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Abstract

We present a randomized Byzantine Agreement (BA) protocol with an expected running time
of O(log n) rounds, in a synchronous full-information network of n players. For any constant
ε > 0, the constructed protocol tolerates t non-adaptive Byzantine faults, as long as n ≥ (4+ε)t.
In the full-information model, no restrictions are placed on the computational power of the faulty
players or the information available to them. In particular, the faulty players may be infinitely
powerful, and they can observe all communication among the honest players.

This constitutes significant progress over the best known randomized BA protocol in the
same setting which has a round-complexity of Θ( t

log n ) rounds [9], and answers an open problem
posed by Chor and Dwork [10].
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1 Introduction

Byzantine Agreement (BA) is arguably the central problem in distributed computation tolerating
faulty behavior. Informally, the problem is to maintain a common view of the world in the presence
of faulty processes that strive to prevent the good processes from reaching agreement. The faults
can range from simple “crashing of processes” to processes with malicious intent co-ordinating to
mislead the good ones into disagreement. Byzantine Agreement is equivalent to the problem of
reliable broadcast among a set of processes.

The problem of Byzantine Agreement, in its most basic form, is as defined below.

Definition 1 (Byzantine Agreement). Let P be a protocol among n players, in which each player
Pi starts with an input bit bi, and Pi outputs a bit ci at the end of the protocol. P is a Byzantine
Agreement protocol, if the following conditions hold:

• Agreement: For any two non-faulty players1 Pi and Pj, ci = cj.

• Validity: If bi = bj = b for all non-faulty players Pi and Pj, then ci = b for all non-faulty
players Pi.

• Termination: Protocol P terminates with probability 1.

The problem was introduced by Pease, Shostak and Lamport [20] in 1980. One can consider
different network models, models of interprocessor communication, and fault models. In this paper,
we focus on the case of a synchronous network, with point-to-point authenticated channels between
every pair of processors. A synchronous network is an idealized model, where a common clock
governs the delivery of messages. Messages are sent at the end of a round and are delivered at the
beginning of the next round. The fault is modeled by a coalition of t players, who are corrupted
by an adversary before the protocol begins (i.e, the adversary is non-adaptive). The adversary
is computationally unbounded and has full information about the state of all the players, and the
communication between any pair of them. The adversary decides the messages that the t corrupted
players send in a round, depending on the messages sent by the good players in all the previous
rounds, including the current round (i.e, the adversary is rushing). This is referred to as the
full-information model in the literature [4, 16].

A point worth re-emphasizing is that, we do not assume secrecy of communication between
any two players. We cannot use cryptography to ensure the secrecy either, since the adversary is
computationally unbounded. In particular, the adversary can listen to any communication in the
network, but a good player can only hear the messages sent to it.

Our protocol is probabilistic, and therefore, we assume that every player has a source of perfect
randomness (say, independent and unbiased coin flips).

1.1 Previous Work

Byzantine Agreement

Since its introduction in the work of Pease et al.[20], the problem of Byzantine Agreement has
been a source of enormous attention. Pease et al. proved (in [20] itself) that no deterministic
algorithm can achieve Byzantine Agreement among n players in the presence of t faults if n ≤ 3t

1The meaning of which players are non-faulty depends on the adversary.

1



(This bound was later extended to the case of randomized algorithms by Karlin and Yao [19]).
They also constructed a (deterministic) algorithm that solves BA for any n > 3t, in a synchronous
full-information network. Once the feasibility of BA was shown, further attempts concentrated on
reducing the complexity of achieving agreement. The standard complexity measures of interest are
the number of rounds, and the total communication and computational complexity of the protocol,
the former being the most interesting of them. The protocol of [20] had a round complexity of
t+1 rounds, which was shown to be optimal for deterministic protocols by Fischer and Lynch [14].
However, the communication complexity of the protocol was exponential in n. Following a series
of works [5, 6], Garay and Moses [15] constructed a BA protocol that runs for t + 1 rounds, with a
polynomial communication.

Randomized Byzantine Agreement

Faced with the lower bound on the round complexity for deterministic protocols, the natural di-
rection of research was to find ways to overcome this limitation, the first choice being to resort to
randomization.2 This direction was pursued early on, starting with the work of Ben-Or, Rabin and
Bracha [3, 21, 8] who put forth the idea of a common coin as the correct notion of randomization to
achieve Byzantine Agreement. A common coin is a “sufficiently random” coin seen by “sufficiently
many processors”, as defined by Dwork, Shmoys and Stockmeyer [11]. In particular, [21] and [11]
showed how to achieve Byzantine Agreement in O(1) extra rounds, given progressively weaker no-
tions of a common coin. Thus, the bulk of the attention was concentrated on constructing protocols
that generate a common-coin in a network.

Under the assumption that the point-to-point channels connecting pairs of processors are pri-
vate, or that the processors are computationally bounded and cryptography exists, Feldman and
Micali [13] constructed a protocol to generate a common coin in O(1) rounds and with polynomial
communication. This, in turn, gave Byzantine Agreement protocols that run in O(1) rounds (by
Rabin’s result [21]). On the other hand, without the assumption of private channels or a com-
putationally bounded adversary (i.e, in the full-information model), the best known protocol that
achieved Byzantine Agreement had a round complexity of Θ( t

log n) rounds [9].

The Full-Information Model

The full-information model was introduced by Ben-Or and Linial [4] to study collective coin-flipping,
which is the problem of generating a common bounded-bias bit in a network of n players with t
faults. This problem was studied in a series of works that aimed to improve the fault-tolerance
and round-complexity, resulting in the protocols of Russell and Zuckerman [22] and Feige [12], that
construct log∗ n + O(1) round protocols that tolerate, for any ε > 0, t < n

2+ε faults. Goldreich et
al. [16] consider the problem of multiparty computation in the full-information model. Note that
these coin-flipping protocols assume the existence of a broadcast channel, and therefore, cannot be
used as such to construct a broadcast protocol!3 Nevertheless, we use the ideas from the coin-
flipping protocol of Feige [12] in an essential way in our Byzantine Agreement protocol.

2Note that the Agreement, Validity and Termination conditions in the definition of Byzantine Agrement are
required to hold with probability 1 over the coin-tosses of the processors. The complexity measure of interest is the
expected running time of the protocol.

3Recall that the problem of reliable broadcast among n processors is equivalent to the problem of Byzantine
Agreement.
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Our Results

Main Theorem 1. For any constant ε > 0, there exists a (explicit) protocol BAε that reaches
Byzantine Agreement in a synchronous full-information network tolerating t < (1

4−ε)n non-adaptive
Byzantine faults, and runs for expected O( log n

ε2
) rounds.

We remark that the restriction that the adversary be nonadaptive is essential – Ben-Or and
Bar-Joseph [2] show that any BA protocol that tolerates t = Θ(n) adaptive fail-stop faults runs for
Ω̃(
√

n) rounds.

Perspective

As early as the mid-1980s, researchers observed that the bulk of the work in randomized Byzan-
tine Agreement actually introduced two twists in the original setting of Byzantine Agreement: (a)
Allowing randomization (and a probabilistic analysis, consequently), and (b) Using cryptographic
primitives and computational assumptions (either explicitly, or implicitly by using a physical as-
sumption such as the existence of point-to-point “private channels”). A natural question raised
then was whether both these elements are essential. That is, can Byzantine Agreement be sped up
significantly by relying only on randomization, without using cryptographic techniques ? Theorem 1
provides a positive answer to this question.

A Synopsis of Our Solution

Following the time-tested notion of reducing randomized Byzantine Agreement to the problem of
flipping a global bounded-bias coin, we concentrate our attention to designing such a protocol. As
pointed out earlier, standard techniques (due to Rabin [21] and Dwork et al. [11]) show how to get
a BA protocol with a constant-round overhead, given a common-coin protocol.

The “immediately obvious” approach is to use the collective coin-flipping protocols of Feige [12]
or Russell and Zuckerman [22]. However, we cannot use these protocols as such, because they work
under the assumption that there exists a broadcast channel, which we cannot assume.

Nevertheless, our protocol borrows ideas from the collective coin-flipping protocol of Feige [12].
Feige’s protocol for collective coin-flipping works as follows: All the players are alive in the beginning
of the protocol. In the first round, the players throw a ball each at random into one of O( n

log n)
bins. The players who threw their balls into the lightest bin survive for the next round. The
protocol is then recursively invoked on the O(log n) players in the lightest bin. The crucial idea is
that, assuming that the good players throw their balls randomly, their balls are almost uniformly
distributed among the bins. Thus, the lightest bin contains approximately the right fraction of good
players. Therefore, this protocol can be viewed as a way of electing a small subset (a “committee”)
of the n players, that contains a “large enough” fraction of good players. After log∗ n recursive
invocations of this process, a leader is elected. We let the leader flip a coin, and broadcast it.

Note that each step of this protocol assumes that the players broadcast their choices of the bins
to all the players. Since we do not have a broadcast channel, we have to implement it, and that
requires Byzantine Agreement. It looks like we are back to the same problem. The trick to avoid
this circularity is to use a certain weak version of broadcast (called graded broadcast) to implement
the first stage of Feige’s protocol. We then proceed to show that this reduces BA among n players
to BA among O(log n) players. Thus, assuming that we can implement graded broadcast in O(1)
rounds, we get an O(log n) round BA protocol.
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2 The Toolkit

Notations. Letters such as P,S denote protocols. We usually denote subprotocols of a protocol P
by subscripts, such as Pi, and subprotocols of Pi by superscripts, such as Pj

i . Players are denoted
by the letter P , possibly with subscripts. The set {1, 2, . . . , n} is also denoted [n].

Graded Broadcast

The first tool we need is an appropriate notion of a weak version of broadcast along with an
implementation of such a notion with low round-complexity. The correct weakening of broadcast
we need is the notion of graded broadcast [13], defined below. Informally, a graded broadcast
protocol is a protocol with a designated player called “dealer” (the one who broadcasts) such that:

• If the dealer is good, all the players get the same message.

• Even if the dealer is bad, if some good player accepts the message, all the good players get
the same message (but they may or may not accept it).

Definition 2 (Graded Broadcast [13]). A protocol P is said to be achieve graded broadcast if, at the
beginning of the protocol, a designated player D (called the dealer) holds a value v, and at the end
of the protocol, every player Pi outputs a pair (valuei, confidencei) such that the following properties
hold: (∀i, confidencei ∈ {0, 1, 2})

1. If D is honest, then valuei = v and confidencei = 2 for every honest player Pi.

2. For any two honest players Pi and Pj, |confidencei − confidencej | ≤ 1.

3. (Consistency) For any two honest players Pi and Pj, if confidencei > 0 and confidencej > 0,
then valuei = valuej.

An O(1)-rounds deterministic protocol with these guarantees appears, for instance, in Feldman
and Micali [13] as a “gradecast” protocol. The gradecast protocol from [13] is described, for
completeness, in Table 1.

Lemma 1 ([13]). The protocol Gradecast is a graded broadcast protocol.

Proof. The proof follows from the following series of observations:

• Suppose D is honest. Then, after Step 1, all the honest players get the same vi. In Step 3,
every honest player will set µ = v, since all the n− t honest players send m to him in Step 2.
This implies that all honest players output (v, 2) in step 4.

• Suppose some honest player outputs (µ, 2). This means for him, numµ ≥ 2t + 1. Since at
most t of these come from bad players, numµ ≥ t + 1 for all other honest players. This shows
that for any two honest players Pi and Pj , |confidencei − confidencej | ≤ 1.

• Suppose an honest player outputs (µ, ∗) after step 4, where ∗ ∈ {1, 2}. This means numµ ≥
t + 1 for him, and therefore, he received µ from at least one honest player after step 3. The
honest player that sent µ to him did it because he got ≥ n − t vj

i ’s equal to µ in step 3. At
least n − 2t ≥ t + 1 of these came from honest players. Thus, for any other µ′, the number
of honest players that transmit µ′ in step 2 is at most t. It follows that no honest player sets
µ = m′ in step 3. This proves that no other honest player outputs (µ′, ∗) for a µ′ /∈ {µ,⊥}.
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Protocol Gradecast

Input to the Dealer D: A value v.
Output of player Pi: A pair (valuei, confidencei).

1. (The dealer D) The dealer D distributes v to all the players.

2. (Every player Pi) Let vi denote the message received from D in Step 1. Send vi to all
the players.

3. (Every player Pj) Let vj
i denote the message received from player Pi in Step 2. If there

is a value µ such that ≥ n− t of the vj
i ’s are equal to µ, then send µ to all the players.

Else, send ⊥.

4. (Every player Pi) Let numµ denote the number of players that sent µ to Pi in Step 3.

• If numµ ≥ 2t + 1 for some µ, output (µ, 2).

• If 2t ≥ numµ ≥ t + 1 for some µ, output (µ, 1).

• If numµ ≤ t for all µ, output (⊥, 0).

Table 1: The Graded Broadcast Protocol of Feldman and Micali

Reaching Byzantine Agreement Given a Common Coin

We briefly describe how to get Byzantine Agreement given a common coin protocol, for the sake of
completeness. A common-coin protocol is defined as follows.

Definition 3 (Common Coin). A protocol P is said to be a common-coin protocol if, at the end
of the protocol, every player Pi outputs a bit bi and there exist constants δ, ε > 0 such that:
Pr[∃b ∀i bi = b] ≥ δ, and 1− ε ≥ Pr[b = 0 | ∃b ∀i bi = b] ≥ ε.

The reduction from Byzantine Agreement to Common-coin (which is essentially from Rabin [21]
and Dwork et al. [11]) is best described using the graded broadcast protocol (given in Table 1).
Each player Pi has an input bi (which we assume to be a bit, for simplicity). The protocol proceeds
as follows.

(A) Start executing the gradecast protocol (of Table 1), from Step 2, with player Pi setting vi = bi.

(B) If the output of the gradecast is (µ, 2), for some µ, then decide on µ and terminate. If the
output of the gradecast is (µ, 1), then set vi := µ and go back to Step (A). If the output is
(⊥, 0), then set mi := ri, where ri is the output of a common-coin protocol, and go back to
Step (A).

The idea of the protocol is that, if a good player Pi terminates in a round, he must have had a
confidence of 2 for some µ. By the property of gradecast, all other good players receive the same
value µ with confidence at least 1 and therefore, all of them will decide by the next round. Suppose
some subset of players have a value µ with confidence 1 and the others have ⊥, at step (B). Then,
ri will be equal to µ, with constant probability. If this happens, all the good players will start

5



the next iteration of gradecast with the same input, and therefore, will agree by the end of the
iteration. This gives a constant expected-time reduction from the problem of Byzantine Agreement
to the problem of generating a common coin.

Tail Bounds

We record the following version of the Chernoff bound for use in the analysis of our protocol.

Lemma 2 (Chernoff). Let X1, X2, . . . , Xn be random variables that take values in {0, 1}, such that
E(Xi) = pi. Let µ = E(

∑
i Xi) =

∑
i pi. Then, Pr[|

∑
i Xi − µ| > εµ] ≤ 2e−

1
2
ε2µ.

3 The Byzantine Agreement Protocol

We construct a sequence of protocols BAε, parametrized by an ε > 0. BAε is expected to be a
Byzantine Agreement protocol that tolerates any t < (1

4 − ε)n faulty processors. BAε consists of
three stages, executed sequentially. Define the constant a to be 7

ε2
.

Stage 1

The first stage of our protocol is the same as the first step of Feige’s protocol [12] – each player
chooses one of the n

a log n committees at random, and announces this choice to all the players.
The difficulty with this implementation is that, a bad player need not give all the good players
a consistent view of which committee he chose. To partially remedy this problem, we ask the
players to announce their choices via a gradecast protocol. This, among other things, ensures that
a bad player cannot convince two different good players that he chose different committees. Note,
however, that it is still possible that a good player thinks player Pi is in a committee, whereas
another good player thinks that Pi is not in the committee. In particular, Stage 1 of the protocol
works as follows.

Stage 1: Form n
a log n Committees

1. (Each player Pi) Choose a random number Bi from [1 . . . n
a log n ], and gradecast Bi to all the

players. The gradecast results in every other player Pj receiving a pair (valuei
j , confidencei

j).

2. (Each player Pj) Construct a local view of the composition of the committees. Define player
Pj ’s view of committee Ck, denoted as viewj(Ck),4 as the set of all players Pi whose gradecast
resulted in valuei

j = Ck and confidencei
j = 2. That is,

viewj(Ck) = {Pi | valuei
j = Ck and confidencei

j = 2}.

Further, define player Pj ’s extended view of committee Ck, denoted as viewj(Ck), to be the
set of all players Pi whose gradecast resulted in valuei

j = Ck and confidencei
j > 0. That is,

viewj(Ck) = {Pi | valuei
j = Ck and confidencei

j > 0}.
4Strictly speaking, this should be viewPj (Ck). We abbreviate it to viewj(Ck) for notational convenience.
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Whenever a player P ∈ viewj(Ck), we say that player Pj accepts player P into committee Ck.
Analogously, when a player P ∈ viewj(Ck), we say that Pj adopts P into committee Ck. Adopting
a player into a committee can be thought of as a safety mechanism. If a good player accepts a
player P into a committee, then all good players will at least adopt P into the same committee.
Lemma 3 below records this observation.

Lemma 3. If a player P ∈ viewj(C) for some committee C and some honest player Pj, then
P ∈ viewk(C) for all honest players Pk.

Proof. This follows from the consistency property of graded broadcast which says that for any two
honest players Pi and Pj , |confidencei − confidencej | ≤ 1. The fact that P ∈ viewj(C) for a honest
player Pj implies (by the definition of views) that P ’s gradecast was accepted by Pj with confidence
2. Therefore, all other honest players Pk will accept P ’s gradecast with confidence at least 1, which
means that P ∈ viewk(C) for all honest Pk.

A few more general facts about the views are worth noting. First of all, note that viewj(Ck) ⊇
viewj(Ck) for all honest players Pj and committees Ck – this follows trivially from the definition of
a view (and an extended view). Secondly, it is quite possible that for two different honest players
Pj and Pj′ , and committee Ck, viewj(Ck) and viewj′(Ck) are different. This is because the faulty
players may present conflicting values to two different honest players (An analogous statement is
true for view’s of two honest players).

Since the good players choose their committee uniformly at random, the expected number of
good players that chose each committee is (3

4 + ε)a log n. A simple application of Chernoff bound
followed by a union bound shows that, with high probability, every committee has at least 3

4a log n
good players.

Lemma 4. Let t = (1
4 − ε)n, a = 7

ε2
, and the number of committees be n

a log n . With probability at
least 1− n−1, all committees have more than 3

4a log n good players.

Proof. The expected number of good players in any committee is (3
4 + ε)a log n. The probability

that some committee (say, Ci) has at most 3
4a log n good players is, by a Chernoff bound, at most

2e−
2ε2

3+4ε
a log n < n−2, by our choice of a. The probability that some committee has less than 3

4a log n
good players is, by a union bound, at most 1

n .

Since with high probability, every committee has 3
4a log n good players, any committee of size

k has at most k − 3
4a log n bad players (with high probability).

Corollary 5. With probability at least 1 − n−1, in any committee of size k, there are at most
k − 3

4a log n bad players.

Since the number of good players is bounded from below, with high probability, any small
committee has a large fraction of good players. If a committee is small, it can be much easier to
reach agreement in the small committee and notify all of the players. The only problem is that there
can be many contenders for the small committee in question. This means we need two agreements:
first, the players agree on a single small committee (this is Stage 2), and secondly, the players in
the chosen committee toss a bounded-bias coin among themselves, and notify all the players of the
outcome (this is Stage 3).

In what follows, we will assume that all committees have at least 3
4a log n good players. If this

does not hold, we have no guarantee on the outcome of the coin-flip. But since this happens with a
probability of O( 1

n) (by Lemma 4), the extra bias that this event adds to the coin-flip is negligible.
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Stage 2

We now wish to agree on a single small committee. If all the good players could agree on the
composition of each committee, then the good players could choose a committee with the smallest
number of players. Unfortunately, we do not know how to do this without a Byzantine Agreement
protocol. In order to circumvent this, we allow (the players in) a committee to decide that the
committee is too large and therefore should be disqualified.

This would have worked, if all committees were of size O(log n). But, a committee could be of
size as much as Θ(n) because a large number of faulty players would decide to choose a particular
committee in Stage 1. Thus, running a BA protocol on this committee would be prohibitively
expensive. We solve this problem by letting each small subset of a committee run a BA among
themselves to decide whether the committee is too large. More concretely, for every committee Ci,
we look at all subsets of players Sj of size 3

4a log n (There are
(

n
3
4
a log n

)
such sets Sj). Each such set

agrees (using a deterministic BA protocol) on the composition of a set viewSj (Ci), where a player
P is considered to be in viewSj (Ci) if all of the players in Sj adopt P (i.e, P ∈

⋂
Pk∈Sj

viewk(Ci)).
If this set is larger than a log n, then each member of Sj publicizes a disqualification of Ci. The
players in Sj also compute

⋂
Pk∈Sj

viewk(Ci) to be what Sj thinks about the composition of Ci,
and publicize it.

We note that it is quite possible for different Sj ’s to reach different conclusions about disqualify-
ing Ci. The advantage we have here, contrary to Byzantine Agreement, is that there is a preferred
outcome (i.e, the committee is too large and therefore is disqualified).

Once this is done, every other player P has to decide how to interpret the set of all messages it
gets from the different Sj ’s. A good player Pk decides to disqualify a committee Ci if Pk receives
at least 1

2a log n valid disqualifications from a set Sj , and Pk has initially accepted all the players in
Sj as belonging to Ci (i.e, Sj ⊆ viewk(Ci)). Finally, if the committee is not disqualified, Pk chooses
the largest advertised composition of Ci as the eventual composition of Ci. This is done to ensure
that a large fraction of honest players survive in the chosen committee. More specifically, Stage 2
works as follows.

Stage 2 : Eliminate large committees, and agree on the composition of one of the remaining (small)
committees.

1. Run the protocols P1, . . . ,P n
a log n

in parallel. Pi is the protocol that decides whether to
disqualify committee Ci.

2. Protocol Pi consists of subprotocols executed concurrently by each of the
(

n
3
4
a log n

)
sets Sj ⊆

{P1, . . . , Pn}, where each Sj is of size 3
4a log n. Denote the subprotocol of the protocol Pi

executed by set Sj as Pj
i .

3. We now describe the subprotocol Pj
i .

(a) (To disqualify or not) Run a deterministic BA protocol in Sj to compute

viewSj (Ci)
def
=

⋂
Pk∈Sj

viewk(Ci)
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Each player P in Sj computes a local variable disqP,Sj
(Ci) as follows.

disqP,Sj
(Ci) =

{
1 if |viewSj (Ci)| > a log n.

0 if |viewSj (Ci)| ≤ a log n.

(b) (If not disqualified, what is the composition of the committee ?) Run a deterministic BA
protocol in Sj at the end of which each honest player P in Sj computes

compositionP,Sj
(Ci)

def
=

⋂
Pk∈Sj

viewk(Ci)

(c) P sends the tuple
(Sj , Ci, disqP,Sj

(Ci), compositionP,Sj
(Ci))

to all other players.

4. (Each player Pk) If Pk receives messages of the form (Sj , Ci, 1, ∗) from some set of players S′
j

such that |S′
j | ≥ 1

2a log n and S′
j ⊆ Sj ⊆ viewk(Ci), then set disqPk

(Ci) = 1.

5. (Each player Pk) For every committee Ci and each set Sj ⊆ viewk(Ci), Pk does the following:

If player Pk receives messages of the form (Sj , Ci, 0,D) from some set of players S′
j ⊆ Sj of

size at least 1
2a log n, then set compositionPk,Sj

(Ci) = D, else set compositionPk,Sj
(Ci) =⊥.

Given this, player Pk defines the final composition of the committee Ci (denoted final compPk
(Ci))

as the largest compositionPk,Sj
(Ci) among all sets Sj (where compositionPk,Sj

(Ci) was com-
puted as above).

6. The players choose the lexicographically smallest committee that was not disqualified, as the
chosen committee.

Define a “good set” as a set Sj (of size 3
4a log n) all whose members are good players. By

Lemma 4, a “good set” exists for every committee 5.
We first need to show that at the end of this stage, all the players have a consistent view of

which committees have been disqualified and which ones remain. Intuitively, the reason for this is
as follows. An honest player will accept “disqualify committee C” messages only from players that
it has accepted to C (in Stage 2, Step (e)). By Lemma 3, all such players are adopted to committee
C by every other honest player. Suppose many of these players (who disqualified committee C) are
bad. This means that every honest player adopts a lot of players into committee C, and therefore,
“good set” will disqualify C and let this fact be known to the world. On the other hand, if many
of the players that disqualified committee C are good, then they will themselves tell the world the
right decision. This is the agreement lemma (Lemma 6).

We also need to show not all committees are eliminated and the composition agreed on for the
chosen committee has more than 2

3 fraction of good players. For the proof, see Section 3.1.

5There may be many good sets for a committee, if the number of good players in the committee Ci is large. In
such a case, we designate an arbitrary such set as the good set for Ci.
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Stage 3

Now that all the players have agreed on a small committee with a large fraction of good players,
we run a leader election protocol (such as the ones of Feige [12] or Russell and Zuckerman [22])
within the chosen committee. The leader-election protocols assume a broadcast primitive, which
we implement using a randomized Byzantine Agreement protocol that runs in expected O( log n

log log n)
rounds (such as the one of Chor and Coan [9]). Finally, we ask the chosen leader to flip a coin and
send it to all the players.

3.1 Proof of the Main Theorem

Lemma 6 (Agreement Lemma). At the end of Stage 2, the following holds:

• If some good player Pi sets disqPi
(C) = 1 for some committee C, then every other good player

Pj sets disqPj
(C) = 1.

• Furthermore, for every committee C that is not disqualified, final compPk
(C) = final compPl

(C)
for any two honest players Pk, Pl.

Proof. We divide the proof of the first assertion into two cases:

• Case 1: Pi set disqPi
(C) = 1 due to receiving messages from some set S′

j ⊆ Sj such that Sj

consists of more than 1
4a log n bad players. (In this case, the Byzantine Agreement in Sj may

not succeed)
In this case, since Pi accepts Sj ’s disqualification only if Sj ⊆ viewi(C), it follows that for
every good player Pi′ , Sj ⊆ viewi′(C). Thus, viewi′(C) consists of more than 1

4a log n bad
players. There are at least 3

4a log n honest players in C and all of them are in viewi′(C).

This means that |
⋂

Pk∈goodset(C) viewk(C)| > 3
4a log n + 1

4a log n = a log n. Thus the good set
will decide to disqualify C, every honest player will be notified by the good set, and therefore,
every honest player will disqualify C.

• Case 2: Pi set disqPi
(C) = 1 due to receiving messages from some set S′

j ⊆ Sj such that Sj

consists of at most 1
4a log n bad players.

Then, since at most 1
3 fraction of Sj is corrupt, the Byzantine agreement protocol in Sj

would succeed and all honest players Pk ∈ Sj have the same value for disqPk,Sj
(C). Since

|S′
j | ≥ 1

2a log n, a fortiori, there is at least one honest player in S′
j , who supported the

disqualification of C. Because of agreement, all good players in Sj support the disqualification
of C, and this decision will be sent to all the honest players.

To prove the second assertion, we observe that for any committee C that is not disqualified, if
a set Sj ⊆ viewPk

(C) for some honest player Pk, then Sj has more than two-thirds fraction of
honest players (Otherwise, C would have been disqualified by the good set using an argument
similar to Case 1 above). Therefore the BA in Sj will succeed, and Sj will present a uniform
view of compositionPk,Sj

to all honest players Pk which, a fortiori, means that all honest players Pk

compute the same value for final compPk
(C).

Let H denote the set of all honest players. Define Ci
def
=

⋃
k∈H viewk(Ci). Intuitively, Ci is the

set of all players that are adopted by some honest player into the committee Ci. Our goal is to
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prove that there exists a committee Ci such that |Ci| is small. Lemma 7 and Corollary 8 show
that there indeed exists such a committee. Lemma 9 (the “survivor lemma”) shows that such a
committee cannot be disqualified.

Lemma 7. At the end of Stage 1, the following holds: For any two committees Ci 6= Cj, Ci∩Cj = φ.

Proof. If a player P ∈ viewk(Ci) for some honest player Pk and committee Ci, then P /∈ viewk′(Ci′)
for any honest player Pk′ and committee Ci′ , i

′ 6= i (due to the consistency property of gradecast).
The statement of the lemma follows immediately from this observation.

Corollary 8. There exists at least one committee Ci such that |Ci| ≤ a log n.

Proof. Lemma 7 says that the Ci for the different i’s are disjoint. Moreover, |
⋃

i∈[ n
a log n

] Ci| ≤ n. It

immediately follows that for at least one i, |Ci| ≤ a log n.

Lemma 9 (Survivor Lemma). At the end of Stage 2, there is at least one committee that is not
disqualified.

Proof. Consider the committee Ci, such that |Ci| ≤ a log n, guaranteed by corollary 8. We claim
that Ci cannot be disqualified. Suppose not. Then, there exists a set Sj ⊆ viewk(Ci) for some
honest player Pk such that Sj disqualifies Ci.

We first note that any such set Sj has at least 1
2a log n good players. Indeed, if Sj had more

than 1
4a log n bad players, and a honest Pk accepts Sj ’s disqualification of Ci, the good set will

disqualify Ci too (the argument is the same as that in Case 1 of Lemma 6). And this would mean
that Ci is too large, contrary to assumption. Thus, Sj has more than 2

3 fraction of good players,
and therefore, Byzantine Agreement in Sj succeeds.

The good players in Sj compute
⋂

Pl∈Sj
viewl(Ci) to decide if the committee is too big. But,

note that ⋂
Pl∈Sj

viewl(Ci) ⊆
⋃

Pl∈H
viewl(Ci)

def
= Ci

By the choice of Ci, |Ci| ≤ a log n, and therefore the good players in Sj do not disqualify Ci,
contrary to assumption.

Define Di
def
=

⋃
k∈H viewk(Ci). Intuitively, Di is the set of all players that are accepted by some

honest player into the committee Ci (Note the difference between the definitions of Di and Ci).
Lemma 10 is a kind of partial converse to Lemma 9, in the following sense: Lemma 9 says that, if
|Ci| is small, Ci survives. Lemma 10, on the other hand, says that if Ci survives, then |Di| is small.

Lemma 10 (Partial Converse of Survivor Lemma). If committee Ci is not disqualified at the
end of Stage 2, then |Di| ≤ a log n.

Proof. Ci was not disqualified implies, in particular, that the good set did not disqualify Ci. Sup-
pose, for contradiction, that |Di| > a log n. Any player P in Di is in viewk(Ci) for all players Pk

in the good set (by Lemma 3). Thus,
⋂

(Pk∈good set) viewk(Ci) ⊇ D, and thus of size more than
a log n. Thus, the good set will disqualify Ci, contrary to assumption.

Finally, we show that the composition agreed for the chosen committee consists of more than
2
3 fraction of good players (Note the degradation from 3

4).

11



Lemma 11 (“The Chosen One is Good” Lemma). At the end of Stage 2, the final composition
that the players agree for the chosen committee Ci (final compPk

(Ci)) contains at most a 1
3 fraction

of bad players.

Proof. As in Lemma 9, any set Sj whose decision matters has less than 1
4a log n bad players.

The composition for Ci advertised by the good set contains all the 3
4a log n good players in

Ci. Suppose this is not the final composition chosen. This means, there exists another set Sj that
advertised a larger composition for Ci. i.e, a composition of size s > 3

4a log n.
Now, we upper bound the number of bad players in any such advertised (and accepted) compo-

sition. The players in Sj agree on
⋂

Pk∈Sj
viewk(Ci) as the composition. For a good player Pk ∈ Sj ,

viewk(Ci) ⊆
⋃

Pk∈H viewk(Ci), which is smaller than a log n (by Lemma 10). Thus, it contains
less than 1

4a log n bad players. Since we take the intersection of all such views, the composition
computed by Sj has at most 1

4a log n. But, by the previous paragraph, it has size s > 3
4a log n.

Thus it has at most 1
3 fraction of bad players.

Lemma 12 (Round Complexity). BAPε(n) achieves Byzantine agreement among n players
tolerating t < (1

4 − ε)n faults, and runs in expected time O( log n
ε2

).

Proof. Stage 1 takes O(1) rounds. Stage 2 consists of a number of parallel executions all of which
terminate by a log n + 1 rounds. Stage 3 uses an O(log∗ n)-round leader election protocol in which
each step consists of all the log n players broadcasting a string of length logO(1) n to every other
player. Such a broadcast is simulated with the Chor-Coan protocol [9], which is a Byzantine
Agreement protocol to agree on a single bit. Thus, we are executing logO(1) n instances of the
Chor-Coan protocol, in parallel. We use the following fact about the Chor-Coan protocol: when
executed among n players out of which at most t are faulty, the probability that the protocol does
not terminate in 2t

log n + 2
√

n rounds is at most e−
√

n. Thus, the probability that one invocation of

the Chor-Coan BA (among the a log n players) does not terminate in a log n
log(a log n) +2

√
log n rounds is

at most e−
√

log n � 1
logO(1) n

. Thus, with probability at least 1− 1
logO(1) n

, all the parallel invocations

terminate in O( a log n
log log n) rounds. Thus, Stage 3 elects a good leader with a constant probability,

and takes log n log∗ n
ε2 log log n

= O( log n
ε2

) rounds. Thus, BAε runs in expected O( log n
ε2

) rounds.

Lets put together these lemmas to prove the main theorem. By Lemmas 9 and 11, at least one
committee is not disqualified, and the final composition agreed on for the chosen committee, has
more than 2

3 fraction of good players (which is necessary for the BA in Stage 3). Thus, in O( log n
ε2

)
rounds, we get a coin with bounded bias. By [11] (sketched in Appendix B), this gives BA with
O( log n

ε2
) expected rounds.

When The Number of Faults is Small

When the number of faults t = O( n
log2 n

), it is possible to construct an O(1)-round BA protocol.
The protocol is based on the following result of Ajtai and Linial [1], who show the existence of a
1-round collective coin-flipping protocol (in other words, a Boolean function) whose output cannot
be influenced by any coalition of less than n

log2 n
players. For a string x ∈ {0, 1}n and B ⊆ [n], let

xB denote the |B|-bit string formed by projecting x onto indices in B. For any B ⊆ [n], we can
thus write x as a pair (xB,x[n]\B).
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Theorem 13 (Ajtai-Linial [1]). There are constants c, ε > 0 and a family of Boolean functions
{fn}∞n=1 where fn : {0, 1}n → {0, 1} such that, for any set of variables B ⊆ [n] of size at most

cn
log2 n

, ε ≤ PrxB∈U{0,1}|B| [∃x[n]\B ∈ {0, 1}n−|B| such that f(xB,x[n]\B) = 0] ≤ 1− ε.

This theorem directly gives a way to get a common coin with bounded bias, when t = O( n
log2 n

),
and thus an O(1) expected rounds BA.

4 Conclusion and Future Work

In this paper, we construct a Byzantine Agreement protocol that tolerates t < (1
4 − ε)n faults, and

runs for O(log n) rounds. Many interesting questions remain.

1. Achieving Polynomial Communication: Our protocol, implemented in a straight-forward
way, has a quasi-polynomial communication complexity (the total number of bits sent by the
good players is nO(log n)). A modified version of our protocol can be run with an optimized
way of sending messages so that the total communication is polynomial in n. We omit the
details.

2. Tolerating More Faults: Our protocol tolerates t < (1
4 − ε)n faulty players (for any

constant ε > 0). It seems reasonable to conjecture that one can get t < (1
3 − ε)n.

3. Better Round Complexity: The Kahn-Kalai-Linial result [18] shows that if our source of
randomness for the coin flipping protocol is just one unbiased coin flip from each player, then
there is always a group of size O( n

log n) that has high probability of setting the value of the
coin. Extending the KKL lower bound to general sources of randomness is a long standing
open problem and for this reason, we cannot even rule out the possibility of an O(1) rounds
solution to the BA problem in our setting. Also, a “recursive approach”(a.l.a [22]) fails to
reduce the round complexity in our case.

4. O(log n) rounds for stronger models : Recall that our protocol works in a synchronous
network, against a non-adaptive Byzantine adversary. The restriction that the adversary
be non-adaptive is essential. This difficulty is inherent, since Bar-Joseph and Ben-Or [2]
show that if the adversary is adaptive, Ω̃(

√
n) rounds are necessary to achieve Byzantine

Agreement in a synchronous network. In the case of an asynchronous network, achieving
even a polynomial-rounds BA protocol is open. We note that the best known asynchronous
BA protocols [3, 7] have exponential expected round-complexity.

In subsequent work [17], we resolve the first and second questions, by constructing a BA protocol
that runs in O( log n

ε2
) rounds, tolerates any t < (1

3 − ε)n faults and has a communication complexity
of Õ(n2).
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