
Combating Double-Spending Using Cooperative P2P Systems

Ivan Osipkov Eugene Y. Vasserman Nicholas Hopper
Yongdae Kim

Computer Science & Engineering, University of Minnesota, Minneapolis, MN 55455
{osipkov,eyv,hopper,kyd}@cs.umn.edu

Abstract

An electronic cash system allows users to withdraw
coins, represented as bit strings, from a bank or broker,
and spend those coins anonymously at participating mer-
chants, so that the broker cannot link spent coins to the
user who withdraws them. A variety of schemes with var-
ious security properties have been proposed for this pur-
pose, but because strings of bits are inherently copyable,
they must all deal with the problem of double-spending. In
this paper, we present an electronic cash scheme that in-
troduces a new peer-to-peer system architecture to prevent
double-spending without requiring an on-line trusted party
or tamper-resistant software or hardware. The scheme
is easy to implement, computationally efficient, and prov-
ably secure. To demonstrate this, we report on a proof-of-
concept implementation for Internet vendors along with a
detailed complexity analysis and selected security proofs.

1. Introduction

The physical world has untraceable, transferable,
double-spending-protected cash; the current Internet does
not. There are systems that allow on-line payments using
credit card transactions or bank accounts, but these 1) are
not cost-effective for small transactions as the fees paid by
merchants for credit card transactions are typically higher
than a dollar, 2) do not provide anonymity, allowing credit
card companies to track spending and giving merchants ac-
cess to sensitive credit card and/or bank information, and
3) do not offer security.1 The credit card business model
evolved before the advent of ubiquitous networked commu-
nication and cheap computing, and has retained the old pric-
ing structure, vastly over-estimating communication and
processing costs. While Rivest defines micro-payments as
payments of less than $10 [36], the market has shown that
merchants are willing to accept credit card transactions as

1Consider the many public cases where stored credit card information
has been compromised [20]. Internet transactions also present more risk
and consequently the fees are higher. Also, outside the US, customers are
liable for fraud committed with their credit cards. The success ofUkash[1]
in EU countries demonstrates that many users are willing to go through
extra hurdles to avoid credit card use on the Internet.

low as two dollars, and in case of large-volume transac-
tions, such as Apple’s iTunes music store, as low as one dol-
lar. This paper deals with what we call “mini-payments” for
values similar to typical physical coins, occupying roughly
the gap between fractional cent payments that incur more
cost than their value and payments which can be handled
profitably through the credit card infrastructure.

The use of untraceable and anonymous mini-payments
could enable a number of interesting and new on-line ap-
plications, and could be applied to alter existing business
models. Advertising-supported web sites could remove
ads entirely and charge a penny or so for access; long-
term site subscriptions could be replaced with short-term;
donation-dependant sites could be advertisement-free, rely-
ing on numerous small donations; software “bundles” could
be “unbundled”. As the psychological barrier when donat-
ing smaller amounts is lower, the potential for donation-
generated income from mini-payments is likely higher than
that from large donations from a smaller number of users,
benefiting vendors providing free software [36] who would
welcome donations of any size. Price discrimination is also
not an issue in case of donations. Such business models
only work if mini-payment processing transactions are al-
most free and the mini-payment themselves are easy and
intuitive for customers to use. The “killer app” for mini-
payments may be unclear, but if the “long tail” argument
holds for digital goods, surely it holds for digital cash!

There are many potential benefits to such a system, but
several problems remain to be solved. One major attack
on electronic currency is double-spending, where a user
may spend an electronic coin more than once. Unless the
merchant accepting the coin verifies each coin immediately,
double-spending poses a significant threat. Individual
coins may be worth little, but the danger of large groups
doing concurrent double-spending using the same coin is
non-trivial. Many e-cash schemes have been suggested
in the past, but all of them either require the presence of
an on-line third party, tamper-proof hardware or client
accounts at the bank. Tamper-proof hardware creates a
significant hurdle for proliferation of such a scheme, since
most current machines have none. Requiring an on-line
third party creates a single point of failure, and creates

administrative and equipment expenses (especially during
peak hours). Moreover, it is not always clear which entity
should be endowed with such a role.

Foregoing on-line detection, however, introduces delay
in double-spending detection (until the coins are deposited)
and therefore requires clients to leave security deposits or
credit cards at the bank. Leaving credit card information is
a deterrent to proliferation, which grows stronger every day
due to constantly publicized attacks on private information
and compromise of home computers. E-cash without on-
line double spending detection exacerbates these problems:
even if the credit card information is secure against attack-
ers, the security of the coins themselves can create signif-
icant problems. This is because if the coin itself is stolen
by an attacker, it can be used freely to double-spend; in the
end, the victim will have to cover the damage.

If we demand double-spending to be non-prosecutable,
a natural requirement is to make e-cash completely anony-
mous and untraceable: this would shield clients against lia-
bility for fraud committed with the coins and also allow easy
transfer of coins to others.However, in this case, real-time
double-spending detection becomes a critical requirement.2

Overview of the paper. The primary contribution of this
paper is development of a lightweight, provably secure dis-
tributed anonymous e-cash protocol that does not require
a trusted on-line third party, tamper-proof hardware or se-
curity deposits, and provides real-time double-spending de-
tection. This protocol is presented in Sections 4 and 5. We
demonstrate the efficacy of this protocol in several ways:
1) derivation of security requirements in Section 3 and se-
curity proof in Section 6, 2) Analysis of the computational
and communication complexity in Section 7, 3) a prototype
implementation and experimental results in Section 7.

Our system is a “bearer” system, where the client holds
a bit-string representing the coin. The coin is not bound
to anyone except the broker who exchanges it for real-
world cash. Due to our real-time double-spending detection
scheme, we do not require tamper-proof hardware. This
system design is a three-party model, with the broker as a
dedicated (but not necessarily on-line) server, the merchant
as a drop-in module for an existing web server, and the
client as a browser plug-in. The client purchases coins from
the broker using a dedicated web interface and the browser
plug-in stores the coins in a file, where each coin is assigned
non-malleably to awitness(es) selected randomly from all
merchants participating in the mini-payment network. A
web server taking mini-payments signals the service avail-
ability to the client, who then displays the payment user in-
terface (the mode of display depends whether the payment

2Incidentally, absence of real-time double-spending detection can also
create room for attacks using stolen credit cards: an attacker can buy a few
coins using the stolen credit card (to stay under the radar) and then freely
double-spend these coins; the credit card companies (or cardowner) will
have to cover the losses.

is optional or required to view content). To submit a mini-
payment, the client contacts the merchant and transmits a
coin. The merchant, in turn, submits the coin for signa-
ture by the coin’s designated witness(es). If the witness(es)
have seen the coin before, they can prove this to the mer-
chant by extracting some secret information from two in-
stances of the coin and the merchant would then reject the
payment, thus providing immediate double-spending detec-
tion. If not, the witness(es) sign the coin and return it to the
merchant, who then accepts the payment. Signed coins can
be cashed at the broker at any time. Note that the coin con-
tains a secret value that is not revealed to protect the coin
from third-party theft. Instead, an efficient non-interactive
proof of knowledge of that value is provided.

2. Related Work

E-cash should not be confused withmicro-payments,
which deal with payments as low as a fraction of a cent [25,
38, 33, 32, 31, 24, 23, 18, 22, 21, 4] and require optimization
for performance. Thus, the more promising schemes use a
probabilistic approach [25, 23] when deciding whether to
charge a client: the resulting inaccuracy, though, may not be
forgivable in case of larger and less frequent payments. E-
cash is also different from electronic cheques, which work
just like like normal cheques – they are not anonymous and
require overhead similar to credit card processing.

The idea of untraceable electronic cash was first intro-
duced by Chaum [11], who used blind signatures to ensure
that the e-cash cannot be traced back to the client. This ini-
tial proposal required an on-line broker to clear coins before
merchants would provide their services, to protect against
double-spending. The first off-line untraceable electronic
cash was proposed by Chaumet. al. [12]; in this scheme,
each coin contains a hidden reference to the coin owner:
if the coin is spent once it is untraceable, while spending
a coin twice allows the broker to extract the identity hid-
den inside the coin. The scheme in [12] requires clients
to set up accounts at the broker and leave a security de-
posit or credit card. The scheme also uses an inefficient
cut-and-choose technique to verify correctness of the blind
information. The first efficient untraceable off-line e-cash
scheme was suggested by Brands [7], and further improved
by Chanet. al. [9, 10]. Brands’ scheme also incorporated
the idea of “wallets with observers” [13], in which a tamper-
proof device used by the client offered a first-line real-time
defense against double-spending. Several properties have
been explored in successive works, including “divisibility”
of coins [28, 27, 30, 15], compactness [8], tracing of coins
spent illegitimately [17, 39], and coin transferability [14].

E-Cash can be used not only in traditional customer-
merchant systems but also in P2P systems.PPay[40] uses
e-cash as a payment system for P2P systems, leveraging
the fact that peers are clients and merchants at the same

time: thus, clients can pay with the (transferable) coins
that they obtain from selling their own goods, minimiz-
ing the number of interactions with the bank/broker. The
WhoPayscheme [37] extends the idea ofPPayand ensures
that coins are anonymous as well as distributing broker load
to the peers themselves. In addition, the paper suggests
a mechanism forreal-time double-spending detectionby
which the P2P system is used as a distributed database for
spent coins and queried using a DHT routing layer such as
Chord [34]. Hoepman [19] discusses the same idea in more
depth and evaluates different scenarios for the location of
stored, spent coins. However, neither approach can pro-
vide hard guarantees against double-spending, especially
when some fraction of P2P nodes are compromised: the dis-
tributed database cannot be fully trusted unless secure rout-
ing and honesty of peers are guaranteed and can only sup-
port probabilistic guarantees. A similar approach, which we
call thewitness approach, was successfully applied to fair-
ness enforcement in P2P file-archiving systems [29]. The
witness approach provides probabilistic guarantees as well
but also ensures security against targeted attacks since wit-
nesses change dynamically and at random times. In this
paper, we adapt the witness approach [29] to ensure real-
time double-spending prevention: however, Section 4 out-
lines severalnon-trivial changes applied to ensure that the
system provides hard, rather than probabilistic, guarantees.

3. Basic Requirements and Observations

A generic e-cash system consists of 1) thebank that
clears credit/debit card or bank payments but may not know
anything about e-cash; 2)brokerswhich interact with the
bank and are involved in the printing and redemption of
coins; 3)on-line merchantswho accept e-cash coins as pay-
ment for services and cash them using the broker; and 4)
clientswho obtain e-cash from the broker (or through other
means) and then use it to buy services from merchants.
A mini-payment scheme suitable for widespread adoption
should satisfy the following requirements:
Decentralized environment. As in off-line e-cash sys-
tems [12], there should be no centralized on-line trusted
party required to participate in transactions. In particular,
it should be possible to spend coins and prevent double-
spending even if the broker and bank are off-line.
No Tamper-proof devices. As tamper-proof devices in
general hamper proliferation of e-cash schemes, the system
should not require them.
Untraceability. The bare system design, unlike related
work, should allow for full untraceability of purchased
coins. In particular, double-spending should not leak any
information about the coin owner.
Client Security Deposits.As the bare system should pro-
vide untraceability, there is no need for client security de-
posits at the bank and/or broker. Thus, unlike other off-

line schemes, the client should not bear any responsibility
with respect to purchased coins (except insofar as they have
value to the client). In particular, a client may choose to buy
coins using an on-line gift card without revealing identity.
Generic Security. The system should be secure against
coin forgery/re-use/linkability and other generic e-cashat-
tacks as discussed in Section 6. These security notions are
generic to e-cash as defined by Chaum [12, 35].
Usability and Extendibility. The system should allow
for incorporation of escrow mechanisms that allow trac-
ing the coin owner. The system should be flexible enough
to accommodate known off-line double-spending detection
mechanisms.

If a client is untraceable, then there is a danger of double-
spending. Thusthese requirements dictate that the system
should also provide real-time double-spending detection, or
in other wordsdouble-spending prevention.

Since we will be leveraging the distributed nature of the
merchant network, the following basic observations are in
order. First, merchants are long-term members of the net-
work, are legitimate, and can therefore set up accounts with
the broker, leaving security deposits if necessary.Second,
merchants are on-line most of the time and are generally
well-maintained. The implication is that even if the mer-
chant network is attacked, it will go back on-line within a
few days. These assumptions are safe because on-line mer-
chants can only make money if they remain on-line, and
thus it is in their best interest to do so.Third, the merchants
themselves can form a network to combat double-spending.
We use these observations to construct the desired e-cash
system, starting first with the high-level description below.

4. High-Level Description

Figure 1 provides an overview of the functionalities in-
volved in the proposed e-cash system. To use the proposed
system, merchants need to set up an account with the broker
B, by supplying their certified public key, credentials and
bank accounts where e-cash should be deposited. Moreover,
each merchantM leaves a security deposit in the form of
cash or a credit card. This registration allowsM to redeem
coins obtained from clients, and it allowsB to chargeM
for its misbehavior.

To obtain e-cash, clients have to contactB and buy coins
using a credit card or bank account. To make the purchased
coins untraceable, we employ cryptographic techniques to
blind theprivate information of the coin before it is signed
byB while thepublic information (such as expiration dates)
stays unblinded. As a result,B will have no information
about the coin itself, except the public information.

When a client goes to a merchantM and presents a
coin, M needs to determine in real-time if the coin is be-
ing double-spent before providing the service: otherwise,
either 1)M may erroneously provide service in exchange

Broker B

Client C

Witness 1

MC

Merchant 1

Withdraw e-coin(s) C

Certify e-coin C

Witness 2

Merchant 2

M

Buy with e-coin C
Sign payment transcript

Redeem payment

transcript(s)

Renew e-coin(s) C

Bank

Cash transactions

E
-c
a
s
h
 u
n
a
w
a
re

E
-c
a
s
h
 a
w
a
re

Figure 1. High-level view of the proposed E-cash system.

for an invalid coin (or uncashable during a later deposit),
and with no entity that covers losses from fraud,M will
not be paid byB, or 2)M will have to delay service deliv-
ery, degrading the quality (or speed) of service. We achieve
this as follows: during its creation, each coin is assigned in a
random fashion to one of the merchants, which will serve as
a witnessfor the validity of that coin.Thus, each merchant
can perform some witness service: witnesses for coins are
chosen from the merchants. Say, coinC is assigned to mer-
chantMC who serves as a witness for the coin: whenever
another merchantM obtains the coinC from the client,M
has to contactMC and obtain a signature on the payment
transcript, which testifies that the coin has not been used be-
fore. Without a signature fromMC , M will not be able to
cash the coin. Thus the responsibility for double-spending
each coin is shifted to its witness, who has left a security de-
posit atB: the main observation here is that merchants are
in general always on-line due to the nature of their activity
allowing for real-time double-spending check.

M cashes the coins atB. When presented with pay-
ment transcripts,B verifies that each coin has been signed
by the required witness and has not been deposited before.
B then makes a deposit intoM’s account, and saves the
payment transcripts until the coins become uncashable, in
order to detect misbehaving merchants. If a certain payment
transcript is signed twice by some witness,B can punish
this witness using the security deposit that was left byM.
In particular, the security deposit should cover the double-
spent coins out of which the cheated merchants can be paid.

It may happen that a coin is unusable due to the unavail-
ability of its assigned witness. To decrease probability of
such event, one can use, say, three witnesses per coin and
require any two of them to sign. However, in the event that
this still does not help and the coins are unspendable, we as-

sign to each coinC two expiration dates, a “soft” expiration
date after which it becomes unspendable, but can still be
exchanged for a new coin, and a hard expiration date, after
which it becomes completely void. This exchange can be
done when buying new coins, by submitting coins past their
first expiration date as well. This approach allows clients to
renew unused coins and to recover from faulty witnesses.

Witness Motivation and Assignment.Why would a mer-
chant agree to serve as a witness, signing payment tran-
scripts? To see how we can motivate merchants to serve as
witnesses, wefirst notice that preventing double-spending
helps the community as a whole, since merchants are not
left with unpaid transactions due to credit fraud and need
not expend extra effort to secure a credit card database:
thus we assume that merchants are for the most part co-
operative and would in general be willing to do a little extra
work to contribute to the health of the community.Sec-
ond, when some merchants still do not see value in doing
witness service, the broker can provide incentives to mer-
chants for signing coins, e.g. give discounts on cashing the
coins, where the credit given depends on the amount of wit-
ness service (e.g. coins signed) the merchant has performed.
The merchants that do not sign will pay more fees for cash-
ing coins, while the hardworking witnesses will get suffi-
cient credit to motivate them to continue serving in witness
capacity. The exact policy enforced by the broker, though,
is beyond the scope of this paper.

Note that in the proposed scheme each coin has a stat-
ically assigned witness. The reason why we do not allow
witnesses for a coin to change is because, otherwise, a se-
cure witness hand-off would be required when witnesses
change. Efficient, secure witness hand-off would have to
involve a trusted third party which we wanted to avoid in
the design. However, now that the witness assignment is
static, we need to figure out how it can be done so that:
1) to maintain untraceability,B issuing the coin does not
know which merchant was assigned to be the witness for
this coin, but still 2)B ensures that the hardworking wit-
ness merchants are assigned more coins than others. That
is, the client should not be able to skew witness assignment
towards (or away from) specific merchants, whileB should
not be able to link the coin to specific witness merchants.

Given a secure e-cash protocol with public information,
the following scheme provably achieves these aims. Let
h : {0, 1}∗ → {0, 1}k be a cryptographic hash function
modelled as a random oracle. LetW be the current mer-
chants in the network that are participating as witnesses.
Based on merchant performance, each merchantM ∈ W
is assigned a “witness range”,RM = [rM,1, rM,2) ⊂
[0, 2k), such thatRM1

⋂
RM2

= ∅,∀M1 6= M2 ∈ W,
and

⋃
M∈W RM = [0, 2k). The merchants that should

be assigned more coins will be assigned larger witness
ranges. Let us call the unblinded coin together with bro-

ker’s signature asbare coin. Given an authentic list of mer-
chants and their witness ranges, the witness for abare coin
could be simply the merchant whose witness range con-
tains h(bare coin). The full-fledged coinC then will be
the tuple consisting of thebare coin and the signed wit-
ness range assignment of the witness merchantW. Since
the bare coin was blinded during the signing,B will not
know theh(bare coin). And since the client cannot forge
B’s signature inbare coin, the client will not be able to pre-
dict the hash value either.3 This results in a coinC which
contains a (non-malleable) witness assignment, where the
witness merchant is randomly selected using the probabil-
ity distribution imposed by the list of the witness ranges.

Assigned witness ranges may change over time, since
merchants may join or leave the network or experience
changing ability to sign coins. For that purpose, from time
to time,B may publish a new version of the witness range
assignments. We will discuss the specifics of how one at-
taches a witness to a coin in the later sections.

5. The Protocols

Operations with e-cash involve three protocols:with-
drawal, in which the client buys coins fromB; payment,
in which the client pays the merchant using these coins; and
deposit, in which the merchants cash the coins. The in-
teraction between the bank and broker (which can be the
same entity) can follow standard financial protocols and is
orthogonal to our construction.

Let p andq be two large primes such thatq|p − 1 and
g ∈ Z

∗
p be a random generator of orderq. In practice (and

the implementation)p will usually be a 1024-bit andq will
be a 160-bit prime. Denote by〈g〉 the subgroup generated
by g and letg1 andg2 be two random generators of〈g〉.

We assume that it is hard to compute logarithms in〈g〉,
i.e. given a random generatorĝ of 〈g〉 andf ∈ 〈g〉, it is hard
to find a ∈ Zq such that̂ga = f . We also choose and fix
some public cryptographic hash functionsF : {0, 1}∗ →
〈g〉 andH : {0, 1}∗ → Zq, which can be easily constructed
using standard cryptographic hash functions.

B chooses a secret keyx ∈ Zq and publishes the authen-
ticated keyy = gx. The pair(y, x) will be used as a pub-
lic/private key pair in thepartially blind signaturescheme
of Abe and Okamoto [3]:B signs usingx and signatures are
verified using the public valuey.

Withdrawal Protocol. The withdrawal protocol should
have the following essential properties:
1. The (bare) coin, includingB’s own signature, should be
blinded fromB, i.e., B should not be able to obtain any in-
formation about the actual coin other than possibly some
agreed-upon public information that is attached to the coin

3It is straightforward to prove these properties hold using standard ran-
dom oracle proof techniques [5]

(this includes coin unlinkability as discussed in later sec-
tions). Without this property,B (perhaps in collusion with
merchants) might be able to link a coin to a specific user,
especially if coins were not purchased anonymously.
2. B should ensure that the coin is assigned correct expi-
ration dates and witnesses. The only information thatB
should know about witness assignment is that the witness is
assigned according to the current list of witness ranges.B
should know the exact dates assigned to the coin.
3. Anyone should be able to correctly determine if a given
merchant is indeed a witness of a given coin from the coin
itself. More precisely, merchants do not need to store the
entire history of witness range assignments.
4. Other standard security properties such as strong un-
forgeability, unexpandibility, unreusability of coins and so
on are also required (see Section 6).

Denote by info the explicit information to be added
to the coin, and byIM the unique identifier of mer-
chantM. As mentioned in Section 4,B publishes when
needed a new version of signed witness range assignments
SigB(version/date, {IM, rM,1, rM,2}) for each merchant
M ∈ W, where[rM,1, rM,2) is the range assigned toM.
The info will include the version/date of the merchant list
and two expiration dates (possibly with the denomination
of the coin). During coin generation,B will produce apar-
tially blind signature [2] of Abe and Okamoto [3] where
info is attached to the coin in non-blinded form. Once the
client has unblinded the partially blind signature, thus ob-
taining thebare coin with the aboveinfo and signed by bro-
ker B, he/she computesh = h(bare coin) and copies the
appropriateSigB(version/date, {IM, rM,1, rM,2}), where
h ∈ [rM,1, rM,2) and version/date is the same as in the
bare coin, resulting in the full-fledged coin. The full proto-
col is described in Algorithm 1 and is an adaptation of Abe-
Okamoto, where 1) instead of signing an arbitrarymsg,
B signs a tuple(A = gx1

1 gx2

2 , B = gy1

1 gy2

2) that will be
used during the payment protocol, and 2) we specify the
value ofinfo that will be attached to the coin. The valuesA
andB are constructed by the client, who knows the corre-
sponding representation coefficientsx1, x2, y1, y2 with re-
spect tog1 andg2. The construction ofA andB along with
the non-interactive zero-knowledge (NIZK) proofs of rep-
resentation ofA andB are borrowed from Brands [7] and
Okamoto [26]. Note that the client can not tamper withbare
coin and, at the same time,B will learn nothing about the
bare coin other than the attachedinfo.

As the result of the withdrawal protocol, the client
obtains a valid coinC = (ρ, ω, σ, δ, info, A, B,
SigB(version/date, {IMC

, rMC ,1, rMC ,2})), which con-
tains the signature ofB. Anyone can verify validity of the
coin by checking validity dates, verifying that the correct
witness was assigned to the bare coin and most importantly
by verifying B’s signature on the coin by checking that

Algorithm 1 Withdrawal Protocol
0. The clientC andB agree on the denomination of the coin, the version of the
merchant list that will be attached, and on the two expiration dates as explained
before. The client pays for the coin using credit card, bank account or through
other accepted alternatives. Client can buy several coins at a time (saving on com-
munication cost), but the computation below have to be performed independently
for each coin to ensure they are unlinkable.
1. B → C : a = gu, b = gszd

B picks randomu, s, d ∈ Zq and sends the constructeda, b to the client, where
z = F(info) ∈ Z

∗

p. The info contains the value of the coin, the version of
merchant list, and two expiration dates.
2. C → B : e
The client picks four random valuesti ∈ Zq, i = 1, ..., 4 andx1, x2, y1, y2 ∈

Zq , and computesα = agt1yt2 , β = bgt3zt4 , ǫ = H(α||β||z||A||B) and
e = ǫ − t2 − t4 mod q, whereA = g

x1

1
g

x2

2
, B = g

y1

1
g

y2

2
. The value of

e is sent toB.
3. B → C : (r, c, s)
B computesc = e−d mod q, r = u−cx mod q and sends triple(r, c, s)
to the client.
4. The client computesρ = r + t1 mod q, ω = c + t2
mod q, σ = s + t3 mod q, δ = e − c + t4 mod q, and
checks equality ω + δ = H(gρyω||gσzδ||z||A||B) mod q.
Denote the bare coin = (ρ, ω, σ, δ, info, A, B). The client at-
taches the Sig

B
(version/date, {IMC

, rMC ,1, rMC ,2}), where
h(bare coin) ∈ [rMC,1, rMC ,2), resulting in the unblinded coinC =
(ρ, ω, σ, δ, info, A, B, Sig

B
(version/date, {IMC

, rMC ,1, rMC ,2})).

ω + δ = H(gρ · yω||gσ · F(info)δ||F(info)||A||B) mod q.
However, only the coin owner knows the representations of
A andB with respect to the tuple(g1, g2), which will be
used in the payment protocol below. Note thatB does not
know which witness was assigned to the coin and the client
cannot influence the choice of witness.

Payment Protocol.In the payment protocol, clientC wants
to pay for a service provided by merchantM using coinC.
Prior to providing the service,M will have to determine if
the coin has already been spent by contacting the witness of
the coinMC . The protocol must ensure that:
1. If the coin has already been spent, the witnessMC can
provide an unforgeable proof. For more privacy, it is desir-
able that the proof does not reveal the identity ofM where
the coin was previously spent.
2. If M refuses to provide the service claiming that a coin is
being double-spent,M will be able to convince a third party
that the coin was already spent prior to the transaction.
3. Conflict resolution mechanisms such as optimistic fair
exchange can be incorporated naturally. The payment tran-
script should be publicly verifiable and should not reveal se-
crets of the parties involved. In particular, anyone that sees
the transcript should not be able to forge another payment
transcript, or cash the coin.

Our payment protocol is similar to the original proto-
col of Brands. In particular, to pay with the coin, the client
will need to provide a non-interactive zero-knowledge proof
(NIZK) that it knows the representation ofA andB with
respect to the tuple(g1, g2) inside the coin. The proof will
bind the payment transcript to the given merchant and time
so that only that merchant will be able to cash the coin.
Moreover, given two such payment transcripts, one can ex-
tract the secret valuesx1, x2 (andy1, y2) of the coin which

become the proof that the coin has been double-spent (see
the security analysis section for more details). The full pro-
tocol is specified in Algorithm 2. Note that since the value
d in Step 3 depends not only on the merchant and time but
also on the unblinded coin, the client can not spend a coin
without knowing the representation ofA andB.

Algorithm 2 Payment Protocol
1. C →MC : (coin hash, nonce)
The client contacts the witness of the coin, trying to obtain the commitment that the
witness will sign the payment transcript after the transaction. Thecoin hash is
computed ash(ρ, ω, σ, δ, info, A, B), IM is the identity of the merchant where
the client intends to spend the coin andnonce = h(saltC||IM), wheresaltC
is the random value that the client has chosen for this transaction.
2. MC →C : Sig

MC
(coin hash, nonce, h(v), te, commit)

The coin witness provides a signed commitment that it will sign the payment tran-
script provided that a) the payment transcript (submitted later) will be valid, b)
MC is actually the witness for the coin, c) the coin was not already spent before
the commitment, d) the coin is spent at the merchant encoded innonce, and d)
transaction finishes before timete. The valuev is either some random value (if the
coin has not been spent so far), a “salted” payment transcript of this coin or tuple
(x1, x2) or (y1, y2) (if the coin has already been spent).The witness must not
issue new committments on thiscoin hash until this commitment expires.
3. C → M : payment transcript = (C, r1, r2, IM, date/time),
Sig

MC
(coin hash, nonce, h(v), te, commit), saltC

The client sends toM the coin, andr1 = x1 +d ·y1, r2 = x2 +d ·y2, where
d = H0(C, IM, date/time). In addition, the commitment fromMC along
with saltC are sent.M verifies the broker’s signature on the coin (as specified in
the discussion of the withdrawal protocol), the correctness of witness assignment,
the witness commitment and equalitynonce = h(saltC||IM). In addition, the
equalityA · Bd = g

r1
1

g
r2
2

is checked. The merchant rejects if any of the checks
fail or if it has already received payment with the same coin.
4. M→MC : payment transcript = (C, r1, r2, IM, date/time, saltC)
The payment transcript is sent to the witness (the commitment information issent
only during conflict resolutions), which is verified. The witness will retrieve stored
commitment and verify thatnonce = h(saltC||IM), refusing transaction if
this check fails. If the coin was spent once prior to the commitment, the witness
computes(x1, x2) and/or(y1, y2) and keeps only this value along with hash of
the coin, dropping all transcripts.
5. MC → M : Sig

MC
(payment transcript), or (x1, x2) and/or(y1, y2),

or refusal ifnonce did not verify
If nonce did not verify, the witness simply refuses to sign based on that. If the
coin is double-spent, the witness sends(x1, x2) and/or(y1, y2), refusing to sign.
Otherwise, it provides the signature on the transcript.
6. M→ C : service, or (x1, x2) and/or(y1, y2).
The client either obtains the service or is refused with the proof of double-spending.

Note that we shift part of the communication onto the
client, which has to obtain a commitment from the wit-
ness. Thus, prior to a transaction, the client can be assured
that the witness will sign the transcript. The client must
constructnonce correctly, for otherwise it will be refused
transaction. The commitment has the following properties:
1) the commitment is bound to specific merchant through
nonce, 2) the witness does not know apriori where the coin
will be spent. The witness will sign transcript even if this
commitment is used more than once, but in this case the
same (faulty) merchant will have to deposit two payment
transcripts with the same coin, which will be detected and
stopped at the broker.

When a coin is double-spent, the witness does not re-
lease information on where the coin was spent before, while
it still provides a publicly verifiable proof that the coin has
been double-spent. In case of dispute, all transcripts can be
given to a third party to decide on further action. In partic-
ular, fair exchange protocols may be incorporated into the

transactions. Note that if race conditions exist such that the
same coin has been spent at another merchant right after the
witness has made the commitment, and therefore the wit-
ness was able to generate(x1, x2) and/or(y1, y2), M may
ask the witness to reveal the committed valuev. If the value
v does not contain(x1, x2) or (y1, y2) or a previous pay-
ment transcript, this is a proof that the witness violated the
protocol. Finally, in case of problems, all communication
transcripts can be submitted to a third party for resolution,
which can decide who has violated the protocols.

Deposit Protocol. In the deposit protocol,M submits the
payment transcript signed by the witness toB, who verifies
the transcript and the witness’ signature. Before crediting
M’s account,B also checks if this coin has already been
deposited: this is possible if either 1) the same merchant
deposits the same coin again or 2) the same witness signed
two transcripts for the same coin. In the former case,M
is informed of the mistake and is not credited; in the lat-
ter, the witness will be charged for the transaction andM
will be credited from the witness’ deposit. The witness can
be contacted with the proof (two signatures) that it incor-
rectly performed its duty, and additional administrative ac-
tions (beyond the scope of this paper) can be taken. The
protocol is shown in Algorithm 3.

Algorithm 3 Deposit Protocol
1. M→ B : payment transcript, Sig

MC
(payment transcript)

M sends to B the payment transcript signed by the witness, where
payment transcript = (C, r1, r2, IM, date/time, saltC) and the coin
C = (ρ, ω, σ, δ, info, A, B, Sig

B
(version/date, {IMC

, rM,1, rM,2})).
B verifies its own signature on the coin, that the coin is still valid and cashable,
and that the right witness signed the transcript. Next,B verifies the signature of the
witness on the payment, computesd and checks the equalityA · Bd = g

r1
1

g
r2
2

.
If at least one test fails, theB notifiesM of the failure and the protocol ends here.
2. B searches its database to determine if thebare coin =
(ρ, ω, σ, δ, info, A, B) has previously been deposited. Two options are
possible:

2-a. The coin hasnot been deposited before. In this case, the broker stores the
payment transcript along with witness’ signature until the coin’s second expiration
date.M is credited for the amount of the coin.

2-b. B finds another deposit of the same coin. If this deposit was made by the
same merchant, it will refuse the deposit and inform the merchant of the mistake.
If this deposit was made by another merchant, the merchantM is still credited for
the coin amount, but now it is done from the security deposit of the coin’s witness
MC . TheMC is notified appropriately with the proof consisting of twoMC ’s
signatures on the same coin with different merchants.

Coin Renewal. Each coin has two expiration dates to al-
low clients to renew unused or unusable coins. After the
first date, the coin will no longer be cashable and after the
second one it becomes completely void. The coin renewal
protocol is described in Algorithm 4. In this protocol, the
client submits a coin, which is past the first expiration date
but not the second, along with a proof that it knows the rep-
resentation ofA andB inside the coin with respect tog1 and
g2. ThenB searches its database to find out if the coin has
already been cashed or renewed and, if it was, extracts and
provides the value of(x1, x2) and/or(y1, y2) and refuses to
renew. Otherwise, the client obtains a new coin similarly to
the withdrawal protocol. The protocol is the same as with-

drawal with piggy-backed coin verification and can be done
when a client buys new coins.

Algorithm 4 Coin Renewal Protocol
0. The clientC andB agree on the version of the merchant list that will be attached,
the value of the new coin, and on the two expiration dates that will be attached to
the new coin.
1. B → C : a = gu, b = gszd

B picks randomu, s, d ∈ Zq and sends the constructeda, b to the client, where
z = F(info). Theinfo contains the value of the coin, the version of merchant list,
and two expiration dates.
2. C → B : e, C∗, r∗

1
, r∗

2
.

The client picks four random valuesti ∈ Zq, i = 1, ..., 4 andx1, x2, y1, y2 ∈

Zq , and computesα = agt1yt2 , β = bgt3zt4 , ǫ = H(α||β||z||A||B)
ande = ǫ − t2 − t4 mod q. The client sendse, the old bare coinC∗ =
(ρ∗, ω∗, σ∗, δ∗, info∗, A∗, B∗) (to be renewed) and the proof of knowledge
of representation ofA∗ andB∗ for C∗, consisting ofr∗

1
andr∗

2
(whered∗ is

constructed as in the payment protocol).
3. B → C : (r, c, s) or (x∗

1
, x∗

2
) and/or(y∗

1
, y∗

2
).

B verifies the correctness ofC∗, computesd∗ and checks thatA∗ · B∗d∗

=

g
r∗
1

1
g

r∗
2

2
holds. B searches if the coin has been deposited by a merchant or has

already been renewed: in this case,B can compute(x∗

1
, x∗

2
) and(y∗

1
, y∗

2
) corre-

sponding toC∗ and return them to the client with the refusal to renew. Otherwise,
B computesc = e − d mod q andr = u − cs mod q, and returns them
to the client along withs. The renewal transcript is stored until theC∗ ’s full
expiration.
4. The client computesρ = r + t1 mod q, ω = c + t2
mod q, σ = s + t3 mod q, δ = e − c + t4 mod q, and
checks equality ω + δ = H(gρyω||gσzδ||z||A||B) mod q.
Denote bare coin = (ρ, ω, σ, δ, info, A, B). The client at-
taches the Sig

B
(version/date, {IMC

, rM,1, rM,2}), where
h(bare coin) ∈ [rMC,1, rMC ,2), resulting in the unblinded coinC =
(ρ, ω, σ, δ, info, A, B, Sig

B
(version/date, {IMC

, rMC ,1, rMC ,2})).

6. Security

A good review of security requirements for anonymous
off-line e-cash systems is given in [35]. However, our re-
quirements slightly differ since our double-spending detec-
tion is real-time and coin owners are fully untraceable.

The security of our e-cash system depends on the secu-
rity of two core components: 1) security of the partially
blind signature and 2) security of the representation proof
in groups of prime order. We first remark that the partially
blind signature of Abe-Okamoto [3] isstrongly unforgeable
which means that thebare coin obtained during withdrawal
protocol cannot be altered by the client without invalidating
the signature. From the partial blindness of the signature,
it follows that the only property about thebare coin thatB
learns is theinfo attached to it: in particular, given two un-
blinded coins with the sameinfo, B cannot decide which
coin belongs to which instance of withdrawal.

Security of the NIZK proof used in the payment proto-
col is important as it proves ownership of the coin. Dur-
ing withdrawal, the client chooses randomx1, x2, y1, y2 and
constructsA = gx1

1 gx2

2 , B = gy1

1 gy2

2 : the values ofA and
B become part of the bare coin and thus can not be altered.
The tuples(x1, x2) and(y1, y2) are calledrepresentations
of A andB with respect to generatorsg1, g2. Finding a sec-
ond representation ofA given one representation, or find-
ing any representation given a randomA are both provably
equivalent to computing discrete logarithms in〈g〉 [7] and

thus assumed to be hard problems. Thus if the client knows
a representation ofA (B) then we can conclude that 1) the
client (perhaps by proxy) actually constructed the coin, and
2) the client knows no other representation ofA (B).

The NIZK proof has the following security proper-
ties [6, 26]: 1) a client can successfully provide the NIZK
proof if and only if he/she knows representations ofA and
B; 2) if the client submits two successful NIZK proofs with
respect to the same coin, then we can extract the represen-
tations ofA andB from the proofs themselves.4 Conse-
quently, we can make the following conclusions: 1) only
the coin owner can successfully make a payment; 2) seeing
a payment transcript does not allow one to generate another
payment transcript; 3) if the coin owner double-spends, the
representation ofA and/orB can be extracted which serves
as a definitive proof of double-spending.

On the security of the present scheme, let us first make
several basic conclusions based on the previous observa-
tions. We note that thebare coin obtained during the with-
drawal is non-malleable and contains the version of the list
of witness range assignments, so (provided the broker is
correct) only one witness can be attached to the coin. Con-
sequently,the full-fledged coin is non-malleableas well.
Secondly, thebare coin is strongly unforgeable which im-
plies theunexpandibilityof the coins, i.e., givenN coins
generated in a valid manner, the attacker should not be able
to createN + 1 coins.5 Thirdly, the e-cash scheme satis-
fies theunreusability property, i.e., a coin with an honest
witness can be used no more than once at the merchants in
the network. Indeed, the coin is non-malleable (including
the witness assignment) and can be spent only if the same
witness signs different transcripts for this coin. Unless the
witness merchant is faulty, the second transcript will allow
extraction of a representation ofA which can be done only
if the coin has been double-spent. In the end, the non-faulty
merchant will refuse to sign the second transcript with a
definitive proof of double-spending and the coin will be re-
fused. If the witness is faulty and signs two payment tran-
scripts for the same coin, the merchants will still be paid by
B at the expense of the witness. Fourthly, the NIZK ensures
that only the coin owner can successfully make a payment to
a merchant, resulting in non-malleable payment transcripts.

Now let us see why a coin cannot be traced back to

4If we haver1, r2, r′1, r′2, d 6= d′ such thatA · Bd = gr1

1 gr2

2 andA ·

Bd′

= g
r′
1

1 g
r′
2

2 , then we obtainB = g
(r′

1
−r1)/(d′

−d)
1 g

(r′
2
−r2)/(d′

−d)
2

and thus the tuple((r′1 − r1)/(d′ − d), (r′2 − r2)/(d′ − d)) is a rep-
resentation ofB. Then a representation ofA can be easily obtained from
A · Bd = gr1

1 gr2

2 and knowledge ofd, r1, r2.
5Indeed, consider the game in which a client attempts to generate, for

info of his choice, more valid signatures than it requested from the signing
oracle for this value ofinfo. According to Abe-Okamoto, the client has only
a negligible advantage in this game, provided that the number of requested
signatures for any fixedinfo is polynomial in the logarithm of the security
parameter. This readily implies theunexpandibilityproperty of e-cash.

its owner. First, as was mentioned above, when the client
spends the coin atM andB sees the payment transcript,B
will not be able to tell which client bought this coin among
all clients who bought coins with the sameinfo. However,
this property is not enough for anonymity if the client buys
several coins at a time. More precisely, it is conceivable that
the broker could in some way skew the protocol so that two
coins withdrawn at the same time may be linkable; in this
scenario a broker who cooperates with one merchant may
be able to trace a coin spent at another merchant.

To show that such attacks are virtually impossible, or
equivalently prove theunlinkability property of our e-cash
scheme, consider two honest clientsC1 andC2 who engage
with B in withdrawal protocols with the sameinfo such that
the first client generates two unblinded coinsC1, C2, and
the second client obtains the unblinded coinC3. Now, sup-
pose that the clients give the coins (and all the secret in-
formation) to the challenger who plays the following game
with the adversarial broker:
– The challenger givesC1, along with all associated secret

information, toB. B knows this coin was generated byC1.
– The challenger at randomi ∈ {2, 3} and then givesCi

toB along with secret information about the coin.
– B guessesi and wins if its answer is correct.

If B can somehow linkC1 andC2 together, then it will
be able to win with probability non-negligibly better than
simple guessing. More precisely, let us say that the e-cash
providescoin unlinkability if in the above game the adver-
sary cannot guess correctly with probability1/2 + δ for
non-negligibleδ > 0. Coin unlinkability in this sense is
essentially a direct consequence of the blindness property.
Indeed, according to the blindness property of the coins,
givenC2 andC3 in a random order (together with the secret
information about the coins),B will not be able to decide
which coin isC2 and which one isC3 other than with neg-
ligible advantage. This readily implies coin unlinkability.

Besides the above security properties, in case of a con-
flict, all transcripts and commitments can be given to a
trusted third party for arbitration. It is a routine exercise
to verify that the third party will be able to effectively deter-
mine the violator of the protocols, and is left to the reader.

7. Efficiency and Implementability

Implementation. Our implementation consists of four
components, totalling approximately 1200 lines of code
(LOC): a broker server (158 LOC), merchant server (158
LOC), witness server (294 LOC), and client (258 LOC).
The witness and merchant servers are designed to be run
at the same time on the same physical hardware, but not in
the same memory space (for increased security).

We chose the Python scripting language to implement all
four components due to Python’s ease in handling web ser-
vices and distributed applications, as well as the availability

of unbounded-width integers and easy-to-use cryptographic
libraries. The broker, merchant, and witness components
are implemented as stand-alone web service providers, but
can easily be changed into drop-in modules for existing web
servers (such as Java application servers or Apache).

We use a (mostly) stateless transaction design for our
web servers, based largely on REST principles [16]. We
keep minimal session state at broker, merchant, and wit-
ness, and rely on the client to transmit all state informa-
tion when requesting transactions. For state information
that was originally generated by someone other than the
client, the transaction request contains a signature on the
externally-generated information to prevent modificationby
the client/intermediary. All state is encoded as universal
resource identifiers (URIs) and transferred along with the
transaction request. This design trades implementation sim-
plicity for increased communication overhead, as state must
be transferred repeatedly throughout a single logical trans-
action (a logical transaction may include multiple commu-
nication sessions between several servers). If state needsto
be kept secret, an encrypted, timestamped, and signed blob
can be transmitted as a state identifier. Alternatively, the
system could keep state and use transaction identifiers.

Table 1. Number of cryptographic operations
Exp Hash Sig Ver

Withdrawal
Client 12 4 0 1
Broker 3 1 0 0

Payment
Client 0 3 0 1
Witness 7 6 2 1
Merchant 7 6 0 3

Deposit
Merchant 0 0 0 0
Broker 6 4 0 1

Coin Renewal
Client 12 5 0 1
Broker 9 4 0 0

Complexity analysis. Since we are using URL-encoded
data transfer, all state information is encoded as text when
transferred over the network. This imposes higher commu-
nication overhead than binary file transfer, but compression
and/or base64 data encoding can be used if greater com-
munication efficiency is required. Furthermore, there is a
trade-off between how much state is kept by the servers and
how much information has to be transferred for each re-
quest. For ease of implementation we chose to keep as lit-
tle state is possible at broker and merchant/witness servers,
but we can decrease communication overhead at the cost of
more complicated server logic by offloading more state off
the client onto the servers.

The number of cryptographic operations for each pro-
tocol is listed in Table 1, where we look at a typical sce-
nario without double-spending incidents. In case of double-
spending by the client at a different merchant (than the one
where the coin was spent originally), the communication
overhead stays the same while 1) the merchant will have to
do 2 additional exponentiations, but one signature verifica-
tion less, and 2) the witness will either be spared all sig-

nificant crypto operations (returning previously computed
x1/x2) or will have to do only two exponentiations. If the
witness signed two transcripts for the same coin, spent at
different merchants, the broker will detect this when the
second payment transcript is deposited (note that both mer-
chants will be paid, with the second payment coming from
the witness’ security deposit) – in this case, broker’s com-
putational overhead does not change; however, the broker
will contact this witness (perhaps in off-line manner) to re-
solve the issue. If the same merchant attempts to deposit the
same coin again (even with different witness’ signatures),
the merchant will not be paid and the computational over-
head of the broker remains the same.

The withdrawal and renewal protocols each require two
rounds of message exchange between the broker and client,
and payment requires 3 rounds of message exchange (2 for
payment, and 1 for commitment). The deposit protocol is
one-sided, only requiring the merchant to send one message
to the broker. Note that total computational complexity per
transaction in terms of real-time will be significantly less
than communication overhead: round-trip time on WAN is
expected to be at least 50-100 ms (observed on PlanetLab
nodes in the US), while the aggregated computational com-
plexity per transaction is expected to be 30 ms or less when
implemented in OpenSSL (on a P4 3.2 GHz desktop).

Experimental results. To determine the viability of our
protocol for real-world deployment, we measured the time
and bandwidth for our payment protocol, and compared the
results to the time required to download and render the ad-
vertisements on a popular Internet website.

Table 2. Wall-clock runtime and bandwidth for payment
protocol over 100 trials

Client total time Client bytes
transmitted

Average 1789ms 1.6KB
St. dev. 324ms 1.3B

To determine the overall performance of the payment
protocol, we simulated 100 runs of the protocol using three
randomly selected PlanetLab nodes in diverse geographic
locations across the United States.6 The results of these tri-
als can be found in table 2. The average time over 100 runs
to complete the payment protocol, including contacting the
witness, was 1.8s. We note that this is a worst-case figure,
as the client can obtain a witness commitment on the coin
at any time between when the coin is withdrawn from the
broker, and the time the coin is spent; several optimizations
could further reduce the computation time as well.7

For comparison purposes, an informal survey of a popu-

6The client and broker were located in Wisconsin, the witnessin Cali-
fornia, and the merchant in Massachusetts.

7The primary source of overhead is in Python’s native bignum and
crypto libraries, e.g. the average wall-clock time for an RSAsignature
is 250ms, compared to 4.8ms using OpenSSL.

lar ad-supported web site8 shows that it serves up 37.13KB
in two ad images and associated links for the main page.
The total transfer overhead for the client in our protocol is
around 1.6KB, with merchant and witness overheads on the
order of 4KB. So, our protocol is more efficient than adver-
tisement image-based payment from a network utilization
standpoint. Using the same web site, we performed a num-
ber of load and render timing tests, and found that it takes on
average 0.9 seconds to fetch the website and render a text-
only version, ignoring images and scripts. Since we do not
load images nor process scripts (which may load additional
images or content), this represents the low end estimate, but
gives a good benchmark as to what end-users may expect in
terms of web page load times.

We can conclude that our protocol is viable in real-world
commercial environments with Internet-like communica-
tion latencies. Communication overhead itself (the amount
of data transferred) can be reduced using known compres-
sion techniques, by increasing statefulness of all parties, or
a combination of both.

8. Conclusion and Future Work

In this paper, we have proposed a framework for anony-
mous electronic cash that prevents double-spending with-
out an online trusted authority or special-purpose hardware.
Our scheme leverages the power of peer-to-peer systems
to provably and efficiently prevent double-spending while
retaining conceptual simplicity. Conceptually, the scheme
replaces trusted hardware observers as in Brands’ protocol
with a large group of mostly trustworthy hosts. We have
demonstrated the simplicity of our approach with a pro-
totype implementation, and reported on experiments that
confirm its efficiency. Our experimental results and sim-
ple complexity analysis suggest that the scheme could eas-
ily handle web-based mini-payments for many merchants.
In addition, The accompanying cryptographic protocols can
easily be extended to provide additional functionalities such
as escrow service.

As far as incentives, our scheme shifts responsibility for
double-spending prevention from the users, who do not ben-
efit from it, to the merchants, who do. As a result, if the
coins belonging to some client are stolen, the damage to
the client will consist only of the value of the stolen coins.
We believe that this more closely aligns the interests and
security obligations of the parties involved than the current
credit card infrastructure.

The scheme proposed in this paper does not allow for ag-
gregation of transactions, which makes it less efficient than
desired. Thus it will be interesting to investigate how coin
withdrawals, payments and other protocols can be aggre-
gated together without loss of security. Moreover, an inter-
esting question for further work is how our protocols can

8CNN.com

be modified to accommodate additional notions of e-cash,
such as divisible and unlinkable e-cash.

Acknowledgements.This work was partially supported by
NSF grants CNS-0546162 and CNS-0448423.

References

[1] Ukash. Smart Voucher Ltd.http://www.ukash.com.
[2] M. Abe and E. Fujisaki. How to Date Blind Signatures. In

ASIACRYPT, 1996.
[3] M. Abe and T. Okamoto. Provably Secure Partially Blind

Signatures. InCRYPTO, 2000.
[4] R. Anderson, C. Manifavas, and C. Sutherland. Netcard -

A Practical Electronic Cash System. InFourth Cambridge
Workshop on Security Protocols, 1996.

[5] M. Bellare and P. Rogaway. Random oracles are practical:
A paradigm for designing efficient protocols. InCCS, 1993.

[6] S. Brands. An Efficient Off-line Electronic Cash System
Based On The Representation Problem. Technical Report
CS-R9323, CWI, 1993.

[7] S. Brands. Untraceable Off-line Cash in Wallets with Ob-
servers. InCRYPTO, 1993.

[8] J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Com-
pact e-cash. InEUROCRYPT, 2005.

[9] A. Chan, Y. Frankel, P. MacKenzie, and Y. Tsiounis. Mis-
Representation of Identities in E-cash Schemes and How To
Prevent It. InASIACRYPT, 1996.

[10] A. Chan, Y. Frankel, and Y. Tsiounis. How to Break and Re-
pair E-cash Protocols Based on the Representation Problem.
NU-CCS-96-05, Northeastern Univ., 1996.

[11] D. Chaum. Blind Signatures for Untraceable Payments. In
CRYPTO, 1982.

[12] D. Chaum, A. Fiat, and M. Naor. Untraceable Electronic
Cash. InCRYPTO, 1988.

[13] D. Chaum and T. B. Pedersen. Wallet databases with ob-
servers. InCRYPTO, 1992.

[14] D. Chaum and T. P. Pedersen. Transferred cash grows in
size. InEUROCRYPT, 1992.

[15] T. Eng and T. Okamoto. Single-term divisible electronic
coins. InEUROCRYPT, 1994.

[16] R. Fielding.Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, 2000.

[17] Y. Frankel, Y. Tsiounis, and M. Yung. Indirect discourse
proofs achieving fair off-line ecash. InASIACRYPT, 1996.

[18] R. Hauser, M. Steiner, and M. Waidner. Micro-payments
based on iKP. TR 2791 (#89269), 1996.

[19] J.-H. Hoepman. Distributed Double Spending Prevention.
Manuscript, 2006.

[20] M. Jakobsson, D. MRaihi, Y. Tsiounis, and M. Yung. Elec-
tronic Payments: Where Do We Go from Here? InCQRE,
1999.

[21] S. Jarecki and A. Odlyzko. An Efficient Micropayment Sys-
tem Based on Probabilistic Polling. InFinancial Cryptogra-
phy, 1997.

[22] C. Jutla and M. Yung. PayTree: ”Amortized-Signature” for
Flexible MicroPayments. InElectronic Commerce, 1996.

[23] R. J. Lipton and R. Ostrovsky. Micro-Payments via Efficient
Coin-Flipping. InFinancial Cryptography, 1998.

[24] M. Manasse. The Millicent protocols for electronic com-
merce. Manuscript, 1995.

[25] S. Micali and R. L. Rivest. Micropayments revisited. In
CT-RSA, 2002.

[26] T. Okamoto. Provably Secure and Practical Identifica-
tion Schemes and Corresponding Signature Schemes. In
CRYPTO, 1992.

[27] T. Okamoto. An efficient divisible electronic cash scheme.
In CRYPTO, 1995.

[28] T. Okamoto and K. Ohta. Universal electronic cash. In
CRYPTO, 1991.

[29] I. Osipkov, P. Wang, N. Hopper, and Y. Kim. Robust Ac-
counting in Decentralized P2P Storage Systems. InICDCS,
2006.

[30] J. C. Pailles. New protocols for electronic money. InAU-
SICRYPT, 1992.

[31] T. P. Pedersen. Electronic Payments of Small Amounts.
Technical Report DAIMI PB-495, Aarhus University, 1995.

[32] R. L. Rivest. Electronic Lottery Tickets as Micropayments.
In Financial Cryptography, 1997.

[33] R. L. Rivest and A. Shamir. PayWord and MicroMint:
Two Simple Micropayment Schemes. InSecurity Protocols,
1996.

[34] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakr-
ishnan. Chord: A Peer-to-Peer Lookup Service for Internet
Applications. InACM SIGCOMM, 2001.

[35] Y. S. Tsiounis.Efficient Electronic Cash: New Notions and
Techniques. PhD thesis, 1997.

[36] N. van Someren, A. Odlyzko, R. Rivest, T. Jones, and
D. Goldie-Scot. Does Anyone Really Need MicroPayments?
In Financial Cryptography, 2003.

[37] K. Wei, A. J. Smith, Y.-F. R. Chen, and B. Vo. WhoPay: A
Scalable and Anonymous Payment System for Peer-to-Peer
Environments. InICDCS, 2006.

[38] D. Wheeler. Transactions Using Bets. InSecurity Protocols,
1996.

[39] S. Xu, M. Yung, G. Zhang, and H. Zhu. Money Conserva-
tion via Atomicity in Fair Off-Line E-Cash. InInformation
Security Workshop, 1999.

[40] B. Yang and H. Garcia-Molina. PPay: Micropayments for
Peer-to-Peer Systems. InCCS, 2003.

