of Things [8] and mobile devices [10] domains.
In the SecKit policy language detective and preventive mechanisms
are specified using ECA (Event-Condition-Action) rules. Preventive
mechanisms allow the specification of rules that do not allow an un-
desired behavior to occur, while reactive mechanisms simply take
compensation actions when something undesired is observed. In or-
der to support these two types of mechanisms the Event part of the
rule considers tentative and actual events, representing respectively
activities that are about to take place but were not yet executed or
activities already happened. In this paper we are concerned only
with preventive mechanisms since our goal is to disallow undesired
behaviors by controllers, for example, to prevent data from being
misused or exchanged with 3rd parties.

In the Action part of preventive mechanisms enforcement ac-
tions can be specified to allow, deny, modify, or delay the execution
of data usage activities by controllers. In the Condition part a logical
expression using a combination of operators can be specified in-
cluding event pattern matching, trust relationships, context-based,
role-based, propositional, temporal, and cardinality operators. With
this policy language it is possible to express, for example, that dur-
ing a time window (e.g., 30 days) controllers should be allowed
to perform an operation only once. Policies are evaluated using a
discrete time step window with a configurable time granularity that
is configured according to the policy requirements, for example, if
the policy refers to restrictions on data usage considering hours,

days, months, etc. For details about all operators supported in our
policy language we refer the reader to [9].

The policy language proposed by the SecKit also supports the
specification of modular configurable mechanism templates using
variables. Templates can be dynamically instantiated and disposed
using ECA rules following the same mechanism structure. This is
particularly useful in order to enable re-use of mechanisms with-
out repeating patterns of enforcement that should be applied for
multiple subjects or situations. In the description of our approach
we show examples of preventive mechanisms and templates en-
coded in smart contracts and describe how these mechanisms can
be evaluated in the blockchain in a privacy-friendly way.

3 SOLUTION DESIGN CHOICES

In this section we describe the three different models for blockchain-
based data accountability and provenance tracking we identified.
When designing such a solution, a few decisions should be taken
with respect to the design of contracts and the blockchain archi-
tecture in order to proper address performance and authorization
issues. The contract design issues are related to their lifecycle, the
required state variables to store the contract information, and au-
thorization policies specifying who should be allowed to read and
update the contract variables. The blockchain architecture deci-
sions are concerned with the adoption of a public, consortium/semi-
public, or private blockchain solution considering transaction man-
agement issues such as authorization and auditability properties.
In the following, we first introduce these three different models
and discuss design and architecture issues that should be addressed
when implementing these models. The architecture issues we dis-
cussed are relevant only on the real-world deployment of the pro-
posed models; in this paper, we are mostly concerned with design,
implementation, and performance of these models using the EVM
platform.

With respect to the contract lifecycle, we identified three possible
models with different cardinality of contracts in relation to the
number of data subjects and controllers:

(a) Data subject contract for specific controller: the subject
creates a contract tailored for each controller that manages
his/her data. The contract keeps track of the data shared with
the controller, the policies regulating the use of the data, and
registers the data usage events representing the activities per-
formed by the controller using the subject data as input;

(b) Data subject contract for specific data: the subject creates
a generic contract for each data instance that is shared for all
controllers accessing the data. The contract contains the list of
controllers that were given access to a particular data instance
and the policies they should respect;

(c) Controller contract for multiple data subjects: the con-
troller creates a contract specifying how the data received from
all subjects is treated. Data subjects then join the contract in
case they accept the data usage policies of the controller, simi-
larly to the Platform for Privacy Preferences Project (P3P) [15].

Cardinality of contracts and accountability granularity.
The models differ with respect to the cardinality of contracts, the
level of customization, and the data tracking granularity allowed to
subjects. Model (a) has the highest number of contracts since there

is a custom tailored subject contract for each controller accessing
subject’s data, which is more adequate when very sensitive data
is exchanged (e.g., health information). In model (b) the subject
creates one contract for each data type that is possibly accessed by
many controllers. In model (c) there is just one contract for each
controller, which is expected to be several orders of magnitude
lower than the number of subjects, but also has the lower level of
customization since subjects are left to choose between a limited
number of contract options. Only model (a) and (b) consider the
registration of fine-grained data provenance information including
data usage events.

Trust model. A blockchain-based platform is essentially a public
decentralized database without a single point of failure that can be
trusted for correctness but not for privacy, can be accessed/managed
by many people that do not necessarily trust each other and do not
share a common trusted third party. A public blockchain-based so-
lution is needed in this scenario since the following conditions are
met: (1) there is a need for a database tracking data provenance and
usage, (2) many organizations need write access to this database,
(3) the organizations that write to the database may not necessarily
trust each other, and (4) the organizations do not have a shared
trusted third party managing the database. Controllers and/or pro-
cessors may intent to be legally bound to the EU law but may not
trust an EU institution to manage this database since according to
the GDPR they may also be organizations outside the EU. Since the
EU regulation applies to subjects that are EU residents but maybe
not EU citizens, they might not trust an EU institution for managing
this database.

Public, consortium, or private blockchain. With respect to
the blockchain architecture, the adoption of a public, semi-public,
or private approach has an impact on the level of public auditability
and censorship resistance properties of the solution [2]. A pub-
lic blockchain approach such as the Bitcoin and Ethereum public
blockchains allows anyone to read, send transactions, and partici-
pate in the consensus/mining process to determine which blocks
are added to the chain and determine the current blockchain state.
In a semi-public or consortium blockchain read access may be pub-
lic or restricted and the consensus process is controlled by a set of
organizations. In a private blockchain read access may be public or
restricted and write permissions are decided by one central organi-
zation. The adoption of any of these approaches has an impact on
the censorship resistance, privacy, anonymity, performance, and
scalability.

Censorship resistance. Contract creation and joining is on
the interest of controllers, since it allows them to receive and pro-
cess data. However, subjects withdrawing their consent is not on
their interest, because the data would be no longer available for
processing. Considering this fact, the adopted blockchain solution
must ensure censorship resistance. In fact, if a private blockchain
solution is adopted, the central authority could simply refuse to
add transactions where subjects are withdrawing their consent in
order to keep the rights to use the subjects data. Therefore, it is
important to make sure transactions are fairly processed consid-
ering a minimum quality-of-service requirement, for example, it
should be guaranteed that all subject transactions are added to
the blockchain at most one day after the transaction submission.

Data protection authorities can assume the role of verifying subject
complains and censorship resistance in case a private blockchain
solution is adopted.

Privacy and anonymity. From an anonymity point of view
model (b) is not acceptable since subjects will need to use a unique
address known by all controllers allowing for identity linkability
between controllers. Models (a) and (c) allow subjects to use dif-
ferent pseudo-identifiers (EVM addresses) and by design prevent
direct linkability of subscriptions among different controllers. In
model (a) the only thing that can compromise the privacy of sub-
jects is the policy structure since in our implementation we adopt
a privacy-friendly way to encode data provenance and data usage
events without revealing the details about the actual data instances
exchanged with controllers (see Section 4).

Performance and Scalability. From a scalability point of view
the controller generic approach is the best one, but it also constrains
a possible solution to public blockchains due to the high number of
transactions. A service provider such as Facebook has on average
5 new users per second®, which would mean 5 transactions per
second only to manage the joining of these new subjects to the
data usage contract. Considering the transaction rate of the current
public chains where Bitcoin has a theoretical limit of 7 transac-
tions per second (tx/s) but usually reaches on average only 3 tx/s ’
and Ethereum can reach around 15 tx/s, this throughput is clearly
not enough with the number of Facebook-like service providers
currently being used. The only feasible solution is an independent
blockchain run by the company itself, which can be implemented
using a private EVM chain, with a checkpoint on a public chain
to verify the transactions. By running this in a private blockchain
operated by the service provider subjects are at risk of not having
their opt-out from a privacy policy registered, since it could be just
ignored by the provider. However, we expect this to be solved with
a cryptographic acknowledgment of the transaction by the service
provider, which allows subjects to proof they handled their request
to the blockchain.

Economics. In case a public blockchain approach is taken the
benefits regarding non censorship and public auditability are defi-
nitely compelling. However, in a public blockchain the transaction
fees have to be paid for the processing contract invocations, which
could make the approach (a) unfeasible due to the high number of
transactions. Subjects and controllers would need to agree on an
economic model to device who pays for the contract fees. This is an
additional argument to adopt a private blockchain solution where
processing fees could be reduced significantly. We do not present in
this paper a complete economic analysis of our solutions but from
our evaluation results discussed in Sections 4 and 5 and considering
the large number of subjects and controllers that process data, it is
evident that these models could not be adopted only relying on the
public EVM chain.

Off-blockchain communication. All proposed models con-
sider the need for off-blockchain communication requirements
including the transfer of the subject’s data to the controllers. The
purpose of the blockchain is to register and provide auditability
of the communications when needed. The EVM proposes Swarm

®https://zephoria.com/top-15-valuable-facebook-statistics/
"https://blockchain.info/charts/n-transactions

and Whisper respectively for off-blockchain decentralized data
storage/distribution and messaging. The integration of these ap-
proaches in our solution is out of the scope of this paper.

Guarantees. The goal of our approach is not to prevent con-
troller and providers from unlawfully holding or redistributing
data, but to enable verifiability of data custody and a mechanism
for subjects to issue notifications about the misuse of their data.
From a controller and processor point of view the main benefit is
a certified proof that can be presented to supervisory authorities
showing the data was obtained in a GDPR compliant way.

Data query service. Controllers and processors provide an off-
blockchain service allowing subjects to query the stored data about
them in order to verify the hashes in the blockchain. This is needed
in case of implicit data collection, which subjects are usually un-
aware of. This is out of the scope of this paper.

Applicability. From an applicability point of view we identified
two possible scenarios with respect to the GDPR compliance for our
models. First, our solution could enable subjects to grant consent
to controllers, specify their data usage control policies, and track
the data provenance flow in a trusted and privacy-friendly way.
By observing the data provenance, flow subjects may correct their
policies in case an unwanted flow takes place, or even revoke ac-
cess to the data from that particular point on. Secondly, it provides
a regulatory framework mechanism to enable GDPR compliance
checking by Supervisory Authorities in case a non-compliance ac-
tivity (i.e., an unlawful data access) is signaled by subjects. For
example, when a subject receives an unsolicited e-mail advertise-
ment from an organization containing his/her personal data for
which provenance cannot be determined, it could be an indication
of a non-compliant activity. The signaling of non-compliant activ-
ities could trigger investigation and auditing of the organization
by the Supervisory Authorities and possibly lead to a sanction in
case the organization cannot show by informing the respective
transactions in the blockchain allowing the data to be received and
used for the specific purpose. Subjects could also by default require
all interactions with them to be backed by links to the respective
transactions in the blockchain, even in non-digital communications,
for instance, paper letters could contain a machine readable code
encoding the transaction number allowing the specific data to be
collected. Subjects could then read this code using their mobile
phone and check the compliance of the obtained personal data.

4 SUBJECT CONTRACT MODEL

Figure 1 presents the high-level architecture of the more fine-
grained data accountability and provenance tracking model pro-
posed in this paper. In this architecture, three main entities are
depicted following the GDPR terminology: the Data Subject, the
Data Controller, and the Data Processor.

When the subject subscribes with a controller, which is typically
the role of a service provider, it creates a policy-based Data Usage
Contract specifying constraints on the usage and redistribution of
any data obtained explicitly or implicitly by the controller. Explicit
data is any data provided directly through interactions with the
subject such as the e-mail addresses or birth date. Implicit data is
any data acquired automatically, for example, sensor data from IoT
devices in the environment surrounding the subject, data acquired

by apps installed in mobile devices, or even server log files reg-
istering details of the network interactions between subject and
controller services (e.g., IP addresses). The contract in this model
acts as a data provenance tracker, policy evaluation entity, and
event logger that allow the subject to easily check all data transfers
and usage transactions providing assurance that only transactions
conforming to the contract policies are authorized and registered
in the blockchain.

Data |« RIE=L SN Data | Transfer | Data | _
Subject| i _Transfer |Controller| | data | Processor
data K K
Store Store|
| data data |
Use
Create data
Data Usage Data Usage
Contract Contract
Create new contract

Figure 1: Architecture

Figure 2 shows the sequence diagram of the interactions between
the entities and contracts. The subject subscribes with the data
controller, creates the custom contract for this controller regulating
the use of his/her data, and transfers the data to the controller. For
each new established contract the subject uses a new blockchain
address to prevent linkability of the contracts established with each
controller, requiring the subject to maintain a list of all addresses
used and the respective nonce established with each controller or
processor. After creating the contract, the subject transfers the data
to the controller.

Data Data Controller Data Processor
Subject || Controller Contract Processor Contract
. Subscribe ! T
Create usage |
Data contract
| transfer | Datausage
" Enforcement |

| Datatransferevent
(tentative)

I
|
|
|
event (tentative) :
|
|
|
|
|
|

Data >,
New transfer
New identity
identity Create usage >,

<
Transfer Enforcement 4_J
K == — — = — — —
Event

T

t

1

|

contract |

|

|

PE—
| Datausage
T event (tentative)

Figure 2: Sequence diagram

The newly created contract stores a list of the data transferred to
the controller including data instantiation and instance values. This
information is not store in plain since the contract is deployed in a
public blockchain where anyone is able to access the contract state
variables and transactions, which would imply public access to all
the subject’s data. Figure 3 shows the schema we adopt to obfuscate
the provenance tracking information stored in the contract. For
each controller the subject selects the data to be shared, which is
encoded according to a data model, and establishes a secret random
nonce that is only shared with the data controller in an encrypted
format using the contract initialization parameters. The subject
then stores in the contract only the hashes (generated using the
SHA3-256 function) of the data instantiations and data instances
values (e.g., e-mail="..") concatenated with the nonce, which is
only known at this point by the subject and the controller. The
objective is to provide indistinguishability and to prevent crawling
of the blockchain searching for the same data value in order to
re-identify the subject contracts, for example, if a controller would
know also the same data value (e.g., e-mail) it could simply search
the blockchain transactions for this same exact hash.

Data Types {string, integer, date}
Identity Type {name: string, e-mail: string, date of birth: date}
Identity {name: ‘User Fullname’, e-mail: ‘user@host.com’}

¢ Select data to be shared
nonce: 1234567890°
e-mail: ‘user@host.com’

¢ Obfuscate using nonce and generate contract

contract DataUsageContract { ..

// Data transferred event

DataTransferred (0x2b9d5e4e8cdaad57bae50ce489b547b977a831e...,
0xf0c851c686e8bd634e3b09c8052af92d3a64c69...); ..

Figure 3: Data provenance encoding in contract

Whenever the controller is about to perform a data usage ac-
tivity it should check using a read-only local transaction to the
contract interface if this activity is allowed according to the poli-
cies. In case the activity is allowed by the contract, the controller
can record it using a blockchain transaction signaling the actual
data usage event, which is recorded in the blockchain for a later
accountability check. Data usage activities include access to the
subject’s data, storage of the data in a local database managed by
the controller, execution of any purpose specific activity, generation
of derived or consolidated data, and transfer/redistribution of data
to processor. In order to protect the privacy of subjects, events and
policies are also anonymized using a hash function and the nonce
already established with the data controller. The behavior of the
policy is encoded in the contract and uses a privacy-friendly policy
evaluation algorithm that also relies on hash functions.

Figure 4 describes how the policy behavior is encoded in a con-
tract for a sample policy that allows a billing message to be sent to
the subject e-mail at most once every 30 days and denies any other
usage activities. The first step is the parsing of the policy structure
and identification of the event patterns and operators creating a
tree of the policy structure. For each event pattern specified in the
policy, the activity name and attributes are obfuscated using the
secret random nonce and a hash function, in the same way already

done for the data provenance information. The event matching is
then encoded in the notifyEvent function of the contract, which
updates the states of the operator tree and verifies if the final evalu-
ation of the policy is true or false. We do not store the events in the
contract, we simply update the states in case the event is observed,
and for cardinality and temporal operators a time step window with
the previously observed events is updated. The encoding of each
operator is custom considering the specified policy, for example, the
within operator just requires a boolean flag and the last update time
for evaluation purposes. Reactive policies that are triggered based
on time instead of an event such as "raise a notification if my data is
not deleted in 30 days" require the subject to verify periodically the
blockchain state in order to observe violations and generate a time
step event in order to trigger the execution. In case the user does
not generate the time step event the violation is detected whenever
the contract is notified about any relevant event. In our current
implementation we only support equality matching of obfuscated
events and attributes, in order to support other comparisons such
as "allow something if value is bigger or lower then a threshold"
would require more sophisticated schemes such as homomorphic
encryption. Furthermore, if policies depend on any external infor-
mation (e.g., context or trust relationships), this information has to
be pushed in the blockchain®.

Default Enforcement: Deny
Policyo:
Event: sendMessage(e-mail=‘user@host.com’, purpose=’billing’)
Condition: not(within(3@ days,
sendMessage(e-mail=‘user@host.com’, purpose=’billing’)))
Action: Allow

¢ Parse policy and generate structure

nonce: ‘1234567890’
eventd: sendMessage:try(e-mail=..., purpose=...)
eventl: sendMessage:actual(e-mail=..., purpose=...)
op@: not(opl)
opl: within(3@ days, eventl)
Policy@: if event® AND op@ then Allow

¢0bfuscate using nonce and generate contract
contract DataUsageContract {
function notifyEvent(bool isTry, byte32 activty,
byte32 atts) onlyDataHandler {

if (isTry && activity == @xcf9f24141801207d4dbboob976..)
eventState[@]=true;

// Signal data usage event

Event(isTry, activity, atts);

// Default enforcement

bool allow = false;

// Update operator states

// Fetch oraclelized values

// Evaluate policy logic/condition

if (eventState[@] &% opState[0])
enforcementAction = "Allow";

// Signals the enforcement action as event

if (allow) Allow(); else Deny();

1}

Figure 4: Generation of contract from policy

The activity of transferring data from a controller to a proces-
sor should be also authorized by the contract policies. In case the
transfer is authorized by the contract, the data is transferred and an
event is generated containing the address of the processor known

8https://github.com/oraclize/ethereum-api

https://github.com/oraclize/ethereum-api

by the controller in an encrypted format only readable by the sub-
ject. The subject is able then to establish a new identity with the
processor, which is even unaware of the controller contract address
established with the subject. Finally, the subject creates a data usage
contract for the processor following the approach used with the
controller; the processor contract consists of a new shared secret
nonce, the data provenance information, and the encoded policy
behavior that should be enforced by the controller.

Subjects may withdraw their consent by deleting the contract
from the blockchain, which simply makes the contract inactive from
that moment in time on, while the complete contract history stays
forever recorded. Furthermore, users may also release additional
data or impose more policies/constraints on the data released to the
controllers/processors. This can be achieved by adding additional
data provenance information to the parent contract and by creating
child contracts encoding more desired policy behaviors.

We have implemented a sample contract using the policy ex-
ample in Figure 4 and evaluated the performance for transactions
creating and executing contract functions in a private blockchain
implemented using the EVM. In our implementation we evaluated
two choices regarding the storage of data usage events in the con-
tract state variables. In the first version 10 hashes of data types
and instances were stored as state variables in the contract with
a total of 736 bytes (2 times byte32 for each data), while in the
second version the data hashes were signaled as events associated
to the contract (each event signaling 2 times byte32). Just creating
the contract without any data associated consumed 0.82 million
gas, with the events the consumption increased to 0.89 million gas,
and with the state variables the consumption was as high as 1.25
million gas. These results show that it is far better to use events in
case of simply logging activities instead of using contract state vari-
ables. We also evaluated the cost of notifying a data usage event to
the contract, which generates a contract event with the respective
enforcement result (i.e. allow, deny, modify or delay). The event
notification cost was only of 0.023 million gas.

Since contracts have a limited amount of storage and processing
capabilities it is unfeasible to allow flexible configuration of policies
in a single contract with a more complex interfaces. Contracts
should embed the policy logic and in case a new policy or data
transfer takes place a new child contract should be created. Data
controllers are allowed to add new child contracts to the existing one
where two approaches can be followed depending on the number
of users and constraints. All users that joined a parent contract
are automatically added to the child contract unless they add a
restriction. All users that joined a parent contract must explicitly re-
join the child contract to be included in the new service conditions.
Nevertheless users are able to watch the contracts and be notified
about these events in order to be able to react. Data controllers
may choose to link new child contracts with additional features
that users will be allowed to receive from the service by associating
data requirements to the provided features.

With respect to user’s privacy, this model guarantees user pseu-
doymity and unlinkability among different controllers and proces-
sors and unobservability by third party entities of the user policies
and data events in the public blockchain that are necessary to eval-
uate the respective policies. Linkability can be achieved in case

processors and controllers collude by exchanging their addresses
and nonces used in each contract if users provide unique identi-
fiers (e.g. e-mail) allowing entities that received this identifier to
know the associated addresses of a user. Our solution also consid-
ers that, in particular cases, upon request of a third party such as
a the Data Protection Supervisor Authority, both subject or con-
troller/processor may be requested to prove the possession of the
data and to prove the data usage activities performed did not vio-
late the subject’s policies. In this case, the release of the encrypted
nonce by subject and/or processors/controllers is enough to enable
verification of the policies and the data provenance information.

5 CONTROLLER CONTRACT MODEL

In this section we describe the more coarse-grained data account-
ability and provenance tracking model proposed in this paper. In
this model the controller or processor creates a contract specify-
ing the shared constraints on the usage and redistribution of any
explicit or implicit data obtained from all subjects that subscribe
with the controller. The contract in this model acts simply as a
repository of the configurable policy templates that will be instan-
tiated for all subjects and do not store anything except the list of
subjects. Transactions are only requests by subjects to join or leave
the contract.

Figure 5 shows an example of policy enforcement and configu-
ration templates that can be used in a data usage contract in this
model. The policy enforcement template specifies an enforcement
pattern using an entity variable s, which in this example is one
variable for the data subject that allows a billing message to be
sent no more than once per month. This policy is configured for
all users that subscribe to the service in the defined configuration
template, and a special data assignment function is used to deter-
mine in the policy evaluation if the e-mail is associated to the data
subject encoded in the variable.

Default Enforcement: Deny
PolicyTemplate®@
Variables: Entity(s)
Event: sendMessage(purpose=’billing’,
isDataSubject(e-mail, s))
Condition: not(within(3@ days, sendVMessage(purpose=’billing’,
isbataSubject(e-mail, s))))
Action: Allow
ConfigurationTemplate®
Variables: Entity(s)
Assignments: s = xpath(\\trigger\user)
Event: subscribeUser()
Condition: true
Action: configure(PolicyTemplate®, s)

Figure 5: Enforcement and configuration templates

Since this model is more focused on controllers processing large
amounts of data we also allow the data controller to log events
representing bulk executions of the contract, for example, using
an event template send message where the e-mail data attribute is
left unspecified. Bulk events make sense when regular activities
are completed nearly at the same specific moment in time such as
on a daily time window. Bulk events may also be parametrized, for
example, in case an activity happens for a subset of subscribers

matching a particular condition using also a policy template. Bulk
attributes may be specified using the same ECA template of policies
using a tentative event structure, for example, all data of data sub-
jects from a particular country will be shared. This example policy
is specified in 6.

PolicyTemplatel
Variables: Entity(s)
Event: shareData(purpose=’marketing’, country="Italy’,
isDataSubject(country, s))
Condition: true
Action: Allow

Figure 6: Data sharing policy for subjects of a particular
country

We have implemented a sample contract where the policy is
configured as a string, which could be an XML or JSON encoding of
the policy specified using the SecKit policy language. As expected,
this contract requires a much lower amount of gas in contrast to the
model detailed in the previous section. The creation of the contract
requires only 0.34 million gas and the joining and leaving of data
subjects only requires around 40 thousand gas. The contract does
not requires any other operation since it does not log any data
usage events or enforcement actions.

6 RELATED WORK

The nature of blockchain is particularly suitable for tracking assets
exchanged by different entities. In their most famous implementa-
tions, actually blockchains do not exchange any asset (i.e. coin or
token), but the ownership of a certain amount of them is just the
result of evaluating the transaction list containing the quantity of
assets exchanged between two entities. Therefore, when applied
to digital or physical assets, it is fundamental that the latter can be
unequivocally represented and identified, and that they cannot be
(trivially) cloned.

One of the first application of blockchains to the tracking of
physical goods was for the provenance of diamonds [12]. Here
the strong point is that diamonds can be uniquely fingerprinted
through their physical properties, making them distinguishable one
from another. This fingerprinting allows the diamond discovery
processing and registration in the blockchain to easily match the
concept of mining in a standard proof-of-work based blockchain
system.

When the assets to be tracked are digital, the first problem is
related to the possibility of easily cloning and transferring them, so
that the main goal is at least to prove their first origin. The tracking
of digital data provenance using blockchains was first proposed
in a discussion paper presented at the ID2020 Design Workshop
[11]. Although at high level, the paper describes a proof of concept
for verification and attestation of provenance of individuals’ data
using blockchains. The latter do not directly store the data, which
are referenced with hashes and associated with tokens, so that it
is possible to prove their (immutable) origin and track all the data
exchanges. Although the proposed approach is novel, it does not
cover the definition af advanced policies or contracts regulating
the usage of the exchanged data in the way proposed by us in this

paper.

An example of users’ data protection and privacy policy enforce-
ment on a blockchain is provided in [18]. The authors propose to
control access permissions to private data collected by a service
(e.g., location from a mobile phone) through a Bitcoin blockchain.
Every time a users subscribes to a service a new transaction spec-
ifies the access permissions and another contains the hash of the
data, which are stored in a off-chain database. Policies encoded in a
protocol executed by the blockchain grant or deny access to the data
referenced in the chain. Although this solution is in part similar
to ours, their proposed policies only specify simple allow/deny en-
forcement (i.e. white/blacklisting) without the possibility to express
more complex policy conditions. Moreover, scalability is not taken
into consideration: issuing minimum two transactions for every
subscription of a user application to an online service would easily
saturate a Bitcoin network even considering few service providers.

Inspired by the example above, is the application of data track-
ing to health care proposed in [6]. Here the blockchain is again a
medium to control the access to data stored off chain. The paper
provides only a high level description, but already identifies the
main limitations, mainly in terms of scalability and data privacy, of
Bitcoin-based blockchains for this kind of applications.

Applied to the same field but with a more comprehensive ap-
proach is MedRec [1]. The authors propose to give patients control
over their Electronic Health Records (EHRs) through the use of
Ethereum blockchain and smart contracts, which manage authenti-
cation, confidentiality, accountability and sharing of the data. The
latter are referenced in the chain using their hashes but are stored
externally. Miners are rewarded with anonymized aggregated data
useful for research. Although the proposed approach addresses
many issues, considerations about costs and scalability on a large
scale deployment are not mentioned.

7 CONCLUSIONS AND FUTURE WORK

In this paper we analyze the feasibility of using a blockchain-based
contract approach to support data accountability and provenance
tracking in light of the new requirements of the GDPR. We discuss
several solution design choices and introduce three different models,
including two concrete implementations, with an extensive analysis
with respect to data accountability and provenance tracking granu-
larity, privacy, anonymity, performance, and scalability. We show
that for more sensitive data with less frequent exchanges, such as
medical data, a more fine-grained solution where subjects create
contracts with each controller and processors is more adequate.
On the other hand, for more dynamic data with more frequent
exchanges and strict scalability and performance requirements,
controllers or processors should manage a contract that registers
all subjects accepting all or part of the data usage conditions.

A possible solution for scalability issues we are currently inves-
tigating is the use of sharding, where the blockchain is divided in
separate chains that that are responsible for contracts of a subset of
all controllers and processors. These separate private chains then
synchronize with the public chain on regular intervals, for example
every 1000 blocks, in order to allow for public verifiability [16]. In
case the separated chains are managed privately, data protection
supervisory authorities can then join all chains just as observers

in order to prevent censorship and guarantee that transactions of
data subjects are not indiscriminately refused.

As future work we also plan to investigate the possibility of
using business blockchain approaches such as the Hyperledger
solution, which uses a different algorithm for reaching consensus
and also has a more ambitious scalability and performance goal
with thousands of transactions per second [13, 14]. Hyperledger
is the leading business oriented blockchain-based platform that
supports a modular consensus protocol and is currently developed
and supported by a large consortium of high profile companies
such as IBM and Intel.

We also plan to work on a model-based translation mechanism
to automatically generate contracts from policies specified in our
policy language. Our approach in this paper was simply a manual
translation in order to demonstrate the feasibility and to investigate
the strengths and limitations of the technology. Finally we plan
to deploy and evaluate scalability and performance issues related
to the expected size of the blockchain after a number of contracts
and events is added to the chain and also to verify the transaction
throughput that can be achieved.

REFERENCES

[1] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman. 2016. MedRec: Using Blockchain
for Medical Data Access and Permission Management. In 2016 2nd International
Conference on Open and Big Data (OBD). 25-30.

[2] V.Buterin. 2015. On Public and Private Blockchains. https://blog.ethereum.org/
2015/08/07/on-public-and- private-blockchains/. (2015). Online; accessed April
7th 2017.

[3] CoinMarketCap. 2017. CryptoCurrency Market Capitalizations. https://
coinmarketcap.com/. (2017). Online; accessed April 7th 2017.

[4] European Parliament and the Council of the European Union. 1995. Directive
95/46/EC of the European Parliament and of the Council of 24 October 1995 on
the protection of individuals with regard to the processing of personal data and
on the free movement of such data. Official Journal of the European Union (1995).

[5] 2016. Regulation (EU) 2016/679 of the European Parliament and of the Council of
27 April 2016 on the protection of natural persons with regard to the processing
of personal data and on the free movement of such data. Official Journal of the
European Union (4 May 2016).

[6] L. A. Linn and M. B. Koo. 2016. Use of Blockchain in Health IT
and Health-related Research. https://www.healthit.gov/sites/default/files/
11-74-ablockchainforhealthcare.pdf. (2016). Online; accessed April 6th 2017.

[7] S. Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf. (2008). Online; accessed April 3rd 2017.

[8] R.Neisse, G. Steri, and G. Baldini. 2014. Enforcement of security policy rules
for the Internet of Things. 2014 IEEE 10th International Conference on Wireless
and Mobile Computing, Networking and Communications (WiMob) 00, undefined
(2014), 165-172.

[9] R. Neisse, G. Steri, I. Nai Fovino, and G. Baldini. 2015. SecKit: A Model-based
Security Toolkit for the Internet of Things. Computers & Security 54 (2015), 60
- 76. Secure Information Reuse and Integration & Availability, Reliability and
Security 2014.

[10] R. Neisse, G. Steri, D. Geneiatakis, and 1. Nai Fovino. 2016. A privacy enforcing
framework for Android applications. Computers & Security 62 (2016), 257 - 277.

[11] G. Samman and K. Dow. 2016. Immutable Me A Discussion Pa-
per Exploring Data Provenance to Enable New Value Chains.
https://github.com/WebOf TrustInfo/ID2020DesignWorkshop/blob/master/
topics-and-advance-readings/immutable-me.pdf. (2016). Online; accessed April
6th 2017.

[12] G. Volpicelli. 2017. How the blockchain is helping stop the
spread of conflict diamonds. http://www.wired.co.uk/article/
blockchain-conflict-diamonds-everledger. (2017). Online; accessed March 28th
2017.

[13] M. Vukoli¢. 2016. The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT
Replication. Springer International Publishing, Cham, 112-125.

[14] M. Vukoli¢. 2017. Rethinking Permissioned Blockchains. In ACM Workshop
on Blockchain, Cryptocurrencies and Contracts (BCC’17). Available at: http:
//vukolic.com/rethinking-permissioned-blockchains-BCC2017.pdf.

[15] W3C. 2007. Platform for Privacy Preferences (P3P) Project. https://www.w3.org/
P3P/. (2007). Online; accessed April 3rd 2017.

[16] Ethereum Wiki. 2017. Sharding FAQ - On sharding blockchains. https://github.
com/ethereum/wiki/wiki/Sharding-FAQ. (2017).

[17] G. Wood. 2014. Ethereum: A Secure Decentralised Generalised Transaction
Ledger - EIP-150 Revision. http://http://gavwood.com/paper.pdf. (2014). Online;
accessed April 3rd 2017.

[18] G. Zyskind, O. Nathan, and A. . Pentland. 2015. Decentralizing Privacy: Using
Blockchain to Protect Personal Data. In 2015 IEEE Security and Privacy Workshops.
180-184.

https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://blog.ethereum.org/2015/08/07/on-public-and-private-blockchains/
https://coinmarketcap.com/
https://coinmarketcap.com/
https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf
https://www.healthit.gov/sites/default/files/11-74-ablockchainforhealthcare.pdf
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/topics-and-advance-readings/immutable-me.pdf
https://github.com/WebOfTrustInfo/ID2020DesignWorkshop/blob/master/topics-and-advance-readings/immutable-me.pdf
http://www.wired.co.uk/article/blockchain-conflict-diamonds-everledger
http://www.wired.co.uk/article/blockchain-conflict-diamonds-everledger
http://vukolic.com/rethinking-permissioned-blockchains-BCC2017.pdf
http://vukolic.com/rethinking-permissioned-blockchains-BCC2017.pdf
https://www.w3.org/P3P/
https://www.w3.org/P3P/
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
https://github.com/ethereum/wiki/wiki/Sharding-FAQ
http://http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Blockchain-based Distributed Ledgers Technology
	2.2 Data Provenance Tracking Model
	2.3 Usage Control Policy Language

	3 Solution Design Choices
	4 Subject Contract Model
	5 Controller Contract Model
	6 Related Work
	7 Conclusions and Future Work
	References

