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ABSTRACT
In the last year we have seen a great deal of both academic and
practical interest in the topic of vulnerabilities in smart contracts,
particularly those developed for the Ethereum blockchain. In this
paper we survey the 21,270 vulnerable contracts reported by six
recent academic projects. Contrary to what might have been be-
lieved given the reported number of vulnerable contracts, there has
been precious little in terms of actual exploitation when it comes
to these vulnerabilities. We �nd that at most 504 out of 21,270
contracts have been subjected to exploits. This corresponds to at
most 9,066 ETH (∼1.8 million USD 1), or only 0.29% of the 3 million
ETH (600 million USD) claimed in some of the papers. While we are
certainly not implying that smart contract vulnerability research
is without merit, our results suggest that the potential impact of
vulnerable code had been greatly exaggerated.

1 INTRODUCTION
When it comes to vulnerability research, especially as it pertains to
software security, it is frequently di�cult to estimate what fraction
of discovered or reported vulnerabilities are exploited in practice.
However, public blockchains, with their immutability, ease of access,
and what amounts to a replayable execution log for smart contracts
present an excellent opportunity for just such an investigation. In
this work we aim to contrast the vulnerabilities that are reported
in smart contracts on the Ethereum [18] blockchain with the actual
exploitation of these contracts.

We collect the data shared with us by the authors of six recent
papers [27, 34, 35, 38, 43, 52] that focus on �nding smart contract
vulnerabilities. These academic datasets are signi�cantly bigger in
scale than reports we can �nd in the wild and because of the sheer
number of a�ected contracts — 21,270 — represent an excellent
study subject.

To make our approach more general, we express �ve di�erent fre-
quently reported vulnerability classes as Datalog queries computed
over relations that represent the state of the Ethereum blockchain,
both current and historic. The Datalog-based exploit discovery
approach gives more scalability to our process; also, while others
have used Datalog for static analysis formulation, we are not aware
of it being used to capture the dynamic state of the blockchain over
time.

We discover that the amount of smart contract exploitation
which occurs in the wild is notably lower than what might be
believed, given what is suggested by the sometimes sensational
nature of some of the famous crypto-currency exploits such as
TheDAO [46] or the Parity wallet [16] bugs.

1We use the exchange rate on 2019-05-12: 1 ETH = 200 USD. For consistency, any
monetary amounts denominated in USD are based on this rate.

Contributions. Our contributions are:

• This paper presents the �rst broadly scoped analysis of
the real-life prominence of security exploits against smart
contracts.

• We propose a Datalog-based formulation for performing
analysis over Ethereum Virtual Machine (EVM) execution
traces. We use this highly scalable approach to analyze a to-
tal of more than 16 million transactions from the Ethereum
blockchain to search for exploits. We should highlight
that our analyses run automatically based on the facts that
we extract and the rules that de�ne the vulnerabilities we
cover in this paper.

• We analyze the vulnerabilities reported in six recently pub-
lished studies and conclude that, although the number of
contracts and the amount of money supposedly at risk is
very high, the amount of money which has actually been
exploited is several orders of magnitude lower.

• We discover out of 21,270 vulnerable contracts worth a total
of 3,088,102 ETH, merely 49 contracts containing Ether may
have been exploited for an amount of 9,066 ETH, which
represents as little as 0.29% of the total amount at stake.

• We hypothesize that the reasons for these vast di�erences
are multi-fold: lack of appetite for exploitation, the sheer
di�culty of executing some exploits, fear of attribution,
other more attractive exploitation options, etc. Further
analysis of the vulnerable contracts and the Ether they
contain suggests that a large majority of Ether is held by
only a small number of contracts, and that the vulnerabili-
ties reported on these contracts are either false positives or
not applicable in practice, making exploitation signi�cantly
less attractive as a goal.

To make many of the discussions in this paper more concrete, we
present a thorough investigation of the high-value contracts in
Appendix A.

2 BACKGROUND
The Ethereum [18] platform allows its users to run “smart con-
tracts” on its distributed infrastructure. Ethereum smart contracts
are programs which de�ne a set of rules for the governing of asso-
ciated funds, typically written in a Turing-complete programming
language called Solidity [23]. Solidity is similar to JavaScript, yet
some notable di�erences are that it is strongly-typed and has built-
in constructs to interact with the Ethereum platform. Programs
written in Solidity are compiled into low-level untyped bytecode
to be executed on the Ethereum platform by the Ethereum Virtual
Machine (EVM). It is important to note that it is also possible to
write EVM contracts without using Solidity.

To execute a smart contract, a sender has to send a transaction
to the contract and pay a fee which is derived from the contract’s
computational cost, measured in units of gas. Consumed gas is
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Name Contracts Issues Vulnerabilities Report Citationanalyzed found RE UE LE TO IO month

Oyente 19K 8.8K X X X 2016-10 [38]

ZEUS 22.4K 21K X X X X X 2018-02 [34]

Maian 34K 3.7K X 2018-03 [43]

SmartCheck 4.6K 4.6K X X X X 2018-05 [51]

Securify 25K 5K X X X X 2018-06 [52]

ContractFuzzer 7K 460 X X 2018-09 [33]

Vandal 141K 85K X X 2018-09 [17]

MadMax 92K 6K X X 2018-10 [27]

Figure 1: A summary of smart contract analysis tools presented in
prior work.

credited to the miner of the block containing the transaction, while
any unused gas is refunded to the sender. In order to avoid system
failure stemming from never-terminating programs, transactions
specify a gas limit for contract execution. An out-of-gas exception
is thrown once this limit has been reached.

Smart contracts themselves have the capability to “call” another
account present on the Ethereum blockchain. This functionality is
overloaded, as it is used both to call a function in another contract
and to send Ether (ETH), the underlying currency in Ethereum, to
an account. A particularity of how this works in Ethereum is that
calls from within a contract do not create any new transactions
and are therefore not directly recorded on-chain. This means that
merely looking at the transactions without executing them does
not provide enough information to follow the �ow of Ether.

2.1 Current Industrial Practice
Smart contracts are generally designed to manipulate and hold
funds denominated in Ether. This makes them very tempting attack
targets, as a successful attack may allow the attacker to directly
steal funds from the contract. Hence, in order to ensure a su�cient
degree of smart contract security, a wide variety of practices that
operate at di�erent stages of the development life-cycle have been
adopted in the industry.

Analysis tools. A large number of tools have been developed to
analyze smart contracts [21, 38, 52]. Most of these tools analyze
either the contract source code or its compiled EVM bytecode and
look for known security issues, such as re-entrancy or transac-
tion order dependency vulnerabilities. We present a summary of
these di�erent works in Figure 1. The second and third columns
respectively present the reported number of contracts analyzed and
contracts �agged vulnerable in each paper. The “vulnerabilities”
columns show the type of vulnerabilities that each tool can check
for. We present these vulnerabilities in Subsection 2.2 and give a
more detailed description of these tools in Section 7.

Testing. Like any piece of software, smart contracts bene�t from
automated testing and some e�orts have therefore been made to
make the testing experience more straightforward. Tru�e [20]
is a popular framework for developing smart contracts, which al-
lows to write both unit and integration tests for smart contracts in
JavaScript. One di�culty of testing on the Ethereum platform is
that the EVM does not have a single main entry point and bytecode
is executed when ful�lling a transaction.

There are mainly two methods used to work around this. The
�rst is to use a private Ethereum network, or a test-net, where it
is easy to control the state. The smart contracts are deployed and
executed on the private network in the same way they would be
deployed on the main Ethereum network. The other approach is
to use a standalone implementation of the EVM. Ganache [22] is
one of the most popular such standalone implementation of the
EVM built for development purposes and is developed by the same
authors as Tru�e. Although this provides a more lightweight way
to run tests, it also requires the implementation to perfectly mimic
the original one, which is error-prone.
Auditing. As smarts contracts can have a high monetary value,
auditing contracts for vulnerabilities is a common industrial prac-
tice. Audit should preferably be performed while contracts are
still in testing phase but given the relatively high cost of auditing
(usually around 30,000 to 40,000 USD [12]) some companies choose
to perform audits later in their development cycle. In addition to
checking for common vulnerabilities and implementation issues
such as gas-consuming operations, audits also usually check for
divergences from the whitepaper and other high-level logic errors,
which are impossible for current automatic tools to detect.
Bounty programs. Another common practice for developers to
improve the security of their smart contracts is to run bounty pro-
grams. While auditing is usually a one-time process, bounty pro-
grams remain ongoing throughout a contract’s lifetime and allow
community members to be rewarded for reporting vulnerabilities.
Companies or projects running bounty programs can either choose
to reward the contributors by paying them in a �at currency such
as US dollars, a cryptograms — typically Bitcoin or Ether — or other
crypto assets. Some bounty programs, such as the one run by the
0x project [7], o�er bounties as high as 100,000 USD for critical
vulnerabilities.

2.2 Vulnerability Types
In this subsection, we brie�y review some of the most common
vulnerability types that have been researched and reported for
EVM-based smart contracts. We provide a two-letter abbreviation
for each vulnerability, which we shall use throughout the remainder
of this paper.
Re-Entrancy (RE). The vulnerability is exploited when a contract
tries to send Ether before having updated its internal state. If the
destination address is another contract, it will be executed and can
therefore call the function to request Ether again and again [34, 38,
52]. This vulnerability was used in The DAO exploit [46], essentially
causing the Ethereum community to decide to rollback to a previous
state using a hard-fork [40]. We provide more details about The
DAO exploit in Section 7
Unhandled Exceptions (UE). Some low-level operations in So-
lidity such as send, which is used to send Ether, do not throw an
exception on failure, but rather report the status by returning a
boolean. If this return value were to be unchecked, a contract would
continue its execution even if the payment failed, which could be
easily lead to inconsistencies [17, 34, 38, 51].
Locked Ether (LE). Ethereum smart contracts can have a function
marked as payable which allows it to receive Ether, increasing the
balance of the contract. Most of the times, the contract will also
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Name Contracts Vulnerabilities Ether at stake
analyzed found at time of report

Oyente 19,366 7,527 1,289,177
Zeus 1,120 855 729,376
Maian NA 2,691 14.13
Securify 29,694 9,185 719,567
MadMax 91,800 6,039 1,114,692
teEther 784,344 1,532 0.756

Figure 2: Summary of the contracts in our dataset.

have a function which sends Ether. For example, a contract might
have a payable function called deposit, which receives Ether, and
a function called withdraw, which sends Ether. However, there
are several reasons for which the withdraw function may become
unable to send funds anymore.

One reason is that the contract may depend on another contract,
which has been destructed using the SELFDESTRUCT instruction of
the EVM — i.e. its code has been removed and its funds transferred.
For example, the withdraw function may require an external con-
tract to send Ether. However, if the contract it relies on has been
destructed, the withdraw function would not be able to actually
send the Ether, e�ectively locking the funds of the contract. This is
what happened in the Parity Wallet bug in November 2017, locking
millions of USD worth of Ether [16]. We provide more details about
the Parity Wallet bug in Section 7

There are also cases where the contract will always run out of
gas when trying to send Ether, locking the contract funds. More
details about such issues can be found in [27].

Transaction Order Dependency (TO). In Ethereum, multiple
transactions are included in a single block, which means that the
state of a contract can be updated multiple times in the same block.
If the order of two transactions calling the same smart contract
changes the �nal outcome, an attacker could exploit this property.
For example, given a contract which expects participant to sub-
mit the solution to a puzzle in exchange for a reward, a malicious
contract owner could reduce the amount of the reward when the
transaction is submitted.

Integer Over�ow (IO). Integer over�ow and under�ow is a com-
mon type of bug in many programming languages but in the context
of Ethereum it can have very severe consequences. For example,
if a loop counter were to over�ow, creating an in�nite loop, the
funds of a contract could become completely frozen. This can be
exploited by an attacker if he has a way of incrementing the number
of iterations of the loop, for example, by registering new users of
the contract.

3 DATASET
In this paper, we analyze the vulnerable contracts reported by the
following six academic papers: [38], [34], [43], [52], [27] and [35].
To collect information about the addresses analyzed and the vul-
nerabilities found, we reached out to the authors of the di�erent
papers.

Oyente [38] data was publicly available [37]. The authors of the
other papers were kind enough to provide us with their dataset.
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(a) Overlapping contracts
analyzed.
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(b) Overlapping vulnerabilities
�agged.

Figure 3: Histograms that show the overlap in the contracts ana-
lyzed and �agged by di�erent papers.

Tools Total Agreed Disagreed % agreement

Oyente/Securify 774 185 589 23.9%
Oyente/Zeus 104 3 101 2.88%
Zeus/Securify 108 2 106 1.85%
Figure 4: Agreement among tools for re-entrancy analysis.

We received all the replies within less than a week of contacting
the authors.

We also reached out to the authors of [51], [33] and [17] but
could not obtain their dataset, which is why we left these papers
out of our analysis.

Our dataset is comprised of a total of 110,177 contracts analyzed,
of which 21,270 contracts have been �agged as vulnerable to at
least one of the �ve vulnerabilities described in Section 2. Although
we received the data directly from the authors, the numbers of
contracts analyzed usually did not match the data reported in the
papers, which we show in Figure 1. We believe the two main results
for this are: authors improving their tools after the publication
and authors not including duplicated contracts in their data they
provided us. Therefore, we present the numbers in our dataset,
as well as the Ether at stake for vulnerable contracts in Figure 2.
The Ether at stake is computed by summing the balance of all the
contracts �agged vulnerable. We use the balance at the time at
which each paper was published rather than the current one, as it
gives a better sense of the amount of Ether which could potentially
have been exploited.
Taxonomy. Rather than reusing existing smart contracts vulnera-
bilities taxonomies [13] as-is, we adapt it to �t the vulnerabilities
analyzed by the di�erent tools in our dataset. We do not cover any
vulnerability which is not analyzed by at least two of the six tools
we analyze. We settle on the �ve types of vulnerabilities described
in Section 2: re-entrancy (RE), unhandled exception (UE), locked
Ether (LE), transaction order dependency (TO) and integer over-
�ows (IO). As the papers we analyze use di�erent terms and slightly
di�erent de�nitions for each of these vulnerabilities, we map the
relevant vulnerability to one of the �ve types of vulnerabilities we
analyze. We show how we mapped these vulnerabilities in Figure 5.
Excluded data. We exclude teEther [35] and Maian [43] from our
analysis for two reasons. First, the amount of Ether at stake is too
low to make an impact on our �nal results. The amount of Ether at
stake for both tools combined represent a total of 14.89 Ether, which
is six orders of magnitude less than the total. Second, it is vastly
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Oyente ZEUS Securify MadMax

RE re-entrancy re-entrancy no writes after call —
UE callstack unchecked send handled exceptions —
TO concurrency tx order dependency transaction ordering dependency —
LE — failed send Ether liquidity unbounded mass operation

wallet grie�ng
IO — integer over�ow — integer over�ows

Figure 5: Mapping of the di�erent vulnerabilities analyzed.

[

{"op": "EQ", "pc": 7,

"depth": 1, "stack": ["2b", "a3"]},

{"op": "ISZERO", "pc": 8, "depth": 1,

"stack": ["00"]}

]

Figure 6: Sample execution trace information.

harder given the vulnerabilities analyzed by these tools to reliably
assess if they have been exploited. Indeed, for a vulnerability such
as being able to destruct the contract, there is no general way of
knowing if the person who performed such a call should have been
allowed to do so. Given this lack of reliability and the very low
amount of money at stake, we decided to keep this data out of
further analysis.

Overlapping vulnerabilities. In this subsection, we analyze our
dataset to see how much the contracts analyzed by the di�erent
tools and the vulnerabilities found overlap. Although most papers,
except for [38], are written around the same period, we �nd that
only 13,751 contracts out of the total of 110,177 have been analyzed
by at least two of the tools. In Figure 3a, we show a histogram of
how many di�erent tools analyze a single contract. In Figure 3b, we
show the number of tools which �ag a single contract as vulnerable
to any of the analyzed vulnerability. The overlap for both the
analyzed and the vulnerable contracts is clearly very small. We
assume one of the reasons is that some tools work on Solidity
code [34] while other tools work on EVM bytecode [38, 52], making
the population of contracts available di�erent among tools.

We also �nd a lot of contradiction in the analysis of the di�er-
ent tools. We choose re-entrancy to illustrate this point, as it is
unambiguous and is supported by three of the tools we analyze. In
Figure 4, we show the agreement between the three tools which
support re-entrancy detection. The Total column shows the total
number of contracts analyzed by both tools in the Tools column
and �agged by at least one of them as vulnerable to re-entrancy.
Oyente and Securify agree on only 23% of the contracts, while Zeus
does not seem to agree with any of the other tools. This re�ects
the di�culty of building static analysis tools targeted at the EVM.
While we are not trying to evaluate or compare the performance of
the di�erent tools, this gives us yet another motivation to �nd out
the impact of the reported vulnerabilities.

4 METHODOLOGY
In this section, we describe in details the di�erent analysis we per-
form in order to check for exploits of the vulnerabilities described
in Section 2.

To check for potential exploits, we mainly perform bytecode-
level transaction analysis, whereby we look at the code executed by
the contract when carrying out a particular transaction. We use this
type of analysis to detect re-entrancy (RE), unhandled exceptions
(UE) and integer over�ows (IO). We also use transaction pattern
analysis, where we analyze the �ow of the transactions both from
and to the contract, either to �lter or to re�ne our results. We use
this type of analysis to re�ne the results of locked Ether (LE) and to
�lter transactions when looking for transaction order dependency
(TO) exploits.

To perform both analyses, we �rst retrieve transaction data
for all the contracts in our dataset. To simplify the retrieval
process, we use data provided by Etherscan [8], a well-known
Ethereum blockchain explorer service, rather than scanning the
entire Ethereum blockchain ourselves.

Next, to perform bytecode-level analysis, we extract the execu-
tion traces for the transactions which may have a�ected contracts
of interest. We use EVM’s debug functionality, which gives us the
ability to replay transactions and to trace all the executed instruc-
tions. To speed-up the data collection process, we patch the Go
Ethereum client [11], opposed to relying on the Remote Procedure
Call (RPC) functionality provided by the default Ethereum client.

The extracted traces contain a list of executed instructions, as
well as the state of the stack at each instruction. We show a trun-
cated sample of the extracted traces in Figure 6 for illustration. The
op key is the current instruction, pc is the program counter, depth
is the current level of call nesting, and �nally, stack contains the
current state of the stack. We use single-byte values in the example,
but the actual values are 32 bytes (256 bits).

To analyze the traces, we encode them into a Datalog repre-
sentation; Datalog is a language implementing �rst-order logic
with recursion [32], which has been used extensively by the pro-
gramming language community. We use the following domains to
encode the information about the traces as Datalog facts:

• V is the set of program variables;
• A is the set of Ethereum addresses;
• N is the set of natural numbers, Z is the set of integers.

We show an overview of the facts that we collect and the relations
that we use to check for possible exploits in Figure 7. We should
highlight that our analyses run automatically based on the facts that
we extract and the rules that de�ne various violations described in
subsequent sections.

4.1 Re-Entrancy
In the EVM, as transactions are executed independently, re-entrancy
issues can only occur within a single transaction. Therefore, for
re-entrancy to be exploited, there must be a call to an external
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Fact Description

is_output(v1 ∈ V , v2 ∈ V ) v1 is an output of v2
size(v ∈ V , n ∈ N) v has n bits
is_signed(v ∈ V ) v is signed
in_condition(v ∈ V ) v is used in a condition
call(a1 ∈ A, a2 ∈ A, p ∈ N) a1 calls a2 with p Ether
expected_result(v ∈ V , r ∈ Z) v’s expected result is r
actual_result(v ∈ V , r ∈ Z) v’s actual result is r

call_result(v ∈ V , n ∈ N) v is the result of a call
and has a value of n

call_entry(i ∈ N, a ∈ A) contract a is called when
program counter is i

call_exit(i ∈ N) program counter is i when
exiting a call to a contract

tx_sstore(b ∈ N, i ∈ N,k ∈ N) storage key k is written in
transaction i of block b

tx_sload(b ∈ N, i ∈ N,k ∈ N) storage key k is read in
transaction i of block b

(a) Datalog facts.

Datalog rules

depends(v1 ∈ V , v2 ∈ V ) :- is_output(v1, v2).
depends(v1, v2) :- is_output(v1, v3), depends(v3, v2).
call_flow(a1 ∈ A, a2 ∈ A, p ∈ Z) :- call(a1, a2, p).
call_flow(a1, a2, p) :- call(a1, a3, p),

call_flow(a3, a2, _).
inferred_size(v ∈ V , n ∈ N) :- size(v, n).
inferred_size(v, n) :- depends(v, v2), size(v2, n).
inferred_signed(v ∈ V ) :- is_signed(v).
inferred_signed(v) :- depends(v, v2), is_signed(v2).
influences_condition(v ∈ V ) :- in_condition(v).
influences_condition(v) :- depends(v2, v),

in_condition(v2).

(b) Basic Datalog relation de�nitions.

Type of vulnerability Query

Re-Entrancy call_flow(a1, a2, p1),
call_flow(a2, a1, p2),
a1 , a2

Unhandled Exceptions call_result(v, 0),
¬influences_condition(v)

Transaction Order tx_sstore(b, t1, i),
Dependency tx_sload(b, t2, i), t1 , t2

Locked Ether call_entry(i1,a),
call_exit(i2), i1 + 1 = i2

Integer Over�ow actual_result(v, r1),
expected_result(v, r2), r1 , r2

(c) Datalog queries for detecting di�erent vulnerability classes.
Figure 7: Datalog setup.

if (!addr.send (100)) { throw; }

(a) Failure handling in Solidity.

; preparing call

(0x65) CALL

; call result pushed on the stack

(0x69) PUSH1 0x73

(0x71) JUMPI ; jump to 0x73 if call was successful

(0x72) REVERT

(0x73) JUMPDEST

(b) EVM instructions for failure handling.
Figure 8: Correctly handled failed send.

contract, which invokes, directly or indirectly, a re-entrant callback
to the calling contract. We therefore start by looking for CALL
instructions in the execution traces, while keeping track of the
contract currently being executed.

When CALL is executed, the address of the contract to be called
as well as the value to be sent can be retrieved by inspecting the
values on the stack [54]. Using this information, we can record
call(a1,a2,p) facts described in Figure 7a. Using these, we then
use the query shown in Figure 7c to retrieve potentially malicious
re-entrant calls.

Soundness and completeness. Our analysis for re-entrant calls
is sound and complete. As the EVM executes each contract in a
single thread, a re-entrant call must come from a recursive call.
For example, given A, B, C and D being functions, a re-entrant call
could be generated with a call path such as A → B → C → A.
Our tool searches for such mutually-recursive calls; it supports
an arbitrarily-long calls path by using a recursive Datalog rule,
making the analysis sound. Our query will match transactions only
if such a call path has been executed, making the analysis complete.
However, it is important to note that some re-entrant call might be
part of the normal functioning of a contract, and not exploitation.

4.2 Unhandled Exceptions
When Solidity compiles contracts, methods to send Ether, such as
send, are compiled into the EVM CALL instructions. We show an
example of such a call and its instructions counterpart in Figure 8. If
the address passed to CALL is an address, the EVM executes the code
of the contract, otherwise it executes the necessary instructions to
transfer Ether to the address. When the EVM is done executing, it
pushes either 1 on the stack, if the CALL succeeded, or 0 otherwise.

To retrieve information about call results, we can therefore check
for CALL instructions and use the value pushed on the stack after the
call execution. The end of the call execution can be easily found by
checking when the depth of the trace turns back to the value it had
when the CALL instruction was executed; we save this information
as call_result(v, n) facts.

As shown in Figure 8b, the EVM uses the JUMPI instruction to
perform conditional jumps. At the time of writing, this is the only in-
struction available to execute conditional control �ow. We therefore
mark all the values used as a condition in JUMPI as in_condition.
We can then check for the unhandled exceptions by looking for call
results, which never in�uence a condition using the query shown
in Figure 7c.

5



Soundness and completeness. The analysis we perform to check
for unhandled exceptions is sound and complete. All failed calls in
the execution of the program will be recorded, while we accumulate
facts about the execution. We then use a recursive Datalog rule to
check if the call result is used directly or indirectly in a condition.
This is essentially a runtime analysis version of the static analysis
performed by the tools we analyze [34, 52].

4.3 Locked Ether
Although there are several reasons for funds locked in a contract, we
focus on the case where the contract relies on an external contract,
which does not exist anymore, as this is the pattern which had
the largest �nancial impact on Ethereum [16]. Such a case can
occur when a contract uses another contract as a library to perform
some actions on its behalf. To use a contract in this way, the
DELEGATECALL instruction is used instead of the CALL, as the latter
does not preserve call data, such as the sender or the value.

The next important part is the behavior of the EVM when try-
ing to call a contract which does not exist anymore. When a
contract is destructed, it is not completely removed per-se, but
its code is removed. When a contract tries to call a contract
which has been destructed, the call is a no-op rather than a fail-
ure, which means that the next instruction will be executed and
the call will be marked as successful. To �nd such patterns, we
collect Datalog facts about all the value of the program counter
before and after every DELEGATECALL instruction. In particular
�rst mark the program counter value at which the call is exe-
cuted — call_entry(i1 ∈ N, a ∈ A). Then, using the same ap-
proach as for unhandled exceptions, we skip the content of the
call and mark the program counter value at which the call returns —
call_exit(i2 ∈ N).

If the contract called does not exist anymore, i1 + 1 = i2 must
hold. Therefore, we can use the Datalog query shown in Figure 7c
to retrieve the address of the destructed contracts, if any.

Soundness and completeness. The approach we use to detect
locked ether is sound and complete. All vulnerable contracts must
have a DELEGATECALL instruction. If the issue is present and the call
contract has indeed been destructed, it will always result in a no-op
call. Our analysis records all of these calls and systematically check
for the program counter before and after the execution, making the
analysis sound and complete.

4.4 Transaction Order Dependency
The �rst insight to check for exploitation of transaction ordering
dependency is that at least two transactions to the same contract
must be included in the same block for such an attack to be success-
ful. Furthermore, as shown in [38] or [52], exploiting a transaction
ordering dependency vulnerability requires manipulation of the
contract’s storage.

The EVM has only one instruction to read from the stor-
age, SLOAD, and one instruction to write the storage, SSTORE.
In EVM, the location of the storage to use for both of these
instructions is passed as an argument, and referred to as the
storage key. This key is available on the stack at the time
the instruction is called. We go through all the transactions
of the contracts and each time we encounter one of these

Instruction Description

SIGNEXTEND Increase the number of bits
SLT Signed lower than
SGT Signed greater than
SDIV Signed division
SMOD Signed modulo

Figure 9: EVM instructions that operate on signed operands.

instructions, we record either tx_sload(b ∈ N, i ∈ N,k ∈ N) or
tx_sstore(b ∈ N, i ∈ N,k ∈ N) where in each case b is the block
number, i is the index of the transaction in the block and k is the
storage key being accessed.

The essence of the rule to check for transaction order dependency
issues is then to look for patterns where at least two transactions
are included in the same block with one of the transactions writing
a key in the storage and another transaction reading the same key.
We show the actual rule in Figure 7c.
Soundness and completeness. Our approach to check for trans-
action order dependencies is sound but not complete. With the
de�nition we use, for a contract to have a transaction order de-
pendency it must have two transactions in the same block, which
a�ect the same key in the storage. We check for all such cases, and
therefore no false-negatives can exist. However, �nding if there is
a transaction order dependency requires more knowledge about
how the storage is used and our approach could therefore result in
false positives.

4.5 Integer Over�ow
The EVM is completely untyped and expresses everything in terms
of 256-bits words. Therefore, types are handled entirely at the
compilation level, and there is no explicit information about the
original types in any execution traces.

To check for integer over�ow, we accumulate facts over two
passes. In the �rst pass, we try to recover the sign and size of
the di�erent values on the stack. To do so, we use known invari-
ants about the Solidity compilation process. First, any value which
is used as an operand of one of the instructions shown in Fig-
ure 9 can be marked to be signed with is_signed(v). Furthermore,
SIGNEXTEND being the usual sign extension operation for two’s
complement, it is passed both the value to extend and the number
of bits of the value. This allows to retrieve the size of the signed
value. We assume any value not explicitly marked as signed to be
unsigned. To retrieve the size of unsigned values, we use another
behavior of the Solidity compiler.

To work around the lack of type in the EVM, the Solidity compiler
inserts an AND instruction to “cast” unsigned integers to their correct
value. For example, to emulate an uint8, the compiler inserts
AND value 0xff. In the case of a “cast”, the second operandm will
always be of the formm = 16n − 1, n ∈ N, n = 2p , p ∈ [1, 6]. We
use this observation to mark values with the according type: uintN
where N = n × 4. Variables size are stored as size(v, n) facts.

During the second phase, we use the inferred_signed(v) and
inferred_size(v, n) rules shown in Figure 7b to retrieve informa-
tion about the current variable. When no information about the
size can be inferred, we over-approximate it to 256 bits, the size of
an EVM word. Using this information, we compute the expected
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Contract address Last Amount
transaction exploited

0xd654bdd32fc99471455e86c2e7f7d7b6437e9179 2016-06-10 5,885
0x675e2c143295b8683b5aed421329c4df85f91b33 2015-12-31 50.49
0x02b2101903eb6a51518e63e84b785180859fda9d 2016-04-10 43.41
0x8dd7693ead649aa369bc188049112fd7486a3b6b 2015-11-09 28.59
0x233820087a752349ee20daab1c18e0b7c546d3f6 2016-05-15 13.38
0xcd3e727275bc2f511822dc9a26bd7b0bbf161784 2017-03-25 10.34

Figure 10: RE: Contracts victim of re-entrancy attack.

value for all arithmetic instructions (e.g. ADD, MUL), as well as the
actual result computed by the EVM and store them as Datalog facts.
Finally, we use the query shown in Figure 7c to �nd instructions
which over�ow.

Soundness and completeness. Our analysis for integer over�ow
is neither sound nor complete. The types are inferred by using
properties of the compiler using a heuristic which should work
for most of cases but can fail. For example, if a contract contains
code which yields AND value 0xff but value is an uint32, our
type inference algorithm would wrongly infer that this variable
is an uint8. Such error during type inference could cause both
false positives and false negatives. However, this type of issue
occurs only when the developer uses bit manipulation with a mask
similar to what the Solidity compiler generate. We �nd that such a
pattern is rare enough to not skew our data, and give an estimate
the possible number of contracts which could follow such a pattern
in Section 5.5.

5 ANALYSIS OF INDIVIDUAL
VULNERABILITIES

As described in Section 3, the combined amount of Ether contained
within all the �agged contracts exceeds 3 million ETH, worth 600
million USD. In this section, we present the results for each vulner-
ability, one by one; our results are have been obtained using the
methodology described in Section 4; the goal is to show how much
of this money is actually at risk.

For each vulnerability, we perform our analysis in two steps.
First, we run our tool to automatically �nd the total amount of
Ether at risk and report this number. This is the amount we use
to later give a total upper bound across all vulnerabilities. In the
second step, we manually analyze the contracts at risk to try to �nd
interesting exploit patterns, if any. As analyzing all the contracts
manually would be impractical, for each vulnerability we report all
the contracts with a potential amount of Ether at risk greater than
10 ETH. We choose 10 ETH as a threshold because we think it is low
enough to not miss any important attack, while being high enough
to �lter out most of the contracts. It is therefore appropriate for
manual inspection e�ort. It is important to note that the �lter used
in this step a�ects in no way the total amount we report, and is
used purely for practical purposes.

5.1 RE: Re-Entrancy
There are 4,336 contracts �agged as vulnerable to re-entrancy by [34,
38, 52], with a total of 411,604 transactions.

However, a common pattern when exploiting re-entrancy is
to �rst send a transaction to an attacker contract, which will in

Contract address Amount at risk

0x7011f3edc7fa43c81440f9f43a6458174113b162 52.90
0xb336a86e2feb1e87a328fcb7dd4d04de3df254d0 42.27
0x9e15f66b34edc3262796ef5e4d27139c931223f0 10.50
Figure 11: UE: Contracts a�ected by unhandled exceptions.

turn call the vulnerable contract. In such a case, the vulnerable
contract is called in a transaction sent to another contract and
there is no direct call to the vulnerable contract recorded on the
blockchain. Therefore, we separately retrieve all the transactions
which indirectly call the contracts to avoid missing any re-entrant
call. This results in 34,742 more transactions, for a total of 446,346
transactions to analyze.

After running the analysis described in Section 4 on all the
transactions, we found a total of 113 contracts which contain re-
entrant calls. To look for the amount at risk, we compute the sum
of the Ether sent between two contracts in transactions containing
re-entrant calls. The total amount of Ether exploited using re-
entrancy is of 6,075 ETH, which is considerable as it represents
around 1,200,000 USD.

Manual analysis. To manually analyze the contracts, we look for
contracts where at least 10 ETH has been lost. This gives us a total
of only 6 contracts, as shown in Figure 10. Interestingly, one of
these �ve potential attacks has a substantial amount of Ether at
stake: 5,881 ETH, which corresponds to around 1,180,000 USD. This
address has already been detected as vulnerable by some recent
work focusing on re-entrancy [44]. It appears that the contract,
which is part of the Maker DAO [10] platform, was found vulnerable
by the authors of the contract, who themselves performed an attack
to con�rm the risk [2].

Sanity checking. As a sanity check, we also add to our set of
analyzed contracts the address of a contract called SpankChain [6],
which is known to recently have been compromised by a re-
entrancy attack. We con�rm that our approach successfully marks
this contract as having been the victim of a re-entrancy attack and
correctly identi�es the attacker contract.

5.2 UE: Unhandled Exceptions
There are 11,426 contracts �agged vulnerable to unhandled ex-
ceptions by [34, 38, 52]. This is a total of more than 3 million
transactions, which is an order of magnitude larger than what we
found for re-entrancy issues.

We �nd a total of 268 contracts where failed calls have not been
checked for, which represent roughly 2% of the �agged contracts.
The next goal is to �nd an upper bound on the amount of Ether
at risk because of these unhandled exceptions. We assume that
the upper bound on the money at risk is the minimum value of
the balance of the contract at the time of the unhandled exception
and the total of Ether which have failed to be sent. More formally,
we note { f (a)1 , · · · , f

(a)
n } the set of transactions with unhandled

exceptions for an address a. {b(a)1 , · · · ,b
(a)
n } are the respective

blocks of each transaction. We can compute an upper bound of the
Ether at risk for an address a using (1).
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Contract address Last send Balance

0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9 2017-11-15 369,023
0x4a412fe6e60949016457897f9170bb00078b89a3 2018-01-25 4,000
0x90420b8aef42f856a0afb4ffbfaa57405fb190f3 2018-01-08 636.7
0x49edf201c1e139282643d5e7c6fb0c7219ad1db7 2017-05-20 44.23
0x40a05d4ce308bf600cb275d7a3e9113518f59c54 2017-09-11 39.48

Figure 12: LE: Top inactive contracts �agged with locked Ether
funds (The send date is from the contract).

upper_bound(a) =
n∑
i=1

min
{
f
(a)
i , balance

(
a,b
(a)
i

)}
(1)

We can then sum the upper bound of each address to obtain a
total upper bound. This gives us a total of 141.08 Ether at risk for
unhandled exceptions.
Manual analysis. We now look at all the contracts with more
than 10 ETH at risk, which yields a total of 3 contracts. We summa-
rize their addresses and the amount at risk in Figure 11.

Investigation of the contract at
0x7011f3edc7fa43c81440f9f43a6458174113b162:

The contract 0x7011f3edc7fa43c81440f9f43a6458174113b162 has
failed to send a total of 52.90 Ether and currently still holds a bal-
ance of 69.3 Ether at the time of writing. After investigation, we
�nd that the contract is an abandoned pyramid scheme [5]. The con-
tract has a total of 21 calls which failed, all trying to send 2.7 Ether,
which appears to have been the reward of the pyramid scheme at
this point in time. Unfortunately, the code of this contract was
not available for further inspection but we conclude that there is a
high chance that some of the users in the pyramid scheme did not
correctly obtain their reward because of this issue.

5.3 LE: Locked Ether
There are 7,271 contracts �agged vulnerable to locked Ether
by [52], [27], [43] and [34]. The 7,271 contracts hold a total value of
more than 1 million ETH, which is worth around 200 million USD.
Self-destructed contracts. We �rst analyze the transactions of
the contracts that could potentially be locked by conducting analy-
sis at the bytecode-level. Our tool shows than none of the contracts
are actually a�ected by the pattern we check for — i.e., dependency
on a contract which had been destructed.
Parity wallet. Despite having been known for more than a year,
contracts a�ected by the Parity wallet bug [16] were not �agged by
the tools that we analyzed. As this is one of the most famous cases
of locked Ether, we use the contracts as a sanity check to make sure
our tool is detecting this issue correctly.

To �nd the contracts, we simply have to use the Datalog query for
locked Ether in Figure 7c and insert the value of the Parity wallet ad-
dress as argument a. Our results for contracts a�ected by the Parity
bug indeed matches what others had found in the past [26], with the
contract at address 0x3bfc20f0b9afcace800d73d2191166ff16540258

having as much as 306,276 ETH locked.

Contract address First issue Balance

0xbf4ed7b27f1d666546e30d74d50d173d20bca754 2016-07-21 5,774,963
0x755cdba6ae4f479f7164792b318b2a06c759833b 2016-10-21 344,206
0x3da71558a40f63b960196cc0679847ff50fad22b 2016-09-06 13,818
0xd79b4c6791784184e2755b2fc1659eaab0f80456 2016-05-03 2,013
0xf45717552f12ef7cb65e95476f217ea008167ae3 2016-03-15 1,064

Figure 13: TOD: Top contracts potentially victim of transaction or-
dering dependency attack.

Transaction pattern analysis. It is worth pointing out that some
tools, such as MadMax [27], check for other types of issues, which
could also lock Ether. To try to check for such issues ourselves, we
search for contracts with high monetary value, which have been
inactive for a notably long period of time to see whether Ether is
indeed locked.

We �nd a total of 15 contracts, which follow this pattern. We
show the 5 contracts with the highest balance in Figure 12. We
manually inspect the top three contracts, which contain a substan-
tial amount of Ether, as well as the contracts, which have never sent
any Ether. These top three contracts are all implementing multi-sig
wallets, which are typically used to store Ether for long periods of
time, thus explaining the inactivity. After further manual inspec-
tion, we concluded that none of the contracts had been exploited,
nor were exploitable.

The �rst contract, which never sent any Ether, at address
0x5a5eff38da95b0d58b6c616f2699168b480953c9 has its code publicly
available. After inspection, it seems to be a “lifelog” and the fact it
is not sending Ether seems to be there by-design; in other words,
the funds are not locked. Although we were not able to inspect the
other contract because its code was not available, we did not �nd
any vulnerability report for this address.

5.4 TO: Transaction Order Dependency
There are 1,877 contracts �agged vulnerable to transaction ordering
dependency by [38] and [34]. However, as 642 of these contracts
have no transactions except for the contract creation transaction,
we only analyze the remaining 1,235 contracts.

For this vulnerability type, we �rst �lter the contracts by simply
looking at the transactions, as many transactions are unlikely to
a�ect the result of the analysis. Hence, we �lter out all contracts
that do not have at least two transactions within the same block,
as transaction order dependency could not possibly have been
exploited in such a case.

This already reduces the number of candidate contracts to
only 229, which shows that more than 80% of the contracts which
have been �agged were mostly inactive contracts. We then run the
analysis that we described in Section 4 on the remaining contracts.
This results in a total of 48 contracts left which could have been
a�ected by transaction-order dependency.

To estimate the amount of Ether at risk, we simply sum up the
total value of Ether sent, including by internal transactions, during
all the �agged transactions. This gives a total of 189 ETH at risk
for transaction-order dependency.

Manual analysis. For each contract, we �nd the block where
transaction order dependency could have happened with the high-
est balance and select all contracts with a balance higher than 10
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Contract address First issue Balance

0x2935aa0a2d2fbb791622c29eb1c117b65b7a9085 2015-10-08 3,197
0x709c7134053510fce03b464982eab6e3d89728a5 2016-12-20 195.6
0x6dfaa563d04a77aff4c4ad2b17cf4c64d2983dc8 2016-06-24 178.6
0x0096800019bf4eca0bed5a714a553ecf844884c5 2016-06-21 174.0
0x9f53cdb4ea5b205a2fcd079f54af7196b1288938 2016-06-29 106.5

Figure 14: IO: Top contracts potentially victim of integer over�ows.

ETH. This gives us a total of 14 contracts. We show the addresses
of the 5 contracts with the highest balance at the time of the issue
in Figure 13. The First issue column is the date on which the trans-
action order issue had been seen for the �rst time. The Balance
column is the balance of the contract at the time the �rst issue
occurred. Looking at the date, it is clear that this issue has not
been seen in the wild for a long time, at least within the range
of the contracts �agged by the tools we analyzed. We manually
investigated the top �ve contracts in the list but did not �nd any
evidence of transaction order-related exploits.

5.5 IO: Integer Over�ow
There are 2,472 contracts �agged vulnerable to integer over�ow,
which accounts for a total of more than 1 million transactions. We
run the approach we described in Section 4 to search for actual
occurrences of integer over�ows.

It is worth noting that for integer over�ow analysis we rely on
properties of the Solidity compiler. To make sure that the contracts
we analyze were compiled using Solidity, we fetched all the available
source codes for contracts �agged as a�ected by integer over�ow
from Etherscan [8]. Out of 2,472 contracts, 945 had their source
code available. All of the contracts with their source code available
were written in Solidity. 59 were written in Solidity 0.2 or lower
and 886 were written using Solidity 0.3 or higher.

E�ects of our formulation. As mentioned in Section 4.5, some
types of bit manipulation in Solidity contracts which could result
in our type inference heuristic failing. We use the source codes
we collected here to verify up to what extent this could a�ect
our analysis. We �nd that bit manipulation by itself is already
fairly rare in Solidity, with only 244 out of the 2,472 contracts we
collected using any sort of bit manipulation. Furthermore, most of
the contracts using bit manipulation were using it to manipulate
a variable as a bit array, and only ever retrieved a single bit at a
time. Such a pattern does not a�ect our analysis. We found only 33
contracts which used 0xFF or similar values, which could actually
a�ect our analysis. This represents about 1.3% of the number of
contracts for which the source code was available.

We �nd a total of 141 contracts with transactions where an
integer over�ow might indeed have occurred. To �nd the amount
of Ether at stake, we analyze all the transactions which resulted in
integer over�ows. We approximate the amount by summing the
total amount of Ether transferred in and out during a transaction
containing an over�ow. We �nd that the total of Ether at stake
is 2,661 ETH. This is most likely an over-approximation but we use
this value as our upper-bound.

Manual analysis. We �rst inspect some of the results we obtained
a little further to get a better sense of what kind of cases lead to

over�ows. We �nd that a very frequent cause of over�ow is rather
under�ow of unsigned values.

Investigation of the contract at
0xdcabd383a7c497069d0804070e4ba70ab6ecdd51:

This contract was �agged positive to both unhandled exceptions
and integer over�ow by our tool. After inspection, it seems that at
block height 1,364,860, the owner tried to reduce the fees but the
unsigned value of the fees over�owed and became a huge number.
Because of this issue, the contract was then trying to send large
amount of Ether. This resulted in failed calls which happened not
to be checked, hence the �ag for unhandled exceptions.

Next, we look for contracts which had at least 10 ETH at the
time of the over�ow. We �nd a total of 23 contracts with this
condition. We show the 5 contracts with the highest balance at
the time of the over�ow in Figure 14. The top contract in this list
had a large balance at the time of the issue but it had already been
self-destructed and we could therefore not inspect further. We did
not, however, �nd any report mentioning this contract.

5.6 Summary
We summarize all our �ndings, including the number of contracts
originally �agged, the amount of Ether at stake, and the amount
actually exploited in Figure 15. The Contracts exploited column
indicates the number of contracts which we believe to have been
exploited and Contracts with Ether exploited refers to the number of
contracts which contained at least 10 ETH at the time of exploitation.
The Exploited Ether column shows the maximum amount of Ether
that potentially could have been exploited and the next column
shows the percentage this amount represents compared to the total
amount at stake. The Total row accounts for contracts �agged with
more than one vulnerability only once.

Overall, we �nd that the situation is many orders of magnitude
less critical than most papers we review in Section 2 make it sound.
The amount of money which was actually exploited is not even
remotely close to the 5 billion USD [27] or even 500 million [34] USD,
which were supposedly at risk.

Below, we summarize the main takeaways regarding each vul-
nerability we examined in this paper.
Re-Entrancy. This is by far the most dangerous issue of all the
ones we have analyzed, accounting for more than 65% of the total ex-
ploitations we observed. Although some proposals have been made
to add a protection against this in the Solidity compiler [41, 48], we
think that this issue should instead be handled at the interpreter
level. Sereum [44] is an attempt to do this, and we think that such an
addition would help make the Ethereum smart contracts ecosystem
considerably more secure.
Unhandled Exceptions. As we can see in Figure 15, the amount
of Ether actually exploited is very low compared to other vulnera-
bilities. Although unhandled exceptions used to be a real issue a
few years ago, the Solidity compiler has since then made a lot of
progress and any unchecked call to send, or similar pattern, now
generates a warning at compile time. Therefore, we think that this
issue has already been given enough attention and is handled well
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Vulnerable Exploited contracts Exploited Ether
Vuln. Vulnerable Total Ether Transactions Contracts Contracts w/Ether % w/Ether Exploited % of Ether

contracts at stake analyzed exploited exploited exploited Ether exploited

RE 4,336 1,027,585 411,604 113 6 0.14% 6,075 0.59%
UE 11,426 208,528 3,063,510 268 6 0.053% 141.1 0.068%
LE 7,271 1,135,313 8,550,292 0 0 0% 0 0%
TO 1,877 207,926 2,817,260 57 14 0.75% 189.0 0.091%
IO 2,472 508,750 1,214,206 141 23 0.93% 2,661 0.52%
Total 21,270 3,088,102 16,056,872 504 49 0.0023% 9,066 0.29%

Figure 15: Understanding the exploitation of potentially vulnerable contracts.
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Figure 16: Ether held in contracts: describing the distribution.

enough by the current generation of development tools, at least as
it pertains to EVM contracts developed in Solidity.
Locked Ether. In this work, we mainly cover locked Ether caused
by self-destructed library contracts, such as the one seen by the
Parity wallet bug [16]. This particular issue has generated much
attention by the community because of the amount of money in-
volved. However, we believe that the pattern of delegating to a
library is a common pattern when working with smart contracts,
and that such contracts should not be treated as “vulnerable”. In-
deed, we show that this issue did not happen even a single time in
our dataset. We believe that the focus should lie on keeping library
contracts safe opposed to not using them at all.
Transaction Order Dependency. While this vulnerability has
received a lot of focus in the academic community [38, 52] it has
rarely been observed in reality. Our data con�rms that this is very
rarely exploited in practice. One of the reason is that this vulnera-
bility is simply quite hard to exploit: in order to reliably arrange the
order of the transactions, the attacker needs to be a miner. Given
that almost 85% of Ether is mined by mining pools [49], it would
require the mining pool operator to be dishonest. Pragmatically
speaking, there is generally not enough �nancial incentives for min-
ing pools to perform such an attack, in part because more lucrative
alternative opportunities may exist for them if they are dishonest.
Integer Over�ow. While this remains a very common issue with
smart contracts, it is both di�cult to automatically detect such
issues and to evaluate the impact that they may actually have. The
Solidity compiler now emits warning or errors for cases working
directly on integral literals but does not check anything else than
that. A case as simple as uint8 n = 255; n++; would not get any
warnings or errors. We believe that this is a place where static
analysis tools such as [34] or [27] can be very valuable to avoid
smart contracts that fail in unexpected ways.

6 DISCUSSION
In this section, we discuss some of the factors we think might be
impacting the actual exploitation of smart contracts.

We believe that a major reason for the di�erence between the
number of vulnerable contracts reported and the number of con-
tracts exploited is the distribution of Ether among contracts. Indeed,
only about 2,000 out of the 21,270 contracts in our dataset contain
Ether, and most of these contracts have a balance lower than 1 ETH.
We show the balance distribution of the contracts containing Ether
in our dataset in Figure 16a. Furthermore, the top 10 contracts hold
about 95% of the total Ether. We show the cumulative distribution
of Ether within the contracts containing more than 10 ETH in Fig-
ure 16b. This shows that, as long as the top contracts cannot be
exploited, the total amount of Ether that is actually at stake will be
nowhere close to the upper bound of “vulnerable” Ether.

To make sure this fact generalizes to the whole Ethereum
blockchain and not only our dataset, we fetch the balances for
all existing contracts. This gives a total of 15,459,193 contracts. Out
of these, we �nd that only 463,538 contracts have a non-zero bal-
ance, which is merely 3% of all the contracts. Out of the contracts
with a non-zero balance, the top 10 contracts account for 54% of the
total amount of Ether, the top 100 for 92% and the top 1000 for 99%.
This shows that our dataset follows the same trend as the Ethereum
blockchain in general: a very small amount of contracts hold most
of the wealth.

Manual inspection of high value contracts in our dataset. We
decide to manually inspect the top 6 contracts — i.e contracts with
the highest balances at the time of writing — marked as vulnerable
by any of the tools in our dataset. We focused on the top 6 because
it happened to be the number of contracts which currently hold
more than 100,000 ETH. These contracts hold a total of 1,695,240
ETH, or 83% of the total of 2,037,521 ETH currently held by all the
contracts in our dataset. We give an overview of the �ndings here
and a more in-depth version in Appendix A.

Investigation of the contract at
0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae:

The source code for this contract is not directly available. However,
we discovered that this is the multi-signature wallet of the Ethereum
foundation [1] and that its source code is available on GitHub [3].
We inspect the code and �nd that the only calls taking place require
the sender of the message to be an owner. This by itself is enough
to prevent any re-entrant call, as the malicious contract would have
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Address Ether balance Deployment date Flagged vulnerabilities

0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae 649,493 2015-08-08 Oyente: RE

0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9 369,023 2016-11-10 MadMax: LE, Zeus: IO

0x851b7f3ab81bd8df354f0d7640efcd7288553419 189,232 2017-04-18 MadMax: LE

0x07ee55aa48bb72dcc6e9d78256648910de513eca 182,524 2016-08-08 Securify: RE

0xcafe1a77e84698c83ca8931f54a755176ef75f2c 180,300 2017-06-04 MadMax: LE

0xbf4ed7b27f1d666546e30d74d50d173d20bca754 124,668 2016-07-16 Securify: TO, UE; Zeus: LE, IO
Figure 17: Top six most valuable contracts �agged as vulnerable by at least one tool.

to be an owner, which does not make sense. Furthermore, although
the version of Oyente used in the paper reported the re-entrancy,
more recent versions of the tool did not report this vulnerability
anymore. Therefore, we safely conclude that the re-entrancy issue
was a false alert.

We were able to inspect 4 of the 5 remaining contracts. The
contract at address 0x07ee55aa48bb72dcc6e9d78256648910de513eca is the
only one for which we were unable to �nd any information. The
second, third and �fth contracts in the list were also multi-signature
wallets and exploitation would require a majority owner to be mali-
cious. For example, for Ether to get locked, the owners would have
to agree on adding enough extra owners so that all the loops over
the owners result in an out-of-gas exception. The contract at ad-
dress 0xbf4ed7b27f1d666546e30d74d50d173d20bca754 is a contract known
as WithDrawDAO [4]. We did not �nd any particular issue, but it does
use a delegate pattern which explains the locked Ether vulnerability
marked by Zeus.

We present a thorough investigation of the high-value contracts
in Appendix A. Overall, all the contracts from Figure 17 that we
could analyze seemed quite secure and the vulnerabilities �agged
were de�nitely not exploitable. Although there are some very rare
cases that we present in Section 7 where contracts with high Ether
balances are being stolen, these remain exceptions. The facts we
presented up to now help us con�rm that the amount of Ether at
risk on the Ethereum blockchain is nowhere as close as what is
claimed [27, 34].

7 RELATEDWORK
Some major smart contracts exploits have been observed on
Ethereum in recent years [46]. These attacks have been analyzed
and classi�ed [13] and many tools and techniques have emerged to
prevent such attacks [25, 29]. In this section, we will �rst provide
details about two of the most prominent historic exploits and then
present existing work aimed at increasing smart contract security.

7.1 Motivating Large-scale Exploits

TheDAO exploit. TheDAO exploit [46] is one of the most infa-
mous bugs on the Ethereum blockchain. Attackers exploited a
re-entrancy vulnerability [13] of the contract which allowed for
the draining of the contract’s funds. The attacker contract could
call the function to withdraw funds in a re-entrant manner before
its balance on TheDAO was reduced, making it indeed possible
to freely drain funds. A total of more than 3.5 million Ether were

drained. Given the severity of the attack, the Ethereum community
�nally agreed on hard-forking.
Parity wallet bug. The Parity Wallet bug [16] is another promi-
nent vulnerability on the Ethereum blockchain which caused 280
million USD worth of Ethereum to be frozen on the Parity wallet
account. It was due to a very simple vulnerability: a library contract
used by the parity wallet was not initialized correctly and could be
destructed by anyone. Once the library was destructed, any call to
the Parity wallet would then fail, e�ectively locking all funds.

7.2 Analyzing and Verifying Smart Contracts
There has been a lot of e�orts in order to prevent such attacks and to
make smart contracts more secure in general. We will here present
some of the tools and techniques which have been presented in the
literature.
Oyente. Oyente [38] is one of the �rst tools which has been de-
veloped to analyze smart contracts. It uses symbolic execution to
check for the following vulnerabilities: transaction ordering depen-
dency, re-entrancy and unhandled exceptions. The tool takes as
input the bytecode of a smart contract and a state of the Ethereum
blockchain. It emulates the EVM and explores the di�erent paths of
the contracts. It then uses the Z3 SMT solver [24] to decide the sat-
is�ability of conditions which would make the program vulnerable
in the current path.
ZEUS. ZEUS [34] is a static analysis tool which can check for a vast
range of vulnerabilities such as re-entrancy, unhandled exceptions,
integer over�ows, transaction order dependency and others. Unlike
Oyente, it operates on the high-level representation of the smart
contract written in Solidity and not on the bytecode. It �rst gener-
ates a XACML-styled [47] policy from the Solidity abstract syntax
tree (AST) which can be further customized by the user. A policy
could for example enforce that the amount to send to a user is
always smaller or equal to his balance. It then transpiles the policy
and the Solidity contract code to LLVM bitcode [36] and �nally
uses constrained Horn clauses [15, 39] over the LLVM bitcode to
check that the policy is respected.
Maian. Maian [43] is also a tool to analyze contracts but instead
of using static analysis to �nd bugs in the contract, it tries to �nd
vulnerabilities across long sequences of invocations of a contract. It
focuses mainly on �nding three types of vulnerabilities: contracts
that can be removed from the blockchain by anyone, contracts
which can lock funds by being unable to send Ether, and contracts
which can “leak” Ether to a user they have never interacted with.
The tool performs symbolic analysis across multiple executions
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of the contract in order to �nd traces that violate the security
properties being checked.

SmartCheck.[51] is a tool which, as ZEUS, analyzes the high-level
solidity source code of the smart contract to �nd vulnerabilities. It is
also able to �nd a wide range of vulnerabilities such as re-entrancy,
unhandled exceptions, locked Ether, integer over�ows and many
more. Not unlike ZEUS, SmartCheck transforms the solidity con-
tract in an intermediate representation (IR) but uses an XML-based.
It then uses XPaths patterns to check for security properties in
the contract IR. This simple approach makes the system e�cient
but loses precision for vulnerabilities which cannot naturally be
expressed as XPaths, such as re-entrancy.

Securify. Securify [52] is a static analysis tool which checks secu-
rity properties of the EVM bytecode of smart contracts. The security
properties are encoded as patterns written in a domain-speci�c lan-
guage, and checked either for compliance or violation. To analyze
the contract, Securify �rst transforms the EVM bytecode into a
stackless static-single assignment form. It then infers semantic
facts from the contract such as data and control-�ow dependencies
which it encodes in strati�ed Datalog [53]. It �nally interprets
the security patterns to check for their violation or compliance by
querying the inferred facts.

ContactFuzzer. Unlike the previous tools, ContractFuzzer [33]
uses dynamic analysis and more particularly fuzzing to �nd vulner-
abilities in smart contracts. It is capable of detecting a wide range
of vulnerabilities such as re-entrancy, locked Ether or unhandled
exceptions. To operate, ContractFuzzer generates inputs for the
contracts by looking at their Application Binary Interface (ABI). It
uses an instrumented EVM to run the fuzzed contracts and records
the executed instructions during fuzzing and, analyzes them later
on to �nd vulnerabilities in the contract. Due to the dynamic analy-
sis nature of the detection, this tool has a substantially higher true
positive rate than the static analysis tools previously presented.

Vandal. Vandal [17] is a static analysis tool which is in many ways
similar to Securify [52]. Vandal also analyzes the EVM bytecode
by decompiling it and encodes properties of the smart contract
into Datalog. The tool is able to detect vulnerabilities, such as re-
entrancy and unhandled exceptions, and can easily be extended
by writing queries to check for other types of vulnerabilities in
Datalog.

MadMax. MadMax [27] also statically analyzes smart contracts
but focuses mainly on vulnerabilities related to gas. It is the �rst
tool to detect so-called unbounded mass operations where a loop is
bounded by a dynamic property such as the number of users, caus-
ing the contract to always run out of gas passed a certain number
of users. MadMax is built on top of the decompiler implemented
by Vandal and also encodes properties of the smart contract into
Datalog. It is performant enough to analyze all the contracts of the
Ethereum blockchain in only 10 hours.

Gasper. Gasper [19] is also a static analysis tool focused on gas but
instead of looking for vulnerabilities it searches for patterns which
might be costly to the contract owner in terms of gas. Gasper builds
a control �ow graph from the EVM bytecode and uses symbolic
execution backed by an SMT solver to explore the di�erent paths
that might be taken. Gasper looks for patterns such as dead code or

expensive operations in loops to help contract developers reduce
gas cost.

Sereum. Sereum [44] focuses on detecting and preventing ex-
ploitation at runtime rather than trying to detect vulnerabilities
beforehand. It proposes a modi�cation to the Go Ethereum client
which is able to detect and reject re-entrancy exploits and could
also handle other exploits. It �rst performs taint analysis to in-
fer properties about variables in the contract and then checks that
tainted variables are not used in a way which would violate security
properties. For re-entrancy, it uses this technique to check that no
variable accessing the contract storage is used in a reentrant call.

Formal veri�cation. There has also been some e�orts to formally
verify smart contracts. [31] is one of the �rst e�orts in this direction
and de�nes the EVM using Lem [42], which allows to generate
de�nitions for theorem provers such as Coq [14]. [28] presents a
complete small-step semantics of EVM bytecode and formalizes it
using the F* proof assistant [50]. A similar e�ort is made in [30]
to give an executable formal speci�cation of the EVM using the K
Framework [45].

teEther. teEther [35] is di�erent from the previous works pre-
sented, as it does not try to protect contracts but rather to actively
�nd an exploit for them. It �rst analyzes the contract bytecode to
look for critical execution paths. Critical paths are execution paths
which may result in the contract sending money to an arbitrary
address, the contract being self-destructed or the contract delegat-
ing control to an arbitrary address. To �nd these paths, it uses an
approach close to Oyente [38], �rst using symbolic execution and
then the Z3 SMT solver [24] to solve path constraints.

8 CONCLUSION
In this paper, we surveyed the 21,270 vulnerable contracts reported
by six recent academic projects. We proposed a Datalog-based
formulation for performing analysis over EVM execution traces
and used it to analyze a total of more than 16 million transactions
executed by these contracts. We found that at most 504 out of 21,270
contracts have been subjected to exploits. This corresponds to at
most 9,066 ETH (1.8 million USD), or only 0.29% of the 3 million
ETH (600 million USD) claimed to be at risk. From what we can infer
by analyzing the blockchain, a majority of Ether is held by only
a small number of contracts. Further, the vulnerabilities reported
on these contracts are either false positives or not applicable in
practice, making exploitation signi�cantly less attractive.

Our results suggest that the impact of vulnerable smart contracts
on the Etherium blockchain had been exaggerated. We hypothesize
that the reasons for the signi�cant gap between vulnerable and
exploited are multi-fold: lack of appetite for exploitation, the sheer
di�culty of executing some exploits, fear of attribution, other more
attractive exploitation options, etc.
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A INVESTIGATIONS
In this appendix, we will give a more in-depth security analysis of
the top value contracts we presented in Section 6. In particular, we
will focus on the vulnerabilities detected by the di�erent tools and
show how it could, or not, a�ect the contract.

0xde0b295669a9fd93d5f28d9ec85e40f4cb697bae

This contract has been �agged as being vulnerable to re-entrancy
by Oyente. For a contract to be victim of a re-entrancy attack, it
must CALL another contract, sending it enough gas to be able to
perform the re-entrant call. In Solidity terms, this is means that
the contract has to invoke address.call and not explicitly set
the gas limit. By looking at the source code [3], we �nd 2 such
instances: one at line 352 in the execute function and another at
line 369 in the confirm function. The execute is protected by
the onlyowner modi�er, which requires the caller to be an owner
of the wallet. This means that for a re-entrant call to work, the ma-
licious contract would need to be an owner of the wallet in order to
work. The confirm function is protected by the onlymanyowners
modi�er, which requires at least n owners to agree on con�rming a
particular transaction before it is executed, where n is agreed upon
at contract creation time. Furthermore, confirm will only invoke
address.call on a transaction previously created in the execute
function.

0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9

This is the contract for multi-signature wallet of the Golem
project [9] and uses a well-known multi-signature implementa-
tion. We use the source code available on Etherscan to perform
the audit. This contract is marked with two vulnerabilities, locked
Ether by MadMax and integer over�ow by Zeus.

We �rst focus on the locked Ether, which is due to an unbounded
mass operation [27]. An unbounded mass operation is �agged
when a loop is bounded by a variable which value could increase,
for example the length of an array. This is because if the number
of iteration becomes too large the contract would run out of gas
every time, which could indeed result in locked funds. Therefore,
we check all the loops in the contract. There are 8 loops in the
code, at lines 43, 109, 184, 215, 234, 246, 257 and 265. All the loops
except the ones at lines 257 and 265 are bound by the total number
of owners. As owner can only be added if enough existing owners
agree, running out-of-gas when looping on the number of owners
cannot happen unless the owners agree. The loops at lines 257 and
265 are in a function called filterTransactions and are bounded
by the number of transactions. The function filterTransactions
is only used by two external getters, getPendingTransactions
and getExecutedTransactions and could therefore not result
the Ether getting lock. However, as the number of transactions
is ever increasing, if the owner submit enough transactions, the
filterTransactions function could indeed need to loop over too
many transactions and end up running out-of-gas on every ex-
ecution. We estimate the amount of gas used in the loop to be
around 50 gas, which means that if the number of transactions
reaches 100,000, it would required more than 5,000,000 gas to list
the transactions, which would probably make all calls run out of gas.
The contract has only received a total of 281 transactions in more

than 3 years so it is very unlikely that the number of transactions
increase this much. Nevertheless, this is indeed an issue which
should be �xed, most likely by limiting the maximum numbers of
transactions that can be retrieved by getPendingTransactions
and getExecutedTransactions.

Next, we look for possible integer over�ows. All loops dis-
cussed above use an uint as a loop index. In Solidity, uint is
a uint256 which makes it impossible to over�ow here, given than
neither the number of owners or transactions could ever reach
such a number. The only other arithmetic operation performed
is owners.length - 1 in the function removeOwner at line 103.
This function checks that the owner exists, which means that
owners.length will always be at least 1 and owners.length can
therefore never under�ow.

0x851b7f3ab81bd8df354f0d7640efcd7288553419

This contract is also a multi-sig wallet, this time owned by Gno-
sis Ltd.2 We use the source code available on Etherscan to per-
form the audit. The contract looks very similar of the one used by
0x7da82c7ab4771ff031b66538d2fb9b0b047f6cf9 and has also been
marked by MadMax as being vulnerable to locked Ether because
of unbounded mass operations. Again, we look at all the loops in
the contract and �nd that as the previous contract, it loops exclu-
sively on owners and transactions. As in the previous contract, we
assume looping on the owners is safe and look at the loops over the
transactions. This contract has two functions looping over transac-
tions, getTransactionCount at line 303 and getTransactionIds
at line 351. Both functions are getters which are never called from
within the contract. Therefore, no Ether could ever be locked be-
cause of this. Unlike the previous contract, getTransactionIds
allows to set the range of transactions to return, therefore mak-
ing the function safe to unbounded mass operations. However,
getTransactionCount does loop over all the transactions, and as
before, could therefore become unusable at some point, although it
is highly unlikely.

0xcafe1a77e84698c83ca8931f54a755176ef75f2c

This contract is again a multi-sig wallet, this time owned
by the Aragon project3. We also use the contract pub-
lished on Etherscan for the audit. It appears that the source
code for this contract is exactly the same as the one of
0x851b7f3ab81bd8df354f0d7640efcd7288553419 except that it is
missing a contract called MultiSigWalletWithDailyLimit. This
contract was also �agged as being at risk of unbounded mass oper-
ations by MadMax, the conclusions are therefore exactly the same
as for the previous contract.

0xbf4ed7b27f1d666546e30d74d50d173d20bca754

This contract is the only one which is very di�erent from the previ-
ous ones. It is the WithdrawDAO contract, which has been created
for users to get their funds back after The DAO incident [46]. We
use the source code from Etherscan to audit the contract. This
contract has been �agged with several vulnerabilities: Securify

2https://gnosis.io/
3https://aragon.org/
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�agged it with transaction order dependency and unhandled excep-
tion, while Zeus �agged it with locked ether and integer over�ow.
The contract has two very short functions: withdraw which al-
lows users to convert their The DAO tokens back to Ether, and
the trusteeWithdraw which allows to send funds which cannot
be withdrawn by regular users to a trusted address. We �rst look
at the transaction order dependency. As any user will only ever
be able to receive the amount of tokens he possesses, the order
of the transaction should not be an issue in this contract. We
then look at unhandled exceptions. There is indeed a call to send
in the trusteeWithdraw which is not checked. Although it is
not particularly an issue here, as this does not modify any other
state, an error should probably be thrown if the call fails. We
then look at locked ether. The contract is �agged with locked
ether because of what Zeus classi�es as “failed send”. This issue
was �agged because if the call to mainDAO.transferFrom always
raised, then the call to msg.sender.send would never be reached,
indeed preventing from reclaiming funds. However, in this context,
mainDAO is a trusted contract and it is therefore safe to assume
that mainDAO.transferFrom will not always fail. Finally, we look
at the integer over�ow issue. The only place where an over�ow
could occur is in trusteeWithdraw at line 23. This could indeed
over�ow without some assumptions on the di�erent values. For
this particular contract, the following assumptions are made.

this.balance + mainDAO.balanceOf(this) ≥ mainDAO.totalSupply()

mainDAO.totalSupply() > mainDAO.balanceOf(this)

As long as these assumptions hold, which was the case when the
contract was deployed, this expression will never over�ow. Indeed,
if we note t the time before the �rst call to trusteeWithdraw and
t + 1 the time after the �rst call, we will have

this.balancet+1 = this.balancet − (this.balancet+
mainDAO.balanceOf(this) − mainDAO.totalSupply())
= −mainDAO.balanceOf(this) + mainDAO.totalSupply()

which means that every subsequent call will compute the fol-
lowing.

this.balancet+1 + mainDAO.balanceOf(this) − mainDAO.totalSupply()

= −mainDAO.balanceOf(this) + mainDAO.totalSupply()+

mainDAO.balanceOf(this) − mainDAO.totalSupply()

= 0

This will always result in sending 0 and will therefore not
cause any over�ow. If some money is newly received by the
contract, the amount received will be transferred the next time
trusteeWithdraw is called.
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