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Abstract This paper considers the Byzantine agreement problem in a completely
connected network of anonymous processors. In this network model the processors
have no identifiers and can only detect the link through which a message is delivered.
We present a polynomial-time agreement algorithm that requires 3| (n — t)t/(n —
2t)] + 4 rounds, where n > 3¢ is the number of processors and ¢ is the maximal
number of faulty processors that the algorithm can tolerate. We also present an early-
stopping variant of the algorithm.

Keywords Byzantine agreement - Anonymous distributed algorithms - Anonymous
networks - Distributed fault tolerant computing

1 Introduction

The Byzantine Agreement (BA) problem, originally introduced in the papers of
Pease, Shostak and Lamport [19, 23], was intuitively described by a scenario about
a group of generals in ancient Byzantium. Some of the generals are traitors, however
the loyal generals do not know who the traitors are. The generals need to agree on a
plan of a forthcoming battle, in which the legions of the loyal generals must attack
or retreat together, otherwise they will be defeated. The generals communicate by
messengers that orally pass the messages and it is assumed that all the messengers
are loyal (honest).

The accepted formalization of this scenario is a point-to-point network of synchro-
nized processors that are required to agree on a common value, in a way that depends
on the processors’ initial inputs. In this model, the network has a channel between
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Fig. 1 A system with 4 processors in (a) standard model, (b) anonymous model

every pair of processors, the processors have unique names (identifiers) that are glob-
ally known, and for every received message the identifier of the sending processor is
assumed to be known to the receiver. These assumptions mean that each processor
has a mapping between the numbers of the communication channels (links) and the
identifiers of the processors on the other side of the channels (see Fig. 1a). Below we
refer to this system model as the “standard model”.

This paper shows that some of the assumptions made in the standard model are
not required in order to solve the synchronous BA problem. More specifically, we
show that no a priori knowledge about the identifiers of other processors is required
and that BA can be reached even if no such identifiers exist at all, i.e., the processors
are anonymous. In the anonymous case the only information available to the receiver
is the identifier of the link that delivered the message (see Fig. 1b).

The main result of this paper is a (deterministic) polynomial algorithm that solves
the BA problem in a synchronous system of n anonymous processors of which ¢
can be faulty, where n > 3¢. Obviously this result is optimal in the number of faulty
processors, since even in the standard model the agreement problem can not be solved
for n <3z [16, 23].

The predominant motivation of this study is to find the minimal conditions which
still allow to reach BA. In light of the central role of BA in the area of distributed
computing, we believe it is important to understand this aspect of the problem. Find-
ing these conditions also extends the class of problems that are solved by using BA.

The anonymous model is also interesting due to the improved privacy provided to
the parties engaged in a BA protocol. Unlike the standard model, in which the parties
in the BA protocol reveal the inputs under their real names, the anonymous model
only requires that it will be possible to distinguish between messages from different
parties. For example, in a BA protocol in the standard model, the messengers sent
by a loyal general G| who wants to retreat, tell that G’s opinion is “retreat”. Thus
G is revealed (under his real name) as a coward (or a traitor). In contrast, in a BA
protocol in the anonymous model, the messengers do not reveal (or even know) the
name of the general who sent them. The only requirement is that any loyal general G
uses the same messenger to communicate with general G, during the whole protocol
(thus allowing G to distinguish between messages from G and messages from other
generals).
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1.1 Previous Related Work

BA is fundamental for the design of distributed systems since it provides a basic
primitive that allows to reach a coordinated and consistent behavior of the proces-
sors. A BA algorithm can also be viewed as a means to simulate a broadcast channel
on top of a point-to-point network. Since the BA problem was introduced by Pease,
Shostak and Lamport in [19, 23], it is probably the most extensively studied problem
in distributed computing. Previous works considered the problem under various tim-
ing, topology, authentication and failure assumptions. A general introduction to the
subject can be found in [2, 20].

An algorithm for reaching BA in 7 4 1 rounds for n > 3¢ was presented in [23].
Shortly after, it was shown that no deterministic algorithm can solve the problem in
less than 7 + 1 rounds [15]. However, the original BA algorithm requires computa-
tion and communication that are exponential in ¢, thus leaving the design of more
efficient algorithms as an open problem. One of the first polynomial BA algorithms
was presented in [13]. The algorithm in that paper required 2¢ 4+ 3 communication
rounds. Following several works which gradually improved the tradeoff between the
resilience of the algorithm and its round complexity, Garay and Moses presented in
[17] a polynomial algorithm that achieves BA in ¢ + 1 rounds for n > 3¢.

The BA algorithms presented in [12, 13, 24, 26] are of direct relevance to the
current paper. These algorithms are based on a consistent broadcast' primitive [24],
which ensures that all the correct processors receive exactly the same messages at
almost the same time (see Sect. 3 for a formal definition). A consistent broadcast
primitive allows to design simple polynomial algorithms for BA and some other co-
ordination problems (e.g., clock synchronization in presence of Byzantine failures
[25]). The algorithms presented in this paper are inspired by this approach.

The study of computations in networks of anonymous processors was initiated
in [1], where the connection between anonymous computations and the topological
theory of graph coverings was shown. Based on this theory, functions and relations
that are computable in anonymous networks were completely characterized in follow
up papers, e.g., [6, 7, 28]. In addition to anonymous networks, several anonymous
shared memory models were also considered in the past, e.g., in [3]. To the best of
our knowledge fault tolerant algorithms for anonymous distributed systems were not
studied so far.

Anonymity and privacy issues were also extensively studied in the context of cryp-
tography and secure multi-party computation. One of the main results in this direction
shows that it is possible to compute an arbitrary function defined on the inputs of the
processors, in a way that leaks no additional information to the faulty processors (un-
less it is part of the output), for n > 3¢ [5, 10]. A similar result for a computationally
bounded adversary can be achieved for n > 2¢, by relying on public-key cryptogra-
phy [18]. An important special case of such a computation is voting, e.g., as in the
generals’ scenario presented above. Starting from the first papers by Chaum and oth-
ers [8, 9, 11], electronic voting has become an active research area with significant
practical implications.

I'The name was invented later.
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In a recent paper, a question that reminds the one considered in the current work
is studied in the context of cryptography-based secure multi-party computation [4].
More specifically, the goal of that paper is to provide a characterization of secure
computation in the case of processors that have no established authentication mecha-
nism, such as a deployed public-key infrastructure.

1.2 Organization and Contributions of the Paper

The paper is organized as follows. The next section gives the formal definitions of
the anonymous model and the BA problem. Section 3 presents an anonymous BA
algorithm for n > 3¢ that requires 3| (n — )t /(n — 2t) | +4 rounds of computation. An
early-stopping version of the algorithm which requires at most min(3|(n — t)t/(n —
20 4+4,3[(n— f)f/(n—t— £)] +3f+9) rounds, where f is the actual number of
faulty processors in an execution, is presented in Sect. 4. Conclusions and directions
for further research are presented in Sect. 5.

2 Definitions
2.1 The System Models

Consider a system with n processors py, ..., p,, each modeled by a (possibly infi-
nite) state machine. Throughout the paper this kind of numbering is external and is
not known to the processors themselves. The processors are arranged in a completely
connected network, i.e., there is a dedicated (bidirectional) communication channel
(link) between each pair of processors and from each processor to itself. The links
connected to a processor p are numbered from 1 to n, where links 1,...,n — 1 are
connections to the other processors and link n is a self loop. Each link is modeled
as a pair of queues: for incoming messages and for outgoing messages. The state
machine that models a processor has a pair of special transitions, called send and
receive, that allow it to place messages in an outgoing queue and receive messages
from an incoming queue, respectively. To perform these transitions the number of a
queue (in the range 1, ..., n) to which it is applied must be given. In addition, each
state machine has a special variable named input and a special transition that allows
it to get an input from an external source.

Definition In the anonymous system model the state machines of all the processors
are identical (see Fig. 1b).

Definition In the standard system model the state machines of different processors
may be arbitrarily different.

We note that in a typical distributed algorithm for the standard model the only
differences between the state machines of the processors are the processor identifier
and the mapping table (see Fig. 1a).

This paper deals with (deterministic) synchronous algorithms in which the proces-
sors are assumed to execute in lock-step, which allows to partition the execution into
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rounds. Each round consists of two phases: a send phase followed by a receive phase.
In the send phase every processor is allowed to place messages in its outgoing queues,
and in the receive phase to receive messages from its incoming queues. In both phases
a processor can perform internal computations. At the end of each round all the mes-
sage queues are emptied (regardless of whether they were accessed or not).

Some of the processors may experience arbitrary (Byzantine) failures. After a fail-
ure, it is assumed that a processor can generate arbitrary messages. It is convenient to
consider the faulty processors as being controlled by a malicious adversary that has
a complete information about the execution. A processor that follows the algorithm
during the whole execution is said to be correct. Hereafter let ¢ denote the a priori
bound on the number of faulty processors, and let f denote the actual number of
faulty processors in an execution.

An r round execution £ of a deterministic algorithm in a given network is com-
pletely defined by the inputs given to the correct processors and the messages that the
faulty processors send to the correct ones. More formally, given aset C € {1,...,n}
of the indexes of the correct processors, a set of inputs to the correct proces-
sors Z = {(p;, input;)};cc, and a set of messages sent by the faulty processors to
the correct processors M = {(pi, pj, k,m)}ie(1,...n)\C,jeC,r=k>1 (Where the tuple
(pi, pj, k,m) means that faulty processor p; sends message m to correct processor
p; inround k), an execution & is defined as £ = E£(C,Z, M).

2.2 The Agreement Problem

The Byzantine Agreement (BA) problem [19, 23] requires that the correct processors
agree on a common value despite the presence of faulty processors. More formally,
each processor gets an input value from a set V and the processors have to output a
decision value from V, such that the following conditions are satisfied:

Termination: Every correct processor eventually decides.
Agreement: All the correct processors decide on the same value from V.
Validity: If the input to all the correct processors is v € V, then v is the only
possible output value.

The problem stated above is also known as eventual BA. In a stronger version, called
simultaneous BA, all the correct processors are required to decide at exactly the same
round [14].

In this paper we consider the binary BA problem, in which the set of possible input
values to the processors is {0, 1}. The general BA problem can be solved by executing
several instances of the binary agreement algorithm in parallel. It is interesting to note
that the algorithm presented in [27] for reducing a general BA problem to a binary
BA problem at the cost of two additional rounds, does not use processor names. Thus
it works in an anonymous system for n > 3¢, which provides an additional method
for solving the general BA problem using a binary BA algorithm.

3 An Agreement Algorithm with Optimal Resiliency

This section begins with an informal review of the methods used in [12, 13, 24, 26],
which are relevant to the current paper. The BA algorithms in these papers are based

@ Springer



Theory Comput Syst (2008) 42: 222-238 227

on a primitive (called consistent broadcast in [20]), that satisfies the following three
properties:

(Correctness) If a correct processor p broadcasts a message (p, m, r) in round r
then every correct processor accepts it by round r + 1.
(Unforgeability) If p is correct and does not broadcast (p,m,r) then no correct
processor ever accepts (p, m, r).
(Relay) If correct processor accepts (p, m, r) in round r’ then every correct
processor accepts (p, m, r) in round r’ + 1 or earlier.

In the authenticated model considered in [12], consistent broadcast is achieved with
the help of digital signatures. In the standard model, assuming n > 3¢ consistent
broadcast can be implemented as follows [24]:

(1) To broadcast a message m in round r a processor p sends the message
(“init”,p, m, r) to all the processors.

(2) If a processor receives the message (“init”,p, m,r) from p in round r, it sends
the message (“echo”,p, m, r) to all the processors.

(3) If a processor receives (“‘echo”,p, m, r) messages from at least n — 2t processors,
it sends the message (“echo”,p, m, r) to all the processors, unless it already sent
such a message.

(4) Upon receiving (“echo”,p, m, r) from at least n — ¢ processors, m is accepted.

With the help of a consistent broadcast primitive, a BA algorithm can be constructed
in the following manner. The possible decision values (0 and 1) should be consid-
ered as candidates in an election held among all the processors. Each processor that
decides to support 1 votes in its favor, while refraining from voting is interpreted as
supporting 0. A processor votes by broadcasting “1”, and it is allowed to do so at
most once. The consistent broadcast primitive ensures that the vote of every proces-
sor is seen by all the correct processors in the same way and almost at the same time.
A correct processor with input = 1 must vote right at the beginning of the algorithm.
A correct processor with input = 0 can possibly vote (in favor of 1) at some later
stage of the algorithm, and it does so if it sees that the number of 1’s supporters is
higher than a certain threshold value. This threshold value increases with time, thus
after a certain number of rounds 1 can get no new votes from correct processors with
input = 0. At this point the algorithm stops and each processor checks how many
votes 1 got. If there are at least 2¢ + 1 votes, it decides 1, otherwise it decides 0. An
additional property of the algorithm, which is crucial for its correctness, is that if at
some round a correct processor with input = 0 votes, then all the correct processors
that did not vote so far do so shortly after.

3.1 Anonymous Byzantine Agreement

Since the definition of the consistent broadcast primitive assumes the existence of
unique identifiers for each processor, the approach presented above can not be directly
applied to the anonymous model. However, the above voting paradigm, as well as the
basic idea of the consistent broadcast protocol (“echo” messages that ensure that the
correct processors have approximately the same view of the number of votes), can be
adapted to the anonymous model.

@ Springer



228 Theory Comput Syst (2008) 42: 222-238

In the resulting Anonymous BA (ABA) algorithm, a processor votes by sending
an init message to all the processors, which normally results in an increment of the
proposedCounter variables of all the correct processors. Each processor is allowed
to send init messages at most once (a correct processor disregards any additional
init message received through the same link). In the beginning of every round each
correct processor sends the current value of its proposedCounter variable to all the
processors. This is similar to sending the echo messages in the consistent broadcast
primitive. Every processor also has a counter variable that holds the current number
of votes in favor of 1. The increment of the counter variable is controlled by the (¢ +
1)-th lowest value received in each round. The proposedCounter variable might also
be updated according to the values received from other processors (this in addition
to increments resulting from the receipt of init messages): proposedCounter is set to
the value of the (2¢ + 1)-th lowest value received, unless it is lower than its current
value. This last operation is intended to provide the counterpart of the Relay property
for the anonymous case, since it keeps a lag of at most one round between the values
of the counter variables between the different correct processors (see also Lemma
3.1 below). The described algorithm solves the ABA problem for n > 5¢ in 2| (n —
t)t/(n —3t)] + 2 rounds. A formal presentation of the algorithm and a proof of its
correctness can be found in [22].

We now explain in more detail why the above algorithm works only for n > 5¢.
The basic new problem introduced by the anonymous model is that the ¢ faulty
processors can generate more than ¢ votes. This follows from the fact that n — 3¢
init messages sent by the faulty processors to the correct ones are sufficient for incre-
menting the counter of the correct processors by 1 (since together with the ¢ faulty
processors there can be n — 2¢ processors who send the new value, causing the re-
maining 2¢ correct processors to increase their proposedCounter as well, which leads
to the increment of the counter variables). The total number of links between the cor-
rect and faulty processors is (n — ¢)¢, so that the number of votes generated by the ¢
faulty processors can be bounded by | (n — )¢ /(n — 3¢)|. As in the BA algorithms for
the standard model, e.g. [24], the number of votes of the correct processors should
be higher than twice this number. Informally, the reason is as follows. If initially 1
has at least |(n — t)t/(n — 3¢t)] + 1 supporters among the correct processors, then
all the correct processors vote for 1 right away, so that 1 is guaranteed to have n — ¢
votes. This number of votes must guarantee the election of 1. Otherwise, initially 1
has at most | (n — t)t/(n — 3t)| supporters among the correct processors, and if no
correct processor with input = 0 ever decides to vote, then the election result must be
0. Since the faulty processors can generate additional | (n — )t/(n — 3¢)] votes, we
must require 2| (n — t)t/(n — 3t)] votes to be insufficient for the election of 1. This
explains the 2| (n — t)t/(n — 3t)| < n — ¢t inequality (which is equivalent to n > 5t¢,
if we neglect the rounding).

One way to solve the ABA problem for n > 3¢, is to base the decision of each
processor on its own view of the number of vofers, rather than on the collective num-
ber of votes (the value of the counter). In such an algorithm, if initially 1 has at least
t 4+ 1 supporters among the correct processors, then all the correct processors vote
for 1 right away, so that each correct processors sees n — t voters (i.e., receives init
messages from at least n — ¢ processors). However, if initially 1 has at most ¢ sup-
porters among the correct processors and no correct processor with input = 0 ever
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decides to vote, then the result must be 0. Since there are at most ¢ faulty processors,
every correct processor sees at most 2¢ voters. These two cases can be distinguished
because 2t <n —t.

The above idea raises a new difficulty. Since the number of votes generated by the
t faulty processors can be substantially higher than ¢, the faulty processors will be
able to make the correct processors vote even when all the correct processors start
with input = 0. To solve this problem, in the new algorithm the first init message
received from a processor is not ignored only if the number of votes for 1 is already
high enough. We note that this verification procedure for the init messages is crucial
for the construction of an early-stopping ABA algorithm, presented in Sect. 4.

By applying these modifications an ABA algorithm for n > 3¢ is achieved. The
formal presentation of this algorithm can be found in [22]. The running time of this al-
gorithm is ® ((n —t)t/(n — 3t)), which is quadratic in the number of processors when
n =3t + 1. Intuitively, this is due to the large number of votes that the faulty proces-
sors are able to generate. This number can be significantly reduced if the processors
use another variable (named possibleCounter) to count the init messages, instead of
using proposedCounter for that. After this modification the algorithm requires only
O (t) rounds, and in the specific case n = 3¢ + 1 it requires 67 + 1 rounds.

The resulting algorithm is presented in Fig. 2. The formal correctness proof is
shown in Sect. 3.2.

3.2 The Correctness Proof

To begin with, observe that only the first inir message received through a link “is
counted”, while all the others are ignored (see lines 17, 18 in Fig. 2). This property
allows to assume that during the whole execution every processor sends at most one
init message on each of its links. This way the algorithm guarantees that the faulty
processors are unable to generate an unbounded number of votes.

For convenience we denote the expression | (n —¢)t/(n —2t)] by T.

Lemma 3.1 If by the end of round r < 3T + 3 the counter of a correct processor p
is C, then by the end of round r + 1 the counters of all the correct processors are at
least C.

Proof First observe that the value of the counter is updated only in line 15. If by the
end of round r the value of the counter of p is C > 0 then p must have received (in
round r or in a previous round) proposed values that are greater or equal to C from
n — t distinct processors. Since at least n — 2t of these messages originated from
correct processors, they must have been received by all the processors. According to
the algorithm, by the end of round r the value of proposedCounter of every correct
processor is at least C (see line 14). Thus, the proposed values sent by every correct
processor in round r 4 1 are greater or equal to C. Therefore by the end of that round
the counter of every correct processors is at least C. O

Note The property that was shown in Lemma 3.1 corresponds to the Relay property
of the consistent broadcast. Next we show that if some correct processor with input =
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INITIAL SETUP:

1 GET the input value;

2 sentlInits := false;

3 possibleCounter := proposedCounter := counter := 0;

IN ROUND 1 ONLY:

IF input = 1 THEN
SEND ¢nit TO ALL;
sentInits := true;

o O

IN ROUND 1 <7 <3[(n—t)t/(n—2t)] +4:
SEND (" Po”,possibleCounter) AND (” Pr”, proposedCounter) TO ALL;
IF counter >t + (r—1)/3 AND —sentInits THEN
9 SEND 4nit TO ALL;
10 sentInits := true;

@ N

11 RECEIVE MESSAGES (sent to the processor in the current round);

12 LET PrV AND PoV be the arrays of the proposed and possible values
received: PrV[i] and PoV[i] are the proposed and possible values
received from link ¢, respectively, or O if no such value
was received from the link;

13 SORT PrV in a decreasing order; SORT Pol in a decreasing order;

14 proposedCounter := max(proposedCounter, PrVn — 2t], PoV[n —t]);

15 counter := max(counter, PrV[n —t]);

16 j:=0;

17 FOR every link from which init was received for the first time

18 ji=j+1;

19 IF counter >t+ (r—1)/3 OR r =1 THEN

20 possibleCounter := max(possibleCounter, counter + j);

DECISION RULE TO BE APPLIED AT THE END OF ROUND 3 |(n —t)t/(n —2t)] +4:
21 IF init messages were received from n —t¢ distinct processors THEN
22 DECIDE 1;

23 ELSE

24  DECIDE 0;

Fig. 2 Anonymous BA algorithm for n > 3¢

0 votes in favor of 1, then shortly afterwards all the other correct processors vote in
favor of 1.

Lemma 3.2 If a correct processor p sends init messages in round 3T +1>r > 1,
then every correct processor sends init messages by round r + 3.

Proof From the algorithm it follows that at the end of round r — 1 the counter of p is
at least r + (r — 1)/3. According to Lemma 3.1, after line 15 in round r the counter

of every correct processor becomes at least ¢t + (r — 1)/3. Thus the init message
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sent by p causes every correct processor to set its possibleCounter to be at least
t + (r — 1)/3 + 1. This in turn shows that in round r + 1 the possible value sent by
every correct processor is at least # + (r — 1)/3 4 1, so that by the end of that round
the proposedCounter of every correct processors is at least  + (r — 1)/3 + 1. It
follows that by the end of round » + 2 the counter of every correct processor becomes
at least t + (r — 1)/3 + 1. Therefore in round r + 3 every correct processor with
sentInits = false must send init to all the processors (see lines 8—10). O

Definition For a, b, c € N, let a >, b denote the expression
(a<chna=b)v(a=cAha>=b>c—1).

The next two lemmas provide a bound on the total number of votes that can be
generated by all the faulty processors.

Lemma 3.3 Let £ = E(C,Z, M) be an execution in which no correct processor
sends init messages in rounds 2, ...,r, and let I be the number of correct proces-
sors whose input in £ is 1. Suppose that at the end of round r the counter of some
correct processor p is C. Then the total number of init messages received by all the
correct processors from the faulty processors by round r is at least (n —t — f)(C —1I).

Proof The proof is by induction on (C — ). For C < I the lemma obviously holds.
For C > I, since in particular C > 0, it follows that p must have received (in
round r or in some previous round) proposed values that are greater or equal to
C from n — ¢t distinct processors, of which at least n — 2¢ are correct. Let ro < r
be the smallest round by the end of which there exists a correct processor pg with
proposedCounter > C. From the definition of rg it follows that in this round pg
received at least n — ¢ possible values that are greater or equal to C, since oth-
erwise it must have received at least n — 2¢ proposed values greater or equal to
C, of which at least n — 3¢ must have originated from correct processors. Among
these possible values, at least n — t — f originated from correct processors that have
possibleCounter > C. Let p1, ..., p,—,— s denote these processors and let r; < rg, for
1 <i<n—t— f,bethe round at which the possibleCounter of p; becomes greater
or equal to C. It follows that p; must have received an init message in round r;. If
r; > 1 this init message must have come from some faulty processor, since accord-
ing to the assumptions on &£ no correct processor sends such messages after round
1. Otherwise, r; = 1, thus p; must have received in the first round an init message
from at least one faulty processor, since C > I. Let m; = (q;, pi, ri, init) denote an
init message received by p; in round r; from some faulty processor g;. Due to the
previous argument such a message exists.

Consider a new execution &' = E(C,Z, M\ {my, ..., mu_;—r}). Next, we prove
a claim about the relationship between £ and &', which will allow to complete the
proof of the lemma by applying the induction assumption to £’.

Claim Let g be any correct processor. Let counter(s), proposedCounter(s), possi-

bleCounter(s), PoV[i](s) and PrV[i](s), for 1 <i < n, be the values of counter,
proposedCounter, possibleCounter, PoV[i] and PrV[i] of q at the end of round
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s of &, respectively. Let counter (s), proposedCounter’ (s), possibleCounter'(s),
PoV'[i](s) and PrV'[i](s) be the values of counter, proposedCounter, possible-
Counter, PoV[i] and PrV[i] of q in the end of round s of £'. Then

counter(s) > ¢ counter’ (s), (1)
proposedCounter(s) >c proposedCounter’(s), 2)
counter(s) < C = possibleCounter(s) >c possibleCounter'(s). 3)

Proof The proof is by induction on the round number s. For s = 1, (1) and (2) hold
since at the end of the first round the proposedCounter and counter of every correct
processor remain 0. If possibleCounter(1) < C or if g is not one of the processors

Pl .-, Pn—i—f, then g receives the same number of init messages in £ and &', thus
possibleCounter(1) = possibleCounter’(1). If possibleCounter(1) > C and q is one
of the processors pi, ..., pp—i—f, thenin &’ g receives one less init message than in

&, nevertheless possibleCounter(1) > ¢ possibleCounter’ (1).

Assuming that the claim holds for round s, we prove it for round s + 1.

If there exists a correct processor ¢’ whose counter at the end of round s of & is
at least C, by the induction the counter of ¢’ in £’ is at least C — 1. By Lemma 3.1,
the counter of ¢ at the end of round s + 1 is at least C — 1 in £, and at least C in
£. Since the proposedCounter of g can not be lower than its counter, we have shown
that (1), (2) and (3) hold in round s + 1 as well.

Otherwise, the counter of every correct processor at the end of round s of £ is less
than C. Therefore (3) implies that before the array PoV is sorted, PoV[i](s + 1) >¢
PoV'[i](s + 1) for every link i that is connected to a correct processor. If link i of ¢
is connected to a faulty processor, then PoV[i]1(s + 1) = PoV’[i](s + 1), because the
values sent by the faulty processors are the same in £ and £’. Similarly, (2) implies
that before PrV is sorted, PrV[il(s + 1) >¢ PrV’'[i1(s + 1), forevery 1 <i <n.Itis
easy to see that these inequalities are unaffected by sorting the arrays. Therefore lines
14 and 15 of the algorithm (in round s + 1) leave the inequalities (1) and (2) correct.

We now prove that (3) holds in round s + 1. If counter(s + 1) < C, then (as just
shown) the counter of ¢ in £ and &’ is the same, thus line 20 is either executed in
both € and &’, or in none of them. In the later case we are done. Otherwise, there
are three different possibilities. First, if possibleCounter(s + 1) < C, then the num-
ber of inits g receives is the same in £ and &', so that possibleCounter(s + 1) =
possibleCounter’ (s + 1). The second possibility is that possibleCounter(s) > C, in
which case the claim follows from the induction assumption. The third possibility
is when possibleCounter of g becomes greater or equal to C in round s + 1. In
this case the number of inits g receives in £ is by at most 1 less than in &, thus
possibleCounter’ (s + 1) > C — 1. This completes the proof of the claim. U

From the claim it is clear that the following two properties hold in £’: (i) no correct
processor sends init messages in rounds 2, ..., r; and (ii) by the end of round r the
counter of p in &’ is at least C — 1. These two properties allow to apply the induction
assumption on &’. Since £’ is obtained from & by removing n — ¢ — f init messages
sent by the faulty processors to the correct processors, the lemma follows. U
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Lemma 3.4 Let I be the number of correct processors whose initial input in an
execution £ is 1. If no correct processor sends init messages in rounds 2, ...,r,
then by the end of round r of & the counter of every correct processor is at most

L= f/n—t =)+ 1.

Proof Let C be the value of a counter of some correct processor by the end of round
r. By Lemma 3.3, the total number of init messages sent by the faulty processors to
the correct processors by round 7 is at least (n —t — f)(C — I'). Observe that the total
number of links between the correct processors and the faulty processors is (n — f) f.
Therefore the total number of init messages received by the correct processors from
the faulty processors never exceeds (n — f) f. It follows that (n — f)f > (n —t —
IC =D, thusC—T<|(n—f)f/(n—1t—f)]. U

Corollary 3.5 By the end of round 3T + 4 either all the correct processors send init
messages or at most t correct processors send init messages.

Proof First, observe that if there are 7 4 1 correct processors whose input value is 1
then by the end of round 3 the value of the counter of every correct processor is at
least # + 1. It follows that by round 4 all the correct processors send init messages.
Otherwise, there are at most ¢ correct processors with input value 1 (which send init
messages in the first round of the algorithm). If there exists a correct processor that
sends init messages in round r, where 3T + 1 > r > 2, then according to Lemma 3.2,
by round » + 3 all the correct processors send init messages. If such a processor does
not exist, then no correct processor can send init messages after round 37 + 1 (which
requires a counter that is at least r + 7' + 1), because by Lemma 3.4 the counter of
every correct processor is not greater than |[(n — ) f/(n —t — )|+t <T +t. O

Theorem 1 The algorithm in Fig. 2 solves the binary simultaneous ABA problem for
n > 3t.

Proof (Agreement) Corollary 3.5 implies that by the end of round 37 + 4, either
all or at most ¢ correct processors send inif messages. In the first case all the correct
processors decide 1. Otherwise, each correct processor received init messages from at
most ¢ + f processors. Since n > 3t, the decision rule of the algorithm (lines 21-24)
implies that every correct processor decides 0.

(Validity) Consider the two possible cases. If the input of all the correct processors
is 1, then all the correct processors send init messages in the first round, thus all the
correct processors decide 1.

In the second case the input of all the correct processors is 0. The only init mes-
sages received in the first round by a correct processor originate from the faulty
processors. Since there are at most ¢ faulty processors, the possibleCounter by the
end of the round is at most ¢. Therefore, in the second round after executing lines 14
and 15 of the algorithm, the proposedCounter and counter of every correct proces-
sor are at most ¢. Thus the IF expression in line 19 evaluates to FALSE, so that
possibleCounter remains at most ¢. This last argument remains correct in all the sub-
sequent rounds as well. Therefore, by the end of round 37" 4 4 no correct processor
sends init messages. In particular it follows that all the correct processors decide 0. [J
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An obvious optimization of the algorithm in Fig. 2 would be to refrain from send-
ing the values of possibleCounter and proposedCounter if they were not updated.
In this case, when a correct processor receives no value from another processor it
assumes that it remained unchanged since the previous round.

3.3 Communication Complexity

To conclude this section, we analyze the communication complexity of the de-
scribed algorithm. Let C(r) denote the value of the highest possibleCounter
or proposedCounter variables among all the correct processors in the end of
round r. Observe that after executing line 14 of the algorithm in round r + 1
the proposedCounter of any correct processor remains at most C(r). Therefore,
C(r + 1) — C(r) <n, since any increase can be caused only by init messages re-
ceived by some correct processor (in lines 17-20).

It follows that the values of possibleCounters and of proposedCounters of the
correct processors in an execution of the algorithm can not grow beyond n?(),
since the number of rounds is O(t). Therefore any such variable is represented by
O (logn) bits. Since in each round every correct processor sends to all the proces-
sors its possibleCounter and proposedCounter, and possibly an init message (O (1)
bits), the total communication complexity of a single round is O (n?) messages and
O (n?logn) message bits. Thus the communication complexity of the algorithm is
O (n°t) messages and O (n’tlogn) message bits.

4 Achieving Early Stopping

In [14] it was shown that (in the standard model) the eventual BA problem can be
solved in time proportional to the actual number of faulty processors f, rather than
t. An eventual BA algorithm which has this property was called early-stopping.

In this section we present an early-stopping ABA algorithm which is a variation
of the algorithm in Fig. 2. The only difference between the two algorithms is in the
decision rule. While in the ABA algorithm in Fig. 2 the decision rule is applied only
once (at the end of the last round), in the early-stopping algorithm, the decision rule
(see Fig. 3) is applied at the end of every round to check if the processor is able to de-
cide or stop. The new decision rule uses two new variables that need to be initialized
as shown in lines 1, 2 of Fig. 3. Note that a correct processor that decides in round r
does not necessarily stop in that round—it might need to run for a few more rounds
to make sure all the other correct processors decide on the same value.

Lemma 4.1 Let C(r) be the value of the highest proposedCounter among all the
active correct processors by the end of round r. Then the upperCounterBound of
every active correct processor at the end of round r is at least C(r).

Proof The proof is by induction on the round number r. For » = 1 the lemma holds

since C(1) = 0. Assume that the lemma is true for round r. For r + 1, if C(r) =
C(r + 1) then obviously the lemma is true in that round as well. If C(r) < C(r + 1),
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INITIAL SETUP:
1 stopRound := 3T + 4;
2 upperCounter Bound := 0;
DECISION RULE TO BE APPLIED AT THE END OF EVERY ROUND 7:
3 upperCounter Bound := max(upperCounter Bound, PoV[n — 2t]);
4 IF init messages were received from n —¢ distinct processors THEN
5 DECIDE 1;
6 stopRound := min(stopRound, r + 3);
7 ELSE IF r =37 +4 OR (upperCounter Bound < t+r/3—1 AND r > 1) THEN
8 DECIDE 0;

9 STOP
10 IF r = stopRound THEN
11 STOP

Fig. 3 The decision rule for early-stopping Anonymous BA

let p be a correct processor whose proposedCounter is equal to C (r + 1) at the end of
round r 4 1. Observe that in round r + 1 the entry PrV[n —2t] (in the sorted array PrV
of p) can not be higher than C (r). It follows that PoV[n —t] = C(r + 1) (in the sorted
array PoV of p). This implies that by the end of the round the upperCounterBound
of every correct processor is assigned a value which is at least C(r + 1) (see line 3 in
Fig. 3). (]

Consider the case in which there are # 4 1 correct processors with input = 1. Then
in round 2 the value of upperCounterBound becomes at least ¢ + 1, so that no correct
processor stops before round 4. In this case, as in the original ABA algorithm, all the
correct processors send init messages by the end of round 4, and thus they all decide
1 by the end of that round.

Next we consider the case in which there are at most ¢ correct processors with
input = 1. Let r be the earliest round in which some correct processors stop and let
p be one of the correct processors that stop in round r. If r = 3T + 4, then we get
an execution of the original algorithm, which was already shown to be correct in
Theorem 1. Consider now the r < 3T + 4 case. In rounds 1, ..., r, all the correct
processors are active, thus the lemmas proved in Sect. 4 are correct for these rounds
of the early-stopping algorithm as well. This fact is used in the next two lemmas to
prove that the early-stopping algorithm satisfies the agreement property of BA.

Lemma 4.2 [f p decides 1 then all the correct processors decide 1.

Proof From the decision rule in Fig. 3 it follows that p decided 1 in round r — 3.
Therefore, by round r — 3 p received init messages from n — ¢ distinct processors.
At least one of these processors must be a correct processor with input = 0. Lemma
3.2 implies that by round r all the correct processors send init messages, therefore by
the end of round r all the correct processors that did not decide so far must decide
1. Also, all the correct processors that decided before round » must have decided 1,
otherwise there would have been a correct processor that stopped before round r,
which contradicts the assumptions. Note that the above argument also shows that all
the correct processors stop by round r + 3. U
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Lemma 4.3 If p decides 0 then all the correct processors decide 0.

Proof In the end of round r, the upperCounterBound of p must be less than ¢ +
r/3 — 1. Therefore, in the end of that round there must exist ¢ 4+ 1 correct processors
whose possibleCounter is less than ¢t + r/3 — 1. In addition, Lemma 4.1 implies that
the proposedCounter of every correct processor in the end of round r is also less than
t+r/3—-1.

Since the proposedCounter of a correct processor can not be lower than its
counter, it follows that by the end of round r the counter of any correct processor
must be less than ¢ 4 r/3 — 1. Therefore, in rounds r — 2, r — 1, r no correct proces-
sor could have sent init messages or updated its possibleCounter. Also, no correct
processor sent init messages in rounds 2,...,r — 3, because otherwise according
to Lemma 3.2 by round r all the correct processors would have sent init messages,
which would have caused p to decide 1.

Next we prove that the counters of all the correct processors remain lower than
t +r/3 — 1 in the subsequent rounds as well, so that no correct processor will send
init messages in round r’ > r. This fact will complete the proof, since it shows that
any correct processor will never get init messages from more than ¢t + f distinct
processors (and thus will never decide 1). The proof is by induction on the round
number 7. For ¥’ = r we showed that the following two properties hold in the end
of the round: (i) there exist ¢t 4+ 1 correct processors which are either inactive or
have possibleCounter that is less than t + r/3 — 1; (ii) the proposedCounters and
counters of all the correct processors are less than ¢ +r/3 — 1. Now, for round r' + 1,
properties (i) and (ii) imply that the proposedCounter as well as the counter of any
correct processor must remain less than ¢ +r/3 — 1 (see lines 14 and 15 in Fig. 2).
This implies that no correct processor updates its possibleCounter in round r’ + 1. O

Theorem 4.4 The algorithm in Fig. 3 solves the binary ABA problem for n > 3t.

Proof (Agreement) Lemmas 4.2 and 4.3 imply the agreement property.

(Validity) The case in which there exist ¢ + 1 correct processors with input = 1
was already considered above. The proof for the case in which the input of all the
processors is 0 is similar to that case in the proof of Theorem 1. U

Next, we analyze the number of rounds required by the algorithm. As explained
above, if there are t + 1 correct processors with input = 1 then all the correct proces-
sors decide 1 by round 4, and thus must stop by round 7. Otherwise, there are at
most ¢ correct processors with input = 1, so that in an execution in which no cor-
rect processor sends init messages in rounds 2, ..., r, the counter of every correct
processor is not higher than |[(n — f)f/(n —t — f)] + t (see Lemma 3.4). In this
case, from round 4 onwards the possibleCounter of a correct processor can be higher
than its counter only as a result of init messages received from faulty processors.
Thus, in this case the possibleCounter of any correct processor is not higher than
L =D f/n—t =)l +1+f.

If no correct processor with input = 0 sends init messages until round 3| (n —
Hf/n—t—f)] +3f + 3, then by the end of round 3|(n — f)f/(n —t — f)] +
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3 f + 4 the upperCounterBound of any correct processor is at most | (n — f) f/(n —
t — f)] +t+ f, which causes it to decide 0 and stop (see line 7 in Fig. 3).

Otherwise, there exists a correct processor g with input = 0 that sends init mes-
sages in round 2 <r <3|(n — f)f/(n —t — f)] + 3f + 3. Let p denote one
of the processors that stop in the earliest round. It follows that p does not de-
cide 0, because this contradicts the fact that g sent init messages in round r (as
shown in Lemma 4.3). If p stops in round r + 2 (or earlier), then all the cor-
rect processors stop by round » 4+ 5 (as shown in Lemma 4.2). If this is not the
case, all the correct processors are active in rounds r,...,r + 3, so that accord-
ing to Lemma 3.2, by round r + 3 all the correct processors send init messages.
It follows that all the correct processors decide 1 by round r 4 3 and stop by
round r + 6. Therefore, we have shown that every correct processor must stop af-
termin(3|(n — )t/ (n —2t)| +4, 3[(n— f)f/(n—t — )] +3f+9) rounds.

The communication complexity analysis of the early-stopping algorithm is similar
to that of the algorithm in Sect. 3. It shows that the algorithm uses O (n? f) messages
and O (n? f logn) message bits.

5 Conclusions

This paper presented a polynomial algorithm for the BA problem in a system with
n anonymous processors of which up to ¢ are faulty, where n > 3¢. The presented
algorithm runs in 3| (n — t)t/(n — 2¢t)| + 4 rounds. An early-stopping version that
requires min(3|(n — t)t/(n —2t)] +4, 3\l (n — f)f/(n —t — )] +3f +9) rounds
was also presented. The communication complexity of the presented algorithms was
shown to be O (nt logn) bits. The methods used in these algorithms allow to develop
a faster ABA algorithm for the n > 5¢ case, which requires only 2| (n — t)t/(n —
3t)| + 2 rounds [22].

Our study of distributed anonymous systems with Byzantine failures can be ex-
tended in several directions. First, it is interesting to find the lower bound for the
number of rounds required to achieve agreement in the anonymous model. We do
know that this lower bound can not match the bound of the standard model [21]. A
more difficult problem is to find an efficient algorithm that runs in the optimal num-
ber of rounds or close enough to that. An additional direction for further research is
to solve the ABA problem in a more general class of network topologies.
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