
Platypus: a Partially Synchronous Offchain
Protocol for Blockchains

Alejandro Ranchal-Pedrosa1 and Vincent Gramoli1,2

1University of Sydney, Sydney, Australia
2Data61-CSIRO, Sydney, Australia

July 9, 2019

Abstract

Offchain protocols aim at bypassing the scalability and privacy limita-
tions of classic blockchains by allowing a subset of participants to execute
multiple transactions outside the blockchain. While existing solutions
like payment networks and factories depend on a complex routing pro-
tocol, other solutions simply require participants to build a childchain, a
secondary blockchain where their transactions are privately executed. Un-
fortunately, all childchain solutions assume either synchrony or a trusted
execution environment.

In this paper, we present Platypus a childchain that requires neither
synchrony nor a trusted execution environment. Relieving the need for
a trusted execution environment allows Platypus to ensure privacy with-
out trusting a central authority, like Intel, that manufactures dedicated
hardware chipset, like SGX. Relieving the need for synchrony means that
no attacker can steal coins by leveraging clock drifts or message delays
to lure timelocks. In order to prove our algorithm correct, we formalize
the chilchain problem as a Byzantine variant of the classic Atomic Com-
mit problem, where closing a childchain is equivalent to committing the
whole set of payments previously recorded on the childchain “atomically”
on the main chain. Platypus is resilience optimal and we explain how to
generalize it to crosschain payments.

1 Introduction

One of the most important challenges of blockchains is scalability. In fact, most
blockchains consume more resources without offering better performance as the
number of participants increases. Although some research results demonstrated
that blockchain performance can scale with the number of participants [9], these
rare solutions do not have other appealing properties, like privacy, built in. As
a result, blockchain extensions that offer scalability and privacy have been put
forward, in what is known as Offchain protocols. Examples of these protocols
are state and payment channels [24] in which two parties can perform several
offchain payments with one another; channel networks [24] that allow users to

1

ar
X

iv
:1

90
7.

03
73

0v
1

 [
cs

.D
C

]
 8

 J
ul

 2
01

9

BobBlockchainAlice

Create Offchain Protocol

ti
m

e
-

+

Alice transfers ¢ offchain

Bob acknowledges

Alice claims ownership of ¢
Bob is notified

Bob proves fraud too late

Alice has stolen ¢

δ

tim
elo

ck
Figure 1: Alice can steal Bob’s coin if Bob messages are delayed such that Bob’s
reply takes longer than the timelock δ.
relay payments in a network of channels; channel factories [25] that open mul-
tiple channels in one transaction, saving storage and fees; and childchains [23]
which are secondary blockchains pegged to the existing, so called “parent”,
blockchain.

By relying on offchain computation, all these protocols avoid communicating
and/or storing some information directly in the blockchain—hence bypassing
the performance bottleneck of the blockchain but also limiting transparency of
selected transactions to ensure privacy. Whereas channels, channel networks
and channel factories offer private and fast payments, they can only perform
payments if users have an existing route of channels with one another. As a
result their scalability and privacy are actually subject to proper handling of
the network topology and vulnerable to routing attacks [17].

There is, therefore, great interest in designing proper childchain protocols
that allow blockchains to host the creation and destruction of other smaller
blockchains that depend on them. Unfortunately, as far as we know all child-
chains [2, 13] use timelocks that only work under the assumption that the com-
munication is synchronous, in that every message gets delivered in less than
a known bounded amount of time [11]. This assumption is easily violated in
large networks like the internet, due to either natural disasters or human mis-
configuration of BGP tables for example. But more dramatically, assuming
synchrony exposes childchains to various attacks, like Denial-of-Service or Man-
in-the-Middle, that are common practice to double spend [12].

To illustrate the problem of chilchains, consider an execution using timelocks
illustrated in Figure 1 in which time increases from top to bottom. First, Alice
transfers ¢ coins to Bob offchain before Bob acknowledges the transfer. Bob can
then take actions in response to this transfer thinking, wrongly, that he will have
sufficient time to prove the fraud if Alice tries to claim back the coins. Let us
consider that Alice is Byzantine (or malicious) and claims back the ownership of
the coins, which triggers a timelock, a safe guard delay during which the coins
are locked to give an opportunity to other participants to prove fraudulent
activity before the coins are transferred back. As part of the protocol, Bob gets
notified but due to an unforeseen delay, does not manage to prove the fraud
before the end of the timelock. Its ¢ coins are thus stolen.

2

In this paper, we propose Platypus, the first offchain protocol for childchains
that does not assume synchrony. To this end, we formalize offchain protocols
as a Byzantine fault tolerant atomic commit of multiple transfers. Platypus ex-
ploits partial synchrony [11]—also called eventual synchrony—where messages
take unknown amounts of time to be delivered. We prove the correctness and re-
silience optimality of Platypus and discuss applications to crosschain payments.
Finally, we show that the time, message and communication complexities of
Platypus is lower or comparable to consensus algorithms.

The rest of this document is structured as follows: Section 2 provides some
background and preliminary definitions, Section 3 introduces our model and
Section 4 presents the Platypus protocol. We prove Platypus correct in Sec-
tion 5. We analyse the complexity of Platypus in Section 6. Section 7 discuss
applications of Platypus to crosschain payments. Section 8 presents the related
work and we conclude in Section 9.

2 Preliminaries

In this section we discuss the background and introduce important notations.

• Consensus protocol We require a relaxed validity property for consensus, in
which Byzantine processes proposing a valid value can be taken. consensus
protocol between P processes is any protocol that satisfies the following
properties:

– Termination. Every correct process p eventually decides on a value.

– Validity. The value decided by a correct process verifies a predefined
predicate valid.

– Agreement. No two different processes decide on a different value.

• Blockchain. Inspired by [13], we refer to a blockchain Ω = 〈bi〉 as a
distributed ledger that builds upon a consensus protocol in order to add
blocks bi. We denote Ω[i] as the ith block of Ω, with Ω[−i] being the ith

latest block of Ω. Transactions are added to a block that is then written
in Ω. The set of processes V that agree on the transactions to be written
in the next block are the validators. As we assume the presence of a
consensus protocol, we consider that the blockchain cannot fork due to a
disagreement, we call it unforkable.

• Transactions. Similar to the model of [14], a transaction is a tuple tx =
〈I,O〉 where I is a list of inputs and O a list of outputs. Outputs are stored
in an Unspent Transaction Output (UTXO) pool until a transaction that
consumes it as one of its inputs gets written in Ω. We model the outputs
as oi = 〈si,¢oi〉 where the set si = {(pi, condspi

)} defines the conditions
condspi for the process pi to spend the coin ¢oi (¢oi ≥ 0). In order to
spend a coin, the associated conditions condspi

must be fulfilled so that
only one process, among multiple candidate ones, can spend this coin.

• Ownership. We say that process pi owns coin ¢i if there exists a list of
conditions condspi

such that pi can spend ¢i. As such, let C be the set
of coins, T the set of discrete timeslots (such as blockheight), and P the

3

set of processes, then ownership is a function ϕ : C× T → P that takes a
coin and returns its owner at a particular time.

• Transferring coins. A transaction may transfer one or more coins. We re-
fer to pi transferring a coin ¢i to pj if a process pi spends it to pj . We can
define a transfer of a coin as a change of ownership. That is, let a, b ∈ P
and let ¢i ∈ C, tj ∈ T , such that ϕ(¢i, tj) = a, then the transfer relation
TR to b is such that aTRtj+1,¢i b ⇐⇒ ϕ(¢i, tj+1) = b. Notice we can define
the transitive closure of the transfer operation as follows:

TR+ =

{
(a, b) ∈ P 2 : ∃¢i s.t. ϕ(¢i, tj) = a and ϕ(¢i, tk) = b,

for some tj , tk ∈ T , j < k.

}
(1)

3 Model

We define in this section some assumptions and concepts for our model:

• Partial synchrony and failures. Our model relies on a partially syn-
chronous network [11], i.e. a network in which each message has an un-
known communication bound. In other words, there exists an unknown
time where the network stabilizes and after which every messages is de-
livered in a bounded amount of time. We also assume that strictly less
than n/3 processes participating in an offchain protocol are Byzantine in
that they may fail arbitrarily and that other processes are correct (as we
detail in the adversary model below).

• Accounts. We define an account a as an instance of only one process pi,
ρ(a) = pi, where ρ(a) is a function that returns the process that controls
account a. An account belongs to a particular blockchain, one account is
controlled by only one process, but one process can have multiple accounts,
either in the same or in different blockchains.

• Threshold signatures. Our model requires accounts to authenticate with
a cryptographic primitive enabling non-interactive aggregation, such as
those of [13, 3]. For simplicity and without loss of generality we assume
that accounts are not reusable. In particular, the same coins should not
go back to the same process in the same account, to prevent a variant of
the ABA problem (see Section 7). In the remainder, we abuse the term
process as an account that the process owns, unless stated otherwise.

• Minimal transfers. Given a sequence seq = {uj TRtj+1,¢i
uj+1}d−1

j=c of

transfers over some timerange [tc, td], between creation time tc and de-
struction time td, for coin ¢i, we refer to the minimal transfer as the single
transfer uc TR¢i

ud, which is always an element of the transitive closure.
For a set of operations defined over all coins within a timerange [tc, td], we
denote the minimal transfer set TR− as the set of all minimal transfers,
which is at least a set of idempotent transfers of the form aTR a.

• Offchain problem. Given a blockchain Ω of P processes, the offchain pro-
tocol consists of executing a sequence seq of transfers “off chain”. First

4

processes Q P must create an offchain protocol Γ by writing a transac-
tion in the original chain Ω—effectively depositing funds from Ω into Γ.
Then they transfer coins “off chain” among themselves using Γ. Finally
they can destroy this protocol Γ. To this end, the offchain protocol con-
sists of at least two main procedures, creation and bulk close. (We will
explain later how the participation in Γ is made dynamic using splice in
and splice out procedures to accept new participants and for existing par-
ticipants to leave Γ, respectively.) After a series of transfers in Γ, processes
can propose to bulk close it by proposing COMMIT. Processes decide to
COMMIT in that they effectively agree to accept these transfers and to
close and destroy Γ or decide to ABORT in that they disagree with the
transfers and refuse to close Γ. Hence, a protocol solving the Offchain
problem must satisfy the following properties:

– Termination: every correct process decides COMMIT or ABORT
on some sequence of transfers seq for which some process proposed
COMMIT.

– Agreement: no correct process decides COMMIT on two different
sequences seq and seq′.

– ABORT-Validity: if a correct process proposes ABORT for a se-
quence seq, then all correct processes decide ABORT for this se-
quence seq.

– COMMIT-Validity: if no correct process proposes ABORT for se-
quence seq for which some process proposed COMMIT, then all cor-
rect processes decide COMMIT for sequence seq.

Notice that, in our definition, aborting is implicit and proposing ABORT is
not an input of our algorithm as we will see in Algorithm 3. In particular,
COMMIT-Validity can be ensured by requiring a process to provide a valid
Proof-of-Fraud (PoF) when proposing to abort, the invalidity of the PoF
allows correct processes to ignore the ABORT proposal and its validity
guarantees that all correct will observe this PoF. Finally note that our
termination does not imply that the offchain protocol gets closed. Instead,
it means that all correct processes decide either COMMIT and closes the
protocol or ABORT and not closing the protocol. This is not a problem
since, as we will explain in Algorithm 5, any correct process can cash out
the coins that it knows it owns at any moment.

In order to achieve privacy, we need another property stating that some de-
cisions of the offchain protocol do not have to be written in the blockchain:

– COMMIT-Privacy/Lightness: If correct processes decide COMMIT
on a sequence seq of transfer operations made in Γ between tc and
td, then ∀p ∈ P\Q, p only learns/stores TR−, the minimal transfer
set of seq.

• Childchain. A childchain Ψ is a particular class of offchain protocol in
that it is a blockchain Ψ that is created by another blockchain Ω, known
as its parentchain, and that implements an Offchain protocol Γ.

• Adversary model. We consider an adversary F such that:

5

– F can control the network to read or delay messages, but not to drop
them.

– F can take full control and corrupt a coalition of f processes, learning
its entire state (stored messages, signatures, etc.). It takes control
of receiving and sending all their messages. This adversary can also
guess in advance the estimate value of any correct process in any
round. Furthermore, it delivers the messages from correct nodes
instantly, and its messages are delivered instantly by any correct
nodes.

– F cannot forge signatures of processes outside the coalition f .

– We define t0 and t1 two thresholds for Byzantine behavior. That is,
the coalition must be such that f ≤ t0 and f ≤ t1.

4 Secure Childchains Without Synchrony

In this section we present Platypus, a novel childchain protocol that solves the
offchain problem without assuming synchrony. Platypus consists of both an
offchain protocol and a childchain that are denoted respectively Γ and Ψ in the
remainder of the paper. Given a parentchain Ω, processes can use the protocol
Γ by depositing funds from Ω to Ψ, that effectively creates the childchain. Then
transfers can be done directly on Ψ “off chain” before the bulk close happen.

The parentchain Ω and childchain Ψ have a set PΩ of |PΩ| = np users and
PΨ of |PΨ| = mp users, respectively, with a set VΩ ⊆ PΩ of |VΩ| = nv validators
and a set VΨ ⊆ PΨ ⊆ PΩ of |VΨ| = mv validators, respectively. Note that
mv is the number of all processes joining the Platypus protocol. As mentioned
before, however, we assume that at most t1 = dmv/3e − 1 among them are
Byzantine. Although we do not provide an implementation of the blockchain
Ψ we assume that Ψ is secure (i.e. it uses deterministic consensus to not fork):
a blockchain assuming partial synchrony and dmv/3e − 1 Byzantine processes
among mv processes like Red Belly [9, 8] can be used here.

4.1 Overview

Γ is depicted in three main procedures: a creation (Alg. 1), a bulk close (Alg. 2)
and an abort (Alg. 3). (Splice in and splice out procedures are deferred to
Section 7). Processes can ABORT or COMMIT sequences of transfers done in
Ψ. In particular, a process proposes ABORT by creating an abort transaction
(and sharing it) in line 7 of Alg. 3 and proposes a COMMIT at line 9 of Alg. 2.
A process decides COMMIT at line 10 (Alg. 2) only after m0 processes propose
COMMIT and decides ABORT at line 11 (Alg. 2) only when there exists a valid
abort transaction.

4.2 Creating a Platypus Chain

Users can create a Platypus chain by publishing a transaction on Ω. After that
transaction is finalized, the funds referred to in this transaction are locked and
ready to be used by the Γ. In general, a Platypus creation transaction (txplcr)
is a transaction that:

6

• Has a new Platypus id (plid) that uniquely identifies it.

• Specifies a consensus protocol for the Platypus Blockchain to decide on a
new block. W.l.o.g., we assume DBFT [8] to be the default protocol.

• Specifies a number m0 > f of validators required to create Ψ. For sim-
plicity and to match with the optimal result (see Theorem 5.9), we choose
m0 = b2mv/3c+ 1.

• Defines a new function abort(...) that specifies when a user can decide
ABORT on the protocol (such as a Platypus bulk close transaction being
aborted).

• Specifies a set of processes and their balances that go in the Platypus
Blockchain through this transaction.

• Once written in Ω, the funds can only be spent in Ψ.

Algorithm 1 shows the protocol to create a Platypus chain. The call to num signers(tx)
returns the amount of signers of tx, while the call to verify(tx, {msg}) verifies the
validity of the transaction and signed messages. We define two main interactions
of the Platypus protocol with both the childchain and the parentchain: sending
transactions and reading transactions. The Platypus protocol Γ sends trans-
actions to Ω or Ψ by invoking send({Ω,Ψ}, tx) and acsend({Ω,Ψ}, tx). In the
former, the function returns once the transaction is written in the correspond-
ing blockchain, or a transaction that spent the same funds has been written
(meaning this transaction became invalid), while the latter returns ABORT or
COMMIT and the respectively written transaction in a response message. This
response is received by all validators as it is a result of the Platypus Blockchain.
Reading transactions is performed by the call to is written({Ω,Ψ}, tx) that re-
turns True or False depending on if the transaction was written or not in the
Blockchain. Each of the messages are signed, to prevent Byzantine nodes from
adding third parties without their agreement.

7

Algorithm 1 Platypus creation procedure

B State of the algorithm
Ω, the parentchain
Γ, the Platypus protocol
PΩ, the set of processes in the parentchain
PΨ ← ⊥, the set of processes in the Platypus chain
VΨ ← ⊥, the set of validators in the Platypus chain
mv, the amount of validators required in Ψ
Ci, coins that belong to process pi
jobi, boolean defining if pi is VALIDATOR or just USER
plid , the Platypus chain identifier
msgi = 〈Ci, plid , jobi σi〉, signed message to join.
σi, signature of msgi by pi
txplcr ← ⊥, the Platypus creation transaction

B PHASE 1: process p0 initiates request
1: msg0 ← sign(〈C0, plid , job0〉)
2: multicast(msg0) to PΩ

3: B PHASE 2: Rest of processes who want to join reply
4: when msg0 is received from p0

5: msgi ← sign(〈Ci, plid , jobi〉)
6: multicast(msgi) to PΩ

B PHASE 3: Validator pi ∈ VΨ gathers enough validators
7: when msgj is received from pj and pj 6∈ PΨ

8: {PΨ,CPΨ} ← {PΨ ∪ {pj}, CPΨ ∪msgj .Cj}
9: if (msgj .jobj = VALIDATOR and pj 6∈ VΨ) then

10: {VΨ,CVΨ} ← {VΨ ∪ {pj}, CVΨ ∪msgj .Cj}
11: if (|VΨ| = mv) then B Enough validators to start transaction

12: txplcr ← createPlatypusTx(CPΨ ,CVΨ , plid)
13: txplcr ← signi(txplcr)
14: multicast(txplcr, {msgk}pk∈PΨ) to VΨ

B PHASE 4: pi ∈ VΨ signs and broadcasts until it gets enough signatures
15: when (txplcr, {msgj}pj∈PΨ) is received and not is written(Ω, txplcr, plid) B if

txplcr with plid not written in Ω

16: if (verify(txplcr, {msgj})) then txplcr ← signi(txplcr)
17: if (num signers(txplcr) < b2mv/3c+ 1) then
18: multicast(txplcr, {msgj}) to VΨ

19: else Γ.send(Ω, txplcr) B enough signatures

4.3 Closing a Platypus Chain

A Platypus bulk close transaction splices all funds out of the Platypus Blockchain
without compromising its security (agreement), and without requiring all val-
idators to join together in its destruction (termination). It is still a normal
transaction in the Platypus blockchain, meaning that it requires enough valida-
tors m0 agreeing to writing it in Ψ. Algorithm 2 shows the protocol to bulk close
a Platypus chain. A Platypus bulk close transaction signed by some processes

8

returns back the updated balances of all processes in the parentchain Ω, unless
it is aborted. Once written in both Ψ and Ω, the coins can be spent only on Ω.

Algorithm 2 Platypus bulk close procedure

B State of the algorithm
Ω, Ψ, Γ, the Blockchain, Platypus Blockchain and protocol
PΨ,VΨ, the set of processes and validators in Ψ
Ci, the coins that belong to process pi
txplcl ← ⊥

B PHASE 1: Some process p0 creates and broadcasts
1: txplcl ← createBulkCloseTx(CPΨ)
2: txplcl ← signi(txplcl)
3: multicast(txplcl) to VΨ

B PHASE 2: pi ∈ VΨ signs and broadcasts transaction
4: when txplcl is received and not is written(Ψ, txplcl)
5: verify(txplcl)
6: txplcl ← signi(txplcl)
7: if (num signers(txplcl) < b2|VΨ|/3c+ 1) then
8: multicast(txplcl) to VΨ

9: else r ← Γ.acsend(Ψ, txplcl) B Get back txplcl, or txAbort

B PHASE 3: Γ.acsend(Ψ, txplcl) generates a response, any pi can send to Ω
when r is received

10: if (r.type = ABORT) then Γ.send(Ω, r.txAbort)

11: else if (r.type = COMMIT) then Γ.send(Ω, r.txplcl)

4.4 Aborting a Closing Attempt

A Platypus bulk close transaction with insufficient signatures can either be a
valid, ongoing Platypus bulk close, or an attempt to commit fraud. To prevent
this, and guarantee termination and ABORT-validity, we introduce the abort
transaction.

A transaction may be invalid if it spends a coin formerly owned by a user,
but that was transferred to another user later on in Ψ. The abort function
runs for every Platypus bulk close transaction received that is not valid, i.e.
that spends some input already spent. If the transaction is not valid due to
signatures not matching, then it will not be written in the parentchain, so the
abort function ignores this case.

Therefore, a user can see a transaction tx is not valid if an old owner claims
ownership of a spent coin in tx, as checked by coins spent(...), shown in Algo-
rithm 3. Notice that, while a COMMIT requires m0 validators to commit to the
transaction (such as a Platypus bulk close transaction), any process p ∈ PΨ can
create a valid abort transaction. The call to extract spent(tx) returns the coins
that were spent. The call to get block min blockheight(CS) returns the block
of minimum blockheight out of all the blocks that store a transaction spending
each of the spent coins, i.e. Proofs-of-Fraud (PoFs). Finally, validators(b/tx)
returns the set of validators of block b or transaction tx.

9

Algorithm 3 Abort procedure

B State of the algorithm
Ω, Ψ, Γ, the Blockchain, Platypus Blockchain and protocol.
CS ← ⊥, the subset of spent coins from C

bp ← ⊥, integer s.t. Ψ[bp] proves some coin was spent
vPoF ← ⊥, Proofs-of-Fraud of validators
txabort ← ⊥

1: function abort(txplcl)
2: CS ← extract spent(txplcl)
3: bp ← get block min blockheight(CS)
4: vPoF ← ∅
5: for each block in Ψ[bp, ...,−1] do
6: vPoF .append(validators(block) ∩ validators(txplcl))

7: txabort ← createAbortTx(txplcl , bp , vPoF)
8: Γ.send(Ω, txabort)
9: Γ.send(Ψ, txabort)

10: end function

B all pi ∈ PΨ run abort when receiving any invalid txplcl
11: when txplcl is received
12: if coins spent(txplcl) then B some coins in txplcl were spent, invalid

13: abort(txplcl)

Intuitively, this algorithm proves invalidity by iterating through Ψ, looking
for validators that validated both this bulk close and some progress in Ψ that
conflicts with it (i.e. some blocks that spent some of the coins). This set of
validators is the set of fraudsters. Other validators that only validated the
transaction might simply have had an old view of the Platypus chain, under the
partially synchronous model. Nonetheless, the existence of such block is enough
to create the abort transaction, even if the set of fraudsters is empty.

The iteration starts from the block with minimum blockheight of all the
Blocks that show that some coin ¢ was transferred from pi to pj , for some
pi that claims ownership of ¢ txplcl, in line 3. The algorithm then continues
to account for fraudsters. From that block, the process iterates forward in
Ψ, gathering some possible validators that may have validated both txplcl and
conflicting blocks, i.e. looking for fraudsters.

5 Correctness

In this Section, we analyze the correctness of the protocol. To consider its cor-
rectness, we must prove that the protocol satisfies all the properties of Offchain
protocols, as defined in Section 3. We start by proving the proper bootstrap-
ping of a Platypus chain, i.e. the adversary never locks the algorithm nor gains
enough relative power in the validators set. Then, we prove the properties of
Offchain protocols when closing a Platypus chain.

Theorem 5.1. Algorithm 1 terminates.

10

Proof. The algorithm waits for enough Platypus Creation signed messages {msgi}
from validators (line 11) and to get enough signatures from validators for the
Platypus Creation transaction (line 17). Since we assume there are at least mv

processes that explicitly state that want to get in Ψ as validators (Section 3),
the first condition is met to terminate. That is, a correct process will eventu-
ally produce and broadcast a valid Platypus Creation transaction with signed
{msgi} messages of each of the users that committed to participate in such
transaction.

As for the signatures of the txplcr transaction, notice only m0 of the mv are
required to sign the transaction for it to become valid and create the Platypus
Blockchain Ψ. Since f < m0, and only one transaction can be written in Ω,
we have that only with signatures from the correct processes it is enough to
guarantee this condition. Therefore, the protocol terminates.

Theorem 5.2. Let Ψ be a Platypus Blockchain created by Algorithm 1, and let
a correct process pi ∈ PΩ. If pi ∈ PΨ then pi explicitly stated to be in PΨ by
sharing a signed Platypus Creation message msgi.

Proof. We prove this by contradiction. Suppose a txplcr creation transaction
such that some coins Coinsi from process pi are included, without pi sending a
signed Platypus Creation message msgi. Suppose that transaction was written
in Ω, creating the Platypus Blockchain Ψ. For such transaction to be written in
Ω, it must be valid, i.e. it must hold at leastm0 signatures from validators. Since
f < m0, at least m0 − f correct processes signed and verified such transaction
(line 16). However, the correct processes could not validate such transaction
without verifying its content (line 16), which includes verifying all the signed
messages from all processes whose coins are involved in txplcr. Therefore, this
is impossible without pi sending a signed Platypus Creation message msgi.

Corollary 5.1. Let Ψ be a Platypus Blockchain created by Algorithm 1, and let
a correct process pi ∈ PΩ. If pi ∈ PΨ then pi explicitly stated to be in PΨ.

Notice that in Algorithm 1 the ’only if’ direction of Theorem 5.2 and Corol-
lary 5.1 is not necessarily true, should there be more than mv processes that
reply to join. This does not affect the correctness of the protocol though.

Lemma 5.1. Let Ψ be a Platypus Blockchain created by Algorithm 1, then its
Platypus Creation transaction txplcr has |VΨ| = mv validators and was signed
by m0 of them.

Proof. Given f < m0 and m0 are required for a Platypus Creation transaction
to be valid, we have that some correct processes validated it. These correct
processes verify that there are mv validators, and by Theorem 5.2 all validators
explicitly stated they wanted to join as validators. Without enough signatures
the algorithm does not terminate, since messages keep being sent (line 18), and
txplcr is not yet written in Ω (which is a condition in line 15). By Theorem 5.1 we
know that the algorithm terminates. Thus, a valid txplcr receives m0 signatures,
of which some processes could only have signed if mv processes were in the
transaction as validators.

Theorem 5.3. Algorithm 2 guarantees the termination property.

11

Proof. The protocol only waits for responses 4 times: to get coins from at least
m0 signatures (line 7), and for the transaction to get in the Platypus Blockchain
and parentchain (lines 9, 10 and 11). All these steps are independent of one
another, i.e. not the same validators are required in each step. Therefore, we
consider them independently. Since m0 ≥ 2mv/3 + 1, we have that, regardless
of what the Adversary decides to do, m0 correct nodes will eventually send
enough signatures, and coins. Since we have both the Platypus Blockchain and
parentchain consensus protocols are Byzantine Fault Tolerant, the calls that
wait for a reply will terminate if f < mv/3 and f < nv/3, thus generating a
response in the Platypus protocol (line 9), which could be either a COMMIT or
an ABORT. Therefore, a correct process decides COMMIT or ABORT as the
result of the call to acsend(...) in line 9. In either case, the protocol continues
sending the proper transaction to the parentchain (lines 10 and 11), which also
terminates.

Lemma 5.2. In Algorithm 2, given a bulk close transaction listing a sequence
seq that process pi proposed to COMMIT, either all correct processes of the
Platypus chain Ψ decide ABORT to include the transaction in the Platypus
Blockchain, or all correct processes decide COMMIT.

Proof. We prove this by contradiction. First, notice that, for a process to pro-
pose COMMIT on a Platypus Bulk Close transaction, it is necessary to provide
a block where that transaction was written in the Platypus Blockchain. We con-
sider the following network partition into three sets: F , the set of the adversary
coalition of size f < mv/3, Q1 and Q2. We consider that, at some point, all
validators in Q1 signed a block b1 to validate a Platypus Bulk Close transaction,
whereas validators in Q2 validated a different block b2 that spent from one of
the same outputs (conflicting transactions). For one correct process to propose
COMMIT, it is necessary that b1 was validated by at least m0 ≥ 2mv/3 + 1
validators. Analogously, for one process to propose ABORT, it has to provide
valid proof through a block b2 validated by at least m0 ≥ 2mv/3 + 1 validators,
in which some coins were spent from the owners claimed in the Platypus Bulk
Close. A COMMIT proposal is undecided for as long as a valid ABORT is
proposed, or enough validators validate the COMMIT attempt.

In this case, we consider that one correct process proposes ABORT, meaning
that it has a valid ABORT transaction, i.e. b2 was validated by at least 2mv/3+1
validators. Therefore, |Q2 ∪ F | ≥ 2mv/3 + 1. However, if another correct
process committed to block b1, then block b1 has 2mv/3 + 1 validators. Thus,
|Q1∪F | ≥ 2mv/3+1. Recall that |F | = f < mv/3 and therefore |Q1| ≥ mv/3+1
and |Q2| ≥ mv/3 + 1, but this is impossible since F ∪ Q1 ∪ Q2 = VΨ and
Q1 ∩ Q2 = Q1 ∩ F = F ∩ Q2 = ∅, and each account is only used once . It
follows that only Q2 or only Q1 had enough validators, and thus only some
correct processes proposing and deciding ABORT (after which all will decide
ABORT), or some processes deciding COMMIT (leading all other processes to
decide COMMIT once they update their view of the childchain, since they do
not decide ABORT) are possible.

Lemma 5.3. A Platypus Bulk Close transaction (COMMIT) can only be valid
in Ω if it is already written in Ψ.

Proof. For this, we assume that the transaction is sent to the parentchain with-
out it being fully signed (i.e. beyond the threshold m0) in the Platypus chain.

12

A Byzantine process can try to send directly to the parentchain a not fully
signed Platypus Bulk Close transaction (i.e. a Platypus Bulk Close transaction
that was not written in the Platypus Blockchain). However, this transaction
is not valid in the parentchain until it receives enough signatures. Notice that
any process in the parentchain (i.e. Platypus Blockchain processes too) can
eventually see this transaction, and generate a valid ABORT proof, or try to
get it written in the Platypus Blockchain and then generate a valid COMMIT.
Therefore, this proof is analogous to that of Lemma 5.2.

Theorem 5.4. Algorithm 2 guarantees the agreement property.

Proof. By Lemma 5.3 we know that all COMMIT decisions are firstly written
in Ψ. Then, Lemma 5.2 shows that all processes in PΨ reach the same decision
to write in Ψ. We only have left the case that an ABORT is decided without
it being written in the Platypus Blockchain Ψ. We need to prove that if that
ABORT is decided then no process decided COMMIT. An ABORT outside
of Ψ can only happen if a process pi tried to COMMIT directly to Ω a Bulk
close transaction that is not valid. Then, another process pj generated a valid
Proof-of-Fraud included in an abort transaction, that ended up in an ABORT
decision. Analogous to the proof of Lemma 5.2, we have a valid Proof-of-Fraud
that gathers at least one conflicting transaction written in a previous block in
Ψ, and therefore validated by at least m0 validators. With the same approach
used in Lemma 5.2, it is possible to prove that it is not possible for pj to propose
a valid ABORT if one correct process pi decided COMMIT. Once a COMMIT
is decided by enough processes, the funds go back to the Blockchain in the bulk
close transaction of the sequence committed. Therefore, another sequence in
another bulk close transaction will not be COMMIT-decided by any correct
process. Hence, the agreement property is guaranteed.

Theorem 5.5. Algorithm 2 guarantees the COMMIT-validity property.

Proof. Lemma 5.3 shows that the only way to get something committed is to
first write it in Ψ, while Lemma 5.2 proves that either all or no correct process
decide COMMIT on a sequence. If no correct process proposes ABORT and,
by Theorem 5.3, they guarantee termination, then they must COMMIT.

Theorem 5.6. Algorithm 2 guarantees the ABORT-validity property.

Proof. If a correct process proposes ABORT in Ψ, then by Lemma 5.2 all correct
processes decide ABORT. All correct processes in Ψ also agree on an ABORT
generated to a COMMIT outside of Ψ, as already shown in the proof of the
agreement property (Theorem 5.4).

Theorem 5.7. Algorithm 2 guarantees the COMMIT-Privacy/Lightness prop-
erty.

Proof. First, we consider the case that a Platypus Bulk Close transaction was
successfully written in the parentchain (i.e. a COMMIT). W.l.o.g. we assume
this to be the second transaction (after the Platypus Creation transaction) to be
written in the parentchain relating this Platypus chain Ψ, i.e. that no previous

13

Abort transactions were written. Let tc the time when the Platypus chain was
created, td the time when the Platypus chain was closed. This Platypus Bulk
Close transaction has been validated in the Platypus Blockchain Ψ, verifying
all the operations were correct. The parentchain processes that are not in the
Platypus chain have no knowledge of the Platypus chain other than its Platypus
Creation transaction that was written in Ω. Therefore, a Platypus Bulk Close
transaction with enough signatures from validators, and valid signatures, seems
correct from the point of view of Ω. Therefore, only this information, along
with the list of coins and owners, is provided to the parentchain. This means
that parentchain validators only stored the list of owners and coins at tc, and
received a different list of owners and their coins at td. They can tell which
coins changed ownership between tc and td, but they cannot tell if there were
more owners in between. Thus, they can only see the minimal transfers set.

Whereas the COMMIT-Privacy/Lightness property considers COMMITs,
if Abort transactions took place in between tc and td, a few more operations
might be revealed to the parentchain to prove invalidity in Abort transactions.
However, changing tc to the time of the last Abort, the proof remains valid.

Theorem 5.8 (Correctness). The Platypus Protocol solves the Offchain prob-
lem.

Proof. The proofs for Algorithm 1 guarantee that mv validators are requested
at all times (Lemma 5.1), all of which explicitly stated to participate as valida-
tors (Corollary 5.1), with guaranteed termination if there are enough validators
mv (Theorem 5.1), i.e. the Platypus chain is properly bootstrapped and the
security assumptions remain at the end of Algorithm 1. Once this bootstrap-
ping takes place, the inner consensus of Ψ guarantees the consensus properties
given the assumption f < mv/3 and the unforkability property, with the same
set mv of validators and using the same m0 as threshold for Byzantine be-
haviour (e.g. DBFT). Finally, given this bootstrapping and consensus protocol,
we show above that Algorithm 2, which closes the Platypus chain, guarantees
termination, agreement, ABORT-validity, COMMIT-validity and COMMIT-
lightness/privacy. Therefore, Platypus solves the Offchain problem.

The following theorem shows that our construction works in the strongest
coalition the Adversary can form.

Theorem 5.9 (Resilience optimality). It is impossible to perform a transfer
operation in an Offchain protocol with partial synchrony if f ≥ mv/3.

Proof. We prove this by contradiction. If f > nv/3 then the Adversary can
corrupt the Blockchain, and thus the Offchain protocol is not correct. Thus,
suppose f ≥ mv/3 while still f < nv/3. Let there be at least one coin ¢ is
transferred from account a to account b in transaction tx in the Offchain protocol
Γ (i.e. not the trivial case of closing after opening). We assume that there
exists a correct Offchain protocol that solves the Offchain problem with such
an Adversary. We look at the amount of validators the Blockchain protocol
requires for the protocol to COMMIT, m0. If the protocol had a threshold
of m0 > 2mv/3 signatures, it follows that some of the processes controlled
by the Adversary should have agreed to such transaction. But the Adversary
may decide not to validate, and thus the offchain protocol cannot continue, not
performing any offchain transfer.

14

Thus, m0 has to be such that m0 ≤ 2mv/3. In such a case, consider a
partition of validators VΨ into Q1, Q2 of correct processes, and F the set of
processes controlled by the Adversary, such that Q1 ∩ Q2 = Q1 ∩ F = F ∩
Q2 = ∅. Suppose there is another transaction tx′ that transfers the same coin

¢ from account a to c, c 6= b. Suppose |Q1| = |Q2| = |VΨ|−|F |
2 < mv/3. Since

Q1∪Q2∪F = VΨ, we have that |Q1|+|Q2|+|F | = mv, meaning that |Q1| < mv/3
and |Q2| < mv/3. Therefore, |F | + |Q1| > 2mv/3 and |F | + |Q2| > 2mv/3. In
this case, if m0 < |F |+ |Q2|, then m0 < |F |+ |Q1| and thus it would be possible
for the Adversary to validate tx for Q1 and tx′ for Q2. Thus, m0 must be such
that m0 > |F | + |Q2| > 2mv/3. This is a contradiction: we already showed
above that m0 should be such that m0 ≤ 2mv/3.

6 Theoretical Analysis

In this section, we analyze the communication, message and time complexity
of the Platypus protocol, ignoring the complexity of the underlying blockchain.
We consider the calls to acsend(Ψ, tx) and send({Ψ,Ω}, tx) to have the same
complexities as one multicast to all validators V{Ψ,Ω} of the blockchain that
receives the transaction tx.

6.0.1 Message complexity

The message complexity of Algorithms 2, 4 and 5 is O(m2
v) and that of Algo-

rithm 3 is O(mp ∗mv). We conjecture that the complexity could however be
reduced to O(mv) at some points, leveraging non-interactive aggregation of the
validators signatures and messages, but certain calls to acsend(...) and send(...)
would still have a complexity of O(m2

v), as they can be executed by all processes.
The same applies to Algorithm 1, with the exception that Phase 2 has a message
complexity of O(mp ∗ np), thus being this one the complexity of Platypus.

6.0.2 Communication complexity

The message size is O(mp) in lines 18 and 14 of Algorithm 1, leading to a
communication complexity of O(max{mp ∗np, m3

v}), because of phases 2 and 3
of the algorithm. Line 7 of Algorithm 3 also has a message size of O(mv), leading
to a communication complexity of O(mp ∗m2

v), although the set of validators
can be removed if no punishments are considered. The rest of messages have
constant size in all algorithms, thus their communication complexity is the same
as their message complexity.

6.0.3 Time complexity

The time complexity is O(mv) due to phases 4 of Algorithm 1, and, Phase 2
of Algorithm 2. Algorithms 3, 4 and 5 have constant time complexity. Again,
we conjecture that, leveraging non-interactive aggregation, the time complexity
can be reduced to constant time.

Note that these complexities are lower or comparable to consensus algorithms
in the same model [8].

15

7 Improvements & Discussion

In this section, we consider additional features of the Platypus chain, and its
usage for the general sidechains problem, which we also define.

7.1 Crosschain payments

A crosschain payment can be of two types, either a payment to a parentchain,
or a payment through a parentchain to another childchain. With the above-
shown protocol, a payment to a parentchain would require a Platypus bulk
close transaction, and a new Platypus creation transaction. We describe an
extension of the protocol to perform payments without closing and reopening
Platypus chains.

7.1.1 Users’ Splice-in & Splice-outs

Splice-in and Splice-out transactions allow users to get their funds into and out
of the Platypus chain, respectively.
· Splice in. Splicing in allows users to join a Platypus chain. Since this

transaction takes place after the Platypus chain has been created, it requires
some validation by both their sets of validators. Algorithm 4 shows the Splice
in protocol for a process pi that wants to join Ψ. A splice in transaction txspin
must be written in both Ω and Ψ, after which the funds can only be spent in Ψ.

Algorithm 4 Splice in algorithm for process pi
B State of the algorithm
Ω, Ψ, Γ, the Blockchain, Platypus Blockchain and protocol
Ci, coins that belong to process pi
plid, the Platypus chain identifier
txspin ← ⊥, the splice in transaction

B pi creates and waits for transaction to write
1: txspin ← createSpliceInTx(Ci, plid)
2: txspin ← signi(txspin)
3: Γ.send(Ω, txspin)
4: Γ.send(Ψ, txspin)

· Splice out. The same way users can splice into an existing Platypus chain,
they can get their funds back in the parentchain. Again, this is a sensible
operation that requires proper synchronization between both Platypus chain
and parentchain so as to protect against fraud.

The splice out transaction allows processes to leave a Platypus chain before
it is closed, retrieving their funds back in the parentchain. In this case, we
require first the transaction to be finalized in Ψ before being considered for the
parentchain. Algorithm 5 shows the splice out protocol for a process pi. This
protocol is rather a simplification of Algorithm 2. It creates and tries to write
a splice out transaction txspou, that can be aborted with an abort transaction
txabort.

16

Algorithm 5 splice out for process pi
B State of the algorithm
Ω, Ψ, Γ, the Blockchain, Platypus Blockchain and protocol
Ci, the coins that belong to process pi
txspou ← ⊥, the splice out transaction

B pi creates and waits for transaction to write in Ψ
1: txspou ← createSpliceOutTx(Ci)
2: txspou ← signi(txspou)
3: r ← Γ.acsend(Ψ, txspou) B Get back txspou or txabort

4: if (r.type = ABORT) then Γ.send(Ω, r.txabort)

5: else if (r.type = COMMIT) then Γ.send(Ω, r.txspou)

7.1.2 Validators’ Splice-in & Splice-outs

It is important to consider that the adversary should not gain enough relative
power, either by splicing in or by correct validators splicing out. One way
to guarantee this is by keeping the set of validators intact regardless of the
funds each validator has after Platypus creation. This approach is similar to
the Platypus bulk close transaction, and ensures correctness of the protocol,
although it can be cumbersome for a validator to keep track and participate in
a Platypus chain it no longer takes active part in. For this reason, an additional
feature of the protocol might provide explicit delegation of the validator set to
other users, similar to how consortium blockchains behave.

Another alternative may allow users and the set of validators to splice in
and splice out in a permissionless, Proof-of-Stake based environment. In this
set, validators should take great care at identifying the probability of an ad-
versary gaining enough relative power, either through simple heuristics based
on the funds at stake, or additional information, such as trust in other valida-
tors. If the probability of an adversary gaining enough relative power reaches
a certain threat threshold, either by the validators set reducing significantly or
any other information used for heuristics, validators can generate a Platypus
bulk close transaction and safeguard all users’ funds. This variation requires
the assumption that the adversary never gains enough relative stake such that
stake(f) ≥ stake(mv)/3.

7.1.3 Crosschain payments with splice-in & splice-outs

A crosschain payment in between two blockchains with Platypus is a payment
of one user from/into an existing Platypus chain to/from its parentchain, or in
between two Platypus chains that share a common parentchain. In section 7.3,
we generalize such definition. Regardless of the particular conditions and as-
sumptions for splice-ins and splice-outs, we illustrate in this section how these
transactions would work.
· Crosschain payment from/to parentchain. This case is trivial using Algo-

rithm 4 or 5, respectively.
· Crosschain payment between childchains. A crosschain payment between

Platypus chains is performed with a splice out into the common parentchain,
followed by a splice in into the recipient.

17

7.2 Session Keys

In the Platypus chain Ψ, we specify the requirement of one time accounts. This
is to prevent a variant of the ABA problem, in which at time t1 A transferred
the coin to B, which in turn transferred it back to A at time t2. If A tries
to Platypus Bulk Close claiming ownership at time t3, B could ABORT with
a valid proof of a spent from time t2. While using one time accounts already
solves this problem, since A would actually use A1 for t1 and A2 for t2 and t3,
the approach can also be solved while allowing A1 = A2 by introducing further
data in Platypus Bulk Close transactions, such as the merkle tree of the state
of the Platypus Blockchain.

7.3 Platypus for Sidechains

The childchain definition done in section 3 can easily be generalized for sidechains
by clearly decoupling Ψ from the protocol, and stating different sets for them
P 6= Q instead of P Q. We define sidechain protocols as a superset of offchain
protocols, defined in Section 3. A sidechain protocol allows to perform a pay-
ment across blockchains, i.e. a crosschain payment. If two or more blockchains
intend to perform crosschain payments, we refer to them as being sidechains.
They may or may not be in a parent-child hierarchy.
· Sidechain protocol. Given two blockchains, Ω of P processes and Ψ of Q,

P 6= Q a sidechain protocol Π is an offchain protocol that enables transfers in
between all accounts pa, qa such that ρ(qa) = q ∈ Q, ρ(pa) = p ∈ P . To reflect
Ω and Ψ being independent, and this possibility of transferring, we define the
following property:
− COMMIT-Matching Knowledge: If a correct process decides COMMIT

on a sequence seq of transfer operations in Π between Ω and Ψ, then ∀p ∈ P, p
knows a subset seq1 and ∀q ∈ Q, q knows a subset seq2, such that seq1 and
seq2 are two minimal transfer sets, seq2 ∩ seq1 = ∅, and it exists one surjective
application f : seq1 × seq2 → TR−(seq1 ∪ seq2) ∪ {0} defined as follows:

f(aTR b, c TR d) =

{
(aTRd) if ρ(b) = ρ(c) = pi

0 otherwise

}
(2)

Also, since the coins are different in different blockchains, we identify coins by
their value when calculating the minimal transfer set TR−. Intuitively, for a
transaction in seq1 exists a transaction in seq2 such that both are transitive
(that is, the receiver of one is the sender of the other). If that was not to
happen, then some of the transactions in seq1, or in seq2, would have nothing
to do with a payment in between two sidechains.

If Q P then seq1 is just a set of idempotent transfers of the form a TR b,
with ρ(a) = ρ(b), since all p ∈ Q are also in P , and thus COMMIT-Privacy/Lightness
is a particular case scenario of the COMMIT-Matching Knowledge property.

Similarly, if P 6⊇ Q, P 6⊆ Q then Ω and Ψ are not in the parent-child chain
hierarchy.
· Crosschain payments. This is solved by our protocol if both sidechains have

a common parentchain, as shown in section 7.1.3. In general, for a crosschain
payment between two unrelated Blockchains Ω1 and Ω2, with sets of valida-
tors VΩ1 and VΩ2 , they can perform the payment manufacturing an additional
Blockchain Φ:

18

− Create a common parentchain Φ with VΦ ⊇ VΩ1 ∪ VΩ2 , extend both
their Blockchains to adopt the Platypus protocol, and perform the payment as
explained in section 7.1.3. In this case, if the adversary tries to double spend
the crosschain payment in Ω2, or in Ω1, then, as long as f < |VΦ|/3, the funds
will remain in the parentchain Φ.
− Create a common Platypus chain Φ, with VΦ ⊆ VΩ1 ∩ VΩ1 , and perform

the payment. In such a case, should f < |VΩ1
| and f < |VΩ2

|, then the adversary
could not double spend the funds in Φ and splice out to both Ω1 and Ω2.

7.4 Attacks

Many of the common attacks for synchronous offchain protocols are not appli-
cable in the partially synchronous Platypus, as they exploit timelocks, such as
forced expiration spam [24], balance disclosure attacks [17] or stale attacks [25],
among others. The colluding validators attack is possible, should the adversary
be such that f ≥ mv/3, as shown by Theorem 5.9.

However, it is still possible to perform a colluding validators attack in this
protocol, if the Adversary gains enough power to influence the parentchain or
the childchain. Again, this can only happen if f ≥ mv/3 or f ≥ nv/3, and since
the offchain protocol we propose composes a partially synchronous Blockchain,
the impossibility result shown in theorem 5.9 already shows this is the best
possible case for a partially synchronous offchain protocol.

We also introduce the ABA-transfer attack. If a coin ¢ was transferred from
process p to process q, and later on again to process p, q can try to ABORT
any close/splice out in which ¢ does not belong to him, by using as proof the
deprecated transfer p TR p. To cope with this attack, we use session keys in
this document, as mentioned in Section 3, thus having two different accounts.
Another possible solution involves committing to merkle trees and requiring
any ABORT to provide a merkle tree T such that the merkle tree T ′ of the
COMMIT attempt is included T ′ ⊆ T as part of the Proof-of-Fraud.

7.5 Accountability: Punishment through Abort

It is easy to see that, if more than a third of the validators are selfish, instead
of correct, they can collude to an attack. Validators may collude to create
Platypus Creation transactions with other users, and then Platypus Bulk Close,
claiming all the funds (effectively stealing those funds). This is not at conflict
with this current model, in which there are correct or Byzantine processes, such
that f < mv/3.

Other selfish users may try to fork the Platypus Blockchain Ψ, and perform
a double spend. Accountability plays a major role in attacks of this type, as
shown by [7]. We are currently developing and extension of this protocol in the
rational model.

Intuitively, since the abort function gathers Proofs-of-Fraud (PoFs) for each
validator that was a fraudster, the protocol can create disincentives for Byzan-
tine behaviour through punishments when Abort transactions with PoFs are
written in the parentchain. This disincentivizes selfish actors from colluding to
an invalid state, whereas it provides the same guarantees and correctness in the
Byzantine Fault Tolerant model. The rational model requires however further
modifications and assumptions.

19

7.5.1 Creation and Destruction with Accountability

Apart from disincentives, the Platypus protocol can modify creation and closing
to make it harder, or even impossible (in the case of creation), for selfish users
to collude to attack the protocol in these steps. For example, by requiring
every single signature at creation and destruction, other users can neither lock
coins nor choose which coins they claim when destroying the childchain. The
reader can spot that this requirement might come at the cost of non-termination:
one single validator or user not signing can lock the protocol. To cope with
this, creation and destruction can be divided into multiple transactions, each
of which require at least m0 validators, and all signatures of everybody who is
joining/exiting the Platypus chain. Again, this is a work in progress for the
rational model, and further modifications are required to guarantee correctness
in this environment.

8 Related Work

8.0.1 Sidechains & Childchains

Childchains were first introduced with the concept of sidechains [2]. A sidechain
has a broader definition than a childchain has been used to execute crosschain
payments without a parent-child hierarchical structure. Childchains were first
formalized in [13] where the authors propose an efficient childchain protocol in a
semi-synchronous model. Unfortunately, their notion of semi-synchronous com-
munication considers that every messages get delivered in a non-null bounded
amount of time ∆, which remains a synchrony assumption [11]. The term ‘semi’
is used by the authors to denote the fact that the bound ∆ is not null. Note
that this notion differs from partial synchrony [11] where the bound is unknown.

8.0.2 Crosschain payments

Many protocols propose generic crosschain payments. Atomic crosschain swaps [22,
15, 29, 28] typically rely on Hashed Timelock Contracts [26] that are syn-
chronous, while others focus on a crash failure model, rather than a Byzantine
one [28]. Chain relays bridge information from one Blockchain by writing it
in a different Blockchain, such as an Ethereum smart contract storing Bitcoin
headers [6]. Consensus-based crosschain interactions [27, 19] are the closest to
our proposal, with some of them falling in the sidechain category. Polkadot [27]
reuses the idea to manufacture a common parentchain to Blockchains, in order
to perform payments asynchronously, although it was not proved correct.

Crosschain deals [16] allow for auctions or relaying payments. The authors
outline both a synchronous and a partially synchronous protocols. Unlike our
problem, the crosschain deals problem tolerates that the protocol aborts even
if the only processes proposing abort are Byzantine. Our problem disallows
such an execution as it could prevent a correct process from cashing out. Our
implementation ensures this execution cannot happen by requiring every abort
transaction to contain a valid proof of fraud. This makes our offchain problem
the first Byzantine fault tolerant variant of the atomic commit problem [5] that
has only been defined to our knowledge in a crash model.

20

8.0.3 Offchain protocols

State and payment channels [24, 10] were the first offchain proposals for Blockchains.
The Lightning Network [24], a network of channels that relay payments offchain,
is the most notable of the offchain proposals, while other similar offchain pay-
ment networks have been proposed[18, 21], some of which work in asynchronous
communications [1, 20]. While channel networks scale, they are still limited
to the amount of transactions allowed to open and close each of its channels.
Lightning Factories allow users to open several channels at once while preserving
constant lock-in time [25]. Other works also target more scalability than pay-
ment channels through factory-like constructions under different systems and
assumptions [4]. All factories and channels require of all involved users to ex-
plicitly sign to perform transfers, impacting performance. PLASMA is the most
known childchain construction, proposed for Ethereum [23]. It provides the first
childchain protocol with fraud detection.

All these offchain protocols are synchronous, which could make them vulner-
able to the Balance Disclosure attack [17] that discloses the balances of other
users in the Lightning Network, while the Stale Channel/Factory attack locks
balances of all users in a channel/factory [25]. There is therefore great interest
in achieving offchain scalability and privacy in partial synchrony.

9 Conclusion

The Platypus chain is the first childchain that does not assume synchrony or
a trusted execution environment. We prove its correctness, and discuss its
extensions and applications for scalability and for secure crosschain payments.
Finally, we showed that our protocol is correct and resilience optimal. As future
work, we would like to cope with more than n/3 rational processes.

References

[1] G. Avarikioti, E. K. Kogias, and R. Wattenhofer. Brick: Asynchronous state
channels. Technical Report 1905.11360, arXiv, 2018.

[2] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller,
A. Poelstra, J. Timón, and P. Wuille. Enabling blockchain inno-
vations with pegged sidechains. URL: http://www. opensciencereview.
com/papers/123/enablingblockchain-innovations-with-pegged-sidechains, page 72,
2014.

[3] D. Boneh, M. Drijvers, and G. Neven. Compact multi-signatures for smaller
blockchains. In Int’l Conf. on the Theory and Application of Cryptology and
Information Security, pages 435–464, 2018.

[4] C. Burchert, C. Decker, and R. Wattenhofer. Scalable funding of bitcoin micro-
payment channel networks. Royal Society open science, 5(8):180089, 2018.

[5] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable and secure
distributed programming. Springer Science & Business Media, 2011.

[6] J. Chow. Btc relay. http://btcrelay.org/, 2016.

[7] P. Civit, S. Gilbert, and V. Gramoli. Polygraph: Accountable byzantine agree-
ment. Cryptology ePrint Archive, Report 2019/587, 2019. https://eprint.
iacr.org/2019/587.

21

https://eprint.iacr.org/2019/587
https://eprint.iacr.org/2019/587

[8] T. Crain, V. Gramoli, M. Larrea, and M. Raynal. DBFT: Efficient leaderless
byzantine consensus and its application to blockchains. In NCA’18, pages 1–8.
IEEE, 2018.

[9] T. Crain, C. Natoli, and V. Gramoli. Evaluating the red belly blockchain. Tech-
nical Report 1812.11747, arXiv, Dec. 2018.

[10] C. Decker and R. Wattenhofer. A fast and scalable payment network with bitcoin
duplex micropayment channels. In Symposium on Self-Stabilizing Systems, pages
3–18. Springer, 2015.

[11] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM (JACM), 35(2):288–323, 1988.

[12] P. Ekparinya, V. Gramoli, and G. Jourjon. Impact of man-in-the-middle attacks
on ethereum. In 37th IEEE Symposium on Reliable Distributed Systems (SRDS),
pages 11–20, 2018.

[13] P. Gazi, A. Kiayias, and D. Zindros. Proof-of-stake sidechains. In IEEE Sympo-
sium on Security & Privacy, 2019.

[14] Ö. Gürcan, A. Ranchal-Pedrosa, and S. Tucci-Piergiovanni. On cancellation of
transactions in bitcoin-like blockchains. In OTM Confederated International Con-
ferences” On the Move to Meaningful Internet Systems”, pages 516–533. Springer,
2018.

[15] M. Herlihy. Atomic cross-chain swaps. In Proceedings of the 2018 ACM Sympo-
sium on Principles of Distributed Computing, pages 245–254. ACM, 2018.

[16] M. Herlihy, B. Liskov, and L. Shrira. Cross-chain deals and adversarial commerce.
Technical Report 1905.09743, arXiv, 2019.

[17] J. Herrera-Joancomart́ı, G. Navarro-Arribas, A. Ranchal-Pedrosa, C. Pérez-Solà,
and J. Garcia-Alfaro. On the difficulty of hiding the balance of lightning network
channels. Technical Report 2019.328, Cryptology ePrint Archive, 2019.

[18] R. Khalil, A. Gervais, and G. Felley. NOCUST–a securely scalable commit-chain.
Technical Report 642, Cryptology ePrint Archive, 2018.

[19] J. Kwon. Tendermint: Consensus without mining. Draft v. 0.6, fall, 2014.

[20] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. Pietzuch, and E. G. Sirer. Teechain:
Reducing storage costs on the blockchain with offline payment channels. In Pro-
ceedings of the 11th ACM International Systems and Storage Conference, pages
125–125. ACM, 2018.

[21] A. Miller, I. Bentov, R. Kumaresan, and P. McCorry. Sprites: Payment channels
that go faster than lightning. Technical Report 1702.05812, arXiv, 2017.

[22] T. Nolan. Atomic swaps using cut and choose.
https://bitcointalk.org/index.php?topic=1364951, 2016.

[23] J. Poon and V. Buterin. Plasma: Scalable autonomous smart contracts. White
paper, pages 1–47, 2017.

[24] J. Poon and T. Dryja. The bitcoin lightning network: Scalable off-chain instant
payments, 2016.

[25] A. Ranchal-Pedrosa, M. Potop-Butucaru, and S. Tucci-Piergiovanni. Scalable
lightning factories for bitcoin. In Proc. of the 34th ACM/SIGAPP Symp. on
Applied Computing, pages 302–309. ACM, 2019.

[26] R. Russell. Lightning networks part ii: Hashed timelock contracts (htlcs). https:
//rusty.ozlabs.org/?p=462.

[27] G. Wood. Polkadot: Vision for a heterogeneous multi-chain framework. White
Paper, 2016.

22

https://rusty.ozlabs.org/?p=462
https://rusty.ozlabs.org/?p=462

[28] V. Zakhary, D. Agrawal, and A. E. Abbadi. Atomic commitment across
blockchains. Technical Report 1905.02847, arXiv, 2019.

[29] A. Zamyatin, D. Harz, J. Lind, P. Panayiotou, A. Gervais, and W. J. Knottenbelt.
Xclaim: Interoperability with cryptocurrency-backed tokens. Technical Report
2018/643, Cryptology ePrint Archive, 2018.

23

	1 Introduction
	2 Preliminaries
	3 Model
	4 Secure Childchains Without Synchrony
	4.1 Overview
	4.2 Creating a Platypus Chain
	4.3 Closing a Platypus Chain
	4.4 Aborting a Closing Attempt

	5 Correctness
	6 Theoretical Analysis
	6.0.1 Message complexity
	6.0.2 Communication complexity
	6.0.3 Time complexity

	7 Improvements & Discussion
	7.1 Crosschain payments
	7.1.1 Users' Splice-in & Splice-outs
	7.1.2 Validators' Splice-in & Splice-outs
	7.1.3 Crosschain payments with splice-in & splice-outs

	7.2 Session Keys
	7.3 Platypus for Sidechains
	7.4 Attacks
	7.5 Accountability: Punishment through Abort
	7.5.1 Creation and Destruction with Accountability

	8 Related Work
	8.0.1 Sidechains & Childchains
	8.0.2 Crosschain payments
	8.0.3 Offchain protocols

	9 Conclusion

