
Implicit Consensus: Blockchain with Unbounded
Throughput

Zhijie Ren1, Kelong Cong2, Johan Pouwelse2, and Zekeriya Erkin1

1 Cyber Security Group
Department of Intelligent Systems

2 Distributed Systems Group
Department of Software Engineering
Delft University of Technology
Mekelweg 4, Delft, The Netherlands
z.ren@tudelft.nl

Abstract
(This paper has been submitted to DISC 2017 on May 8th, 2017.)

Recently, the blockchain technique was put in the spotlight as it introduced a systematic
approach for multiple parties to reach consensus without needing trust. However, the application
of this technique in practice is severely restricted due to its limitations in throughput, reliability,
storage requirement, and privacy. In this paper, we propose a novel consensus model, namely
the implicit consensus, with a distinctive blockchain-based distributed ledger in which each node
holds its individual blockchain. In our system, the agreement is not on the transactions, but on a
special type of blocks called Check Points that are used to validate individual transactions. Our
system achieves superior performance over all existing blockchain techniques in multiple aspects
with equivalent reliability. Most remarkably, our system achieves unbounded throughput which
is by far the best throughput achieved by any blockchain technique.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Blockchain, Distributed Ledger, Consensus Algorithm, Byzantine Fault
Tolerance

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Blockchain, introduced and firstly applied in Bitcoin [15], is one of the hottest techniques
in the information technology at this moment. Researchers see a huge potential in this
technique and believe that it can be used as a systematic approach to replace trust. More
precisely, in a network in which nodes do not trust each other, blockchain provides a way
for the nodes to reach consensus and cooperate without a third party or a central authority.
Typically, a blockchain technique is a distributed append-only database which consists of
two components. First, as its name suggests, the database is an ordered sequences of blocks
which are chained together. The newly generated data forms a new block and chains to
the existing chain with a digest of the cryptographic hash function of the previous block.
Second, a consensus algorithm is used for the network to agree on the new block that will be
appended to the chain.

© Zhijie Ren, Kelong Cong, Johan Pouwelse, and Zekeriya Erkin;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:1

70
5.

11
04

6v
2

 [
cs

.D
C

]
 1

 J
un

 2
01

7

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Implicit Consensus: Blockchain with Unbounded Throughput

1.1 Problem Statement
One of the major problems of the blockchain technique is the trade-off between the throughput
and the scalability, which is caused by this limitation of the current consensus algorithms.
Reaching consensus for distributed nodes in an unsafe network, commonly known as the
Byzantine fault tolerance (BFT) problem [10], has been extensively studied for over 30
years. Traditional approaches allow honest nodes to reach consensus if the number of the
adversaries is less than 1/3 of the total population [1, 3]. However, these algorithms requires
at least O(N2) communications for a network with N nodes, thus do not scale well into large
networks with thousands of nodes. Bitcoin and its proof-of-work (POW) scheme opened
up a new horizon on this problem. In Bitcoin, incentives are introduced to put cost on
malicious behaviors, which limits the capability of the adversaries. It thus allows reaching
consensus in a network with thousands of nodes, as long as the computational power of the
malicious nodes is less than 1/4 of the total computational capability [6]. However, POW
based public blockchains like Bitcoin and Ethereum [19] have rather low throughputs, e.g.,
Bitcoin can have at most seven transactions per second. This throughput is incomparable
to the throughput of thousands of transactions per second achieved by traditional BFT
algorithms [4]. Currently, there does not exist a blockchain system which achieves high
throughput in a network with thousands of nodes due to the limitation in the consensus
algorithm.

1.2 State-of-the-Art
For POW, many approaches have been proposed to improve the throughput of POW based
blockchains, e.g., [5, 18], which all have costs in security and reliability. In general POW
based schemes has fundamental limitations in throughput to achieve an acceptable level of
security given the current network infrastructure [4]. Furthermore, POW schemes are very
expensive to deploy in the sense that it consumes a huge amount of energy to be even close
to the Bitcoin level of security.

On the other hand, the BFT algorithms still suffer from the the scalability issue which
restricts it to a small network (maximum around a hundred nodes) [3, 8, 11, 14]. The solution
is using BFT scheme on either a small set of nodes permissioned in advance or on a large
network with a certain hierarchical structure. The former case has been widely considered in
practical consortium chains like [2, 9], which achieves remarkably good performance. In the
latter case, using BFT on a large network is unfavorable since BFT algorithms do not scale
well. Hence, traditional BFT schemes are combined with group partition schemes which
guarantee the ratio of the adversaries in each level of the structure should not exceed 1/3,
e.g., [12, 16]. Besides BFT consensus and Bitcoin consensus which consider global consensus,
blockchains like [13, 17] consider partial consensus which improves the throughput at the
costs of reliability and security.

1.3 Implicit Consensus
In this paper, a novel consensus model, namely the implicit consensus, is proposed, which
achieves unbounded throughput for a distributed ledger type of blockchain system with
equivalent level of reliability on validated transactions comparing to traditional BFT based
schemes. We argue that compared to the classical consensus model, the implicit consensus is
closer to real-life scenario. Let us consider the differences in making a contract with classical
blockchains and in real life. With classical blockchains, the contract is revealed to all nodes
and the validity is checked by all nodes. As a result, the validity of this contract is undeniable

Z. Ren, K. Cong, J. Pouwelse, and Z. Erkin 3

and unforgeable. On the other hand, in real life, the contract is only revealed to the related
parties. The authority, e.g., court system, are not necessarily aware of the existence and the
details of this contract. However, if the related parties have a disagreement upon a certain
contract, they can provide proofs to the authority and ask for aid. Then, the honest parties
can reach agreement upon the authority’s judge. In other words, the consensus is not on
individual contract, but on the fact that the authenticity and validity of the contract can be
checked by the authority, and they should agree with the authority.

Now, we give the definition of the implicit consensus. Firstly, let us first consider that
some type of consensus (BFT consensus or Bitcoin consensus), expressed as the Explicit
Consensus, is reached upon a transaction. It suggests the following.

Explicit Consensus: All honest nodes have agreed that the transaction is valid.

This type of consensus can actually be reformulated into two parts.
Consensus 1: Each honest node has agreed that the transaction is valid.
Consensus 2: Each honest node has agreed that all other honest nodes have also agreed
that the transaction is valid.

However, a third consensus is hidden in here, which we call the Implicit Consensus.
Implicit Consensus: All honest nodes have agreed that the validity of any transaction
is verifiable, unambiguous, and unforgeable.

Clearly, the implicit consensus is equivalent to the Consensus 2 under the condition of
Consensus 1. This is exactly the consensus in the real-life scenario with authority replaced
by blockchains, i.e., all honest parties agree that the authority will make correct and fair
judgment without necessarily knowing the validity in advance. In other words, in the real-life
scenario, the standalone implicit consensus is enough for the reliability of the system.

1.4 Structure of Our System
We consider an asynchronous network with N nodes and f ≤ bN/3c adversaries. To
achieve the implicit consensus, we propose a permissioned blockchain-based distributed ledger
consisting of four layers: transactions, individual blockchains, the consensus scheme, and
the validation scheme. The first layer of our system is transactions, which are defined in a
similar fashion as Bitcoin. The second layer is individual blockchains. In our system each
node has its own genesis block and blockchain, in which only transactions that related to itself
are recorded. Besides the blocks that consists of transactions which are called Transaction
Blocks (TBs), another type of special blocks called Check Points (CPs) are introduced.
The CPs contain no transaction, but some already established consensus and a hash of the
previous block. The third layer of our scheme is the consensus scheme, in which we plug
in one of the existing Byzantine fault tolerance (BFT) schemes like [3, 8, 12, 14] to reach
consensus on the hashes of the CPs. One of the fundamental differences between our system
and other blockchain systems is that the consensus is reached only on the hashes of the CPs
instead of all transactions. As a result, if some CP reached consensus, the transactions that
came before the CP are tamper-proof. However, this tells nothing about the validity of the
transactions in these parts. Hence, in the fourth parts, a validation scheme is used to
validate individual transactions. The validation scheme is executed locally and only based
on point-to-point communications. Since the CPs in the consensus have “sealed” the chains,
the authenticity and integrity of the chains can be easily verified. We prove that although
the validation scheme is run locally, the result is correct and consistent for all honest nodes,
which suggests the implicit consensus.

4 Implicit Consensus: Blockchain with Unbounded Throughput

1.5 Content of the Paper
Firstly, we introduce the four-layer system in Section 2. Then we show the necessary
theorems and proofs in Section 3. The performance of our system is discussed in the aspects
of throughput, reliability, and storage requirement in Section 4. In Section 5, we conclude
our work and give recommendations for the future work.

2 Our System

2.1 Transactions
We consider a transaction based value-exchange blockchain system similar to Bitcoin, i.e., a
distributed ledger. The s-th transaction from node i to node j is denoted by tr(i→ j, s). In
this paper, a cryptographic hash function is denoted by Y = H(X), in which Y is called the
digest of X. Furthermore, we assume that there is a public-key infrastructure (PKI) such
that each node holds a secret private key while the corresponding public key is known to all
other nodes. A transaction tr(i→ j, s) contains the following information.

The sender and the receiver, i.e., i and j.
A unique serial number s one-to-one mapped to this transaction tr(i→ j, s).
The indices of the sources of this transactions (see Definition 2). The sources are denoted
by S(tr(i→ j, s)), which is a set of previous transactions send to i. This is equivalent to
the input of Bitcoin.
The value of this transaction Vt and the remaining value Vr after this transaction. This
is equivalent to the output of Bitcoin.
A digital signature created by node i, which is the digest of the aforementioned items
encrypted with the private key of i.

Here, we only consider two-party transactions. The transactions are only recorded in the
chains of the related node. Hence, a transaction tr(i → j, s) is recorded in the chains of
nodes i and j.

2.2 Individual Blockchains
We consider a permissioned network with N nodes and each node has its own blockchain.
The blockchains are denoted by Bi, i ∈ {1, 2, . . . , N} 1. A blockchain Bi is then defined as an
ordered set of blocks {Bi(1), Bi(2), . . .}, in which each block contains a digest of its previous
block, i.e., block Bi(j), j > 1 will contains H(Bi(j − 1)). The genesis blocks (the first blocks
in the chains) Bi(1) are distinctive and contain the information about their unique identities
and the initial balance of each node2. The initial balance can be seen as a transaction without
sources and has an unique index (see Definition 2). Furthermore, this transaction is valid if
the corresponding genesis block is included in some consensus. Otherwise, it is invalid (see
Subsections 2.3 and 2.4).

There are two types of blocks in the chains: transaction blocks (TBs) and check points
(CPs). We assume all genesis blocks are CPs. TBs are used to record the transactions and
CPs are used for the consensus scheme. Now we introduce these two types of blocks.

1 This definition is slightly naive since malicious nodes could have multiple versions of their blockchains.
For the sake of easier comprehension, we use this definition here and will further address this problem
in Section 3.

2 Our system only focus on the reliable value exchange, thus we assume that there exists some pre-
established agreement on the initial balance for the nodes.

Z. Ren, K. Cong, J. Pouwelse, and Z. Erkin 5

Ci(1) Ti(1) Ti(2) Ci(2) Ti(3) Ti(4) Ti(5) Ci(3) Ti(6)

Bi(1) Bi(2) Bi(3) Bi(4) Bi(5) Bi(6) Bi(7) Bi(8) Bi(9)

Figure 1 Example of a blockchain of node i with six TBs and three CPs.

2.2.1 Transaction Blocks
As its name suggests, TB is used to record the transactions. We denote the k-th TB in Bi

by Ti(k). Then, if Ti(k) is the j-th block in Bi, we say that Ti(k) ≡ Bi(j). A transaction
block Ti(k) consists of a digest of the previous block and M transaction messages ti(k, m),
i.e., if Ti(k) ≡ Bi(j), then Ti(k) consists of [H(Bi(j − 1)), ti(k, 1), ti(k, 2), . . . , ti(k, M)].

I Definition 1 (Transaction Message). A transaction message ti(k, m) is the m-th message
in the k-th transaction block. It consists a transaction tr(a→ b, s) where a = i or b = i.

I Definition 2 (Transaction Index). If a transaction tr(a→ b, s) is in the transaction message
ti(k, m), then a vector of [i, k, m] are called the index of this transaction.

Note that since a transaction is written in the chains of both the sender and the receiver, a
valid transaction should have two indices. Also, the two transaction messages of a transaction
are identical.

2.2.2 Check Points
CPs are a special type of blocks which contain no transaction. Instead, they contain some
established consensus. We use the consensus scheme to reach consensus on the digests of the
CPs of this round. Similar to the TBs, we denote the k-th CP in Bi by Ci(k). Then, if Ci(k)
is the j-th block in Bi, we say that Ci(k) ≡ Bi(j). The CPs are defined as follows.

I Definition 3 (Check Point (CP)). A check point consists of a digest of the previous block
and the consensus established in the previous round (see Subsection 2.3).

The relationship between blocks, TBs, and CPs is shown in Figure 1.

2.3 Consensus Scheme
Our consensus scheme is a consensus process used repetitively in rounds. In each round, the
consensus process is used to reach consensus on consensus messages (CMs), which is defined
as follows.

I Definition 4 (Consensus Message (CM)). A consensus message of node i in round r

denoted by Mi(r) consists of the following information.
i and r.
The digest of a CP Ci(k) which has not been included in any consensus. We call a CP
is included in some consensus if and only if the digest of this CP is in a CM and that
CM has reached consensus.
The position of the CP Ci(k) and its previous CP Ci(k−1) in the chain, i.e., two numbers
j and j′ that Ci(k) ≡ Bi(j) and Ci(k − 1) ≡ Bi(j′).
A digital signature of i, which is the digest of the aforementioned items encrypted by the
private key of i.

6 Implicit Consensus: Blockchain with Unbounded Throughput

The consensus process of round r starts when the consensus process of round r − 1 is
complete and the consensus result, denoted by CON(r − 1), is acknowledged by all honest
nodes. Now, we describe the steps of the consensus process for node i of the r-th round.

Step 1: After CON(r − 1) is obtained, if a CP from node i is included in CON(r − 1),
it generates a new CP with CON(r − 1) and appends it to its chain.
Step 2: It generates a new CM using its latest CP, and uses this as its input for the
consensus process of this round.
Step 3: A BFT algorithm is used to reach agreement on a set of input CMs of this round.
The following CMs will be excluded from this consensus process by all honest nodes:

The CMs of previous rounds.
The CMs with incorrect digital signatures.
The CP included in the CM has already been included in some previous consensus.
The index of the previous CP that has been used by a CM which has already reached
consensus. Also known as a “fork”.

Step 4: Output the result of this consensus process denoted by CON(r), which is a
vector consisting the CMs ordered by i.

For Step 3, any consensus algorithm that satisfies the following conditions can be used.
Agreement: If an honest node sends a CM, then all honest nodes agree with this CM
in the consensus.
Termination: If all honest nodes send their CMs, then they reaches some consensus
eventually.
Correctness: If a CM is in the consensus, then it must have been send by some node.

Some of the choices are [8, 12, 14], which tolerant less than bN
3 c malicious nodes. Here, the

honest and malicious nodes are defined as the following.

I Definition 5 (Honest Node3). An honest node is a node that creates correct CM messages
and cooperates in the consensus process to reach consensus. Moreover, it always validates all
of its transaction and only make transactions with correct information, sufficient balance,
and validated sources which have not been used in previous transactions (see Subsection 2.4).

I Definition 6 (Malicious Node). A malicious node can do anything to prevent consensus,
creates any kind of transaction, and manipulates its chain, e.g., creates forks, to confuse
honest nodes. Moreover, malicious nodes can collude. However, we assume that they cannot
break the hash function or the asymmetric encryption.

The consensus result CON(r) is a vector consisting all the CMs that have reached
consensus in this round. We denote the already established consensus till round r by
CON (r) = {CON(1), CON(2), . . . , CON(r)}. By the properties of the BFT algorithm,
CON(r) is known and should be recorded in the blockchains of all honest nodes by the end
of round r.

A CP included in CON (r) guarantees the tamper-proof property in the sense that the
transactions previous to this CP are unforgeable. Here, we introduce the term correct piece.

3 Our definition of the honest node is stronger than that in some other literature, in which the honesty is
round based, i.e., a node is considered honest if it does not conduct malicious behaviors in that round.
However, this strong assumption is solely because that we would like to keep the core system as simple
as possible. We will later show in Subsection 4.2 that the definition can be easily weaken to the round
based honesty by simple mechanisms.

Z. Ren, K. Cong, J. Pouwelse, and Z. Erkin 7

I Definition 7 (Correct Piece). An ordered set of blocks {Bi(j), . . . , Bi(k)}, k − j ≥ 1 is
called a piece if Bi(j) ≡ Ci(`), Bi(k) ≡ Ci(` + 1). This piece is correct if and only if:

Ci(`) and Ci(` + 1) are both included in CON (r).
All digests in {Bi(j), Bi(j + 1), . . . , Bi(k)} are correct.

2.4 Validation Scheme
With the established consensus CON (r), the honest nodes can validate individual transactions
without any knowledge of the transaction in advance and thus achieves the implicit consensus.
In this subsection, we introduce our validation scheme. Note that there are two fundamental
difference between our system and other blockchain systems. First, invalid transactions are
allowed in our blockchains. Second, there is no globally agreed blockchain and each node
might have different observations of the blockchains of the network. Hence, we will first give
the definition of the valid transactions and invalid transactions in our system. Then, we show
that our validation scheme allows the honest nodes to check the validity of the transactions.

2.4.1 Validity and Conditions for Validation
In general, the validity of a transactions should be a global and unambiguous property that
independent of the observation of the network by any specific node. In a ledger, a valid
transaction should have correct format, sufficient balance, unspent sources, and be signed
by the private key of the sender. Besides, each system has its own definition in the validity
of the transactions, e.g., a valid transaction in Bitcoin should be in the longest chain for a
sufficient long period of time. In our system, a valid transaction should have two messages
in both chains of the senders and the receivers. Furthermore, it should also be included in
the authentic chain. Hence, we have the following definition.

I Definition 8 (Validity). The validity conditions of a transaction tr(i → j, s) are the
following.

Two Messages: The transaction is written in exact two identical messages included in
the chains of both sender and receiver, respectively.
Correct Chains: The two messages are in correct pieces (Definition 7) and all pieces
that are previous to these two pieces in the corresponding chains are also correct.
Correct Messages: These messages are correct in the sense that all information are
correct and signed with the private key of i

Valid Sources: The transactions which used as source are valid.
No Double Spending: The sources have not been used by other transactions.
Sufficient Balance: The transaction value Vt plus the remaining value Vr equals to the
sum of all the remaining values of all sources.

A transaction is valid if it satisfies all the validity conditions in the observation of any node
in the network. Otherwise, it is an invalid transaction.

Then, to achieve implicit consensus, a validation scheme should satisfy the following
conditions.

Liveness: All transactions can be verified by the validation scheme eventually, the result
is either “validated”(verified as valid) or “falsificated” (detect as fraud).
Correctness: All transactions validated by the honest nodes are valid. All transactions
falsificated by the honest nodes are invalid.

8 Implicit Consensus: Blockchain with Unbounded Throughput

Clearly, if a transaction satisfies all of the above conditions, it implies that the validity is
verifiable, unforgeable, and consistent with our validation scheme, i.e., the implicit consensus.

Our validation scheme consists of two parts: proof collection and validation process. Now
we introduce our validation scheme by considering the case that node u want to validate the
transaction tr(i→ j, s), denoted by a function Vu(tr(i→ j, s)).

2.4.2 Proof Collection
The proof collection is a process that a node requests all necessary information that it needs
to validate a transaction, which is called the proofs of this transaction.

I Definition 9 (Proofs of a transaction). The proofs of a transaction tr(i→ j, s) consists of
the following.

All pieces of Bi from the first piece in the chain to the first piece which contains tr(i→ j, s).
All pieces of Bj from the first piece in the chain to the first piece which contains tr(i→ j, s).
For each source transaction of tr(i→ j, s) or recursively the source of the sources until
the initial balance in the genesis block, denoted by tr(k → l, s′), all pieces of Bk signed
by k and Bl signed by l from the first pieces to the ones containing tr(k → l, s′).

The proofs of a transaction are complete if all the aforementioned items are collected. The
proofs of a transaction are called correct if all the collected pieces are correct.

To collect the proofs, three steps are taken by node u. All collected pieces are verified
and the incorrect pieces are immediately discarded. Once the complete and correct proofs
of the transaction are collected, the node terminates the proof collection and enters the
validation process. If the complete proofs cannot be obtained within a certain time period,
the transaction will be marked as “undecided”. An undecided transaction could be validated
in the future.

Step 1: It requests the transaction indices of tr(i→ j, s) from either node i or j.
Step 2: It requests all the missing proofs from either node i or j.
Step 3: It broadcasts the request of the missing proofs to the whole network.

All the nodes are required to keeps the proofs of all transactions related to themselves.

2.4.3 Validation Process
I Definition 10 (Validation Process for a Transaction). A validation process of a transaction
tr(i→ j, s) includes the verification of the following items.
1. Two Messages: The transaction with the serial number s has two and only two identical

messages ti(m, k) and tj(n, `).
2. Correct Messages: All information in the messages is correct and signed with the

private key of i.
3. No Double Spending: There are no forks for this transaction, i.e., there does not exist

a validated transaction tr′ written in message ti(m′, k′) with (k′ = k, m′ < m) or k′ < k

and the source transactions S(tr′) ∩ S(tr(i→ j, s)) 6= ∅.
4. Validated Sources: All the source transactions of tr(i→ j, s) are validated.
5. Sufficient Balance: The transaction amount plus the remaining amount equals to the

sum of the remaining amounts of all sources. All the amounts here are non-negative.
A transaction that passes or failed the validation process is called a validated transaction
or a falsificated transaction, respectively.

Z. Ren, K. Cong, J. Pouwelse, and Z. Erkin 9

3 Correctness of the System

The correctness of our system is proved if the agreement, termination, and correctness
conditions in Subsection 2.3 are satisfied for the consensus scheme and the liveness and
correctness conditions in Subsection 2.4 are satisfied for the validation scheme. The consensus
conditions are guaranteed by the BFT schemes. For proofs we refers to the original papers
of these schemes [1, 3, 14]. Here, we prove the validation scheme satisfies the conditions of
correctness and liveness.

3.1 Liveness (of the Honest Nodes)
The liveness condition is crucial since in our system, a transaction is only authentic when it
is validated. However, as can be observed from our validation scheme, the liveness condition
is in general not feasible since we allow the transaction to be “undecided”. Now, we give the
following theorem and argue that our system is already reliable if we guarantee that the
liveness condition holds for all transactions made by honest nodes.

I Theorem 11 (Liveness of the Honest Nodes). If i and j are both honest nodes, the outcome
of the validation scheme for a transaction tr(i→ j, s) should be either validated or falsificated
before time t.4

Proof. By the definition of honest nodes, i and j will add the transaction messages to
their chains. The messages will be included in a correct piece before some time t because
of the conditions of the consensus scheme. Then, the correct and complete proofs of this
transactions can be obtained by honest nodes since i and j are honest, which suggests that
the outcome of the validation scheme will not be “undecided” and complete the proof. J

Note that Theorem 11 does not guarantee that all transactions are eventually validated
or falsificated, i.e., some of the transactions made by malicious node cannot be falsificated.
However, the affect to the liveness is very little since the invalid transactions have no impact
on the functionality of this system, which is based on the validated transactions. Then, the
validated transactions can be proved to be reliable and valid, which will be shown in the
following subsection. However, unidentified invalid transactions could cause another problem,
spamming, which will be addressed in Subsection 4.2.

3.2 Correctness
Correctness condition guarantees the validity of our validation scheme, i.e., the validation
result of the honest nodes will be consistent with the validity of the transactions, which is a
global and unambiguous property of the transaction.

Firstly, note that in our system there does not exist a globally agreed set of blockchains
Bi, i ∈ {1, 2, . . . , N}, i.e., in different time, nodes might have different observations of the
blockchain set Bi due to latency or intended forking by malicious nodes. However, all the
versions obtained by the honest nodes must be aligned with the already established consensus
CON (r). Hence, we define the view of the blockchains in round r as follows.

I Definition 12 (View). A view in consensus round r denoted by I(r) is a set of blockchains
Bi, i ∈ 1, 2, . . . , N with CON (r) as its consensus results.

4 We show that they will only be validated in Theorem 15.

10 Implicit Consensus: Blockchain with Unbounded Throughput

Basically, a view is the observation of the network by the honest nodes. We now show
that the position, order, and the content of the CPs are identical in all possible I(r).

I Lemma 13 (Consistency of the CPs). If Bi(k) and Bi(`) are two blocks in the view I(r),
both of them are CPs included in the established consensus CON (r), and Bi(k) is the previous
CP of Bi(`), then Bi(k) is also the previous CP of Bi(`) in any other view I ′(r). Moreover,
Bi(k) and Bi(`) are identical to their counterpart in other views, respectively.

Proof. The proof follows from the definition of the CM and the consensus scheme. By the
definition of the CM, the information of the position, order, and the digests of the content of
the CPs are included in the CMs. Moreover, the CMs with incorrect information or the ones
that attempts to create forks in CPs are discarded during the consensus process. As a result,
the consensus CON (r) fixes the position, order, and the content of the CPs. Then, this
lemma is established if the two views I(r) and I ′(r) have the same consensus results. J

Then we will show that the CPs protect the consistency of the pieces of the chains, i.e.,
there cannot exist two distinctive pieces which start from the same CP or end by the same
CP which are both correct.

I Lemma 14 (Consistency of the Pieces). If a piece of blockchain B = {Bi(k), Bi(k +
1), . . . , Bi(`)} in a view I(r) is correct, then there does not exist another piece B′ =
{Bi(k), Bi(k+1), . . . , Bi(`′)} or B′ = {Bi(k′), Bi(k′ +1), . . . , Bi(`)} in any view I ′(r′), r′ ≥ r

that is correct.

Proof. We prove this lemma by contradiction.
Assume there exists another correct piece of blockchain B′ = {Bi(k′), Bi(k′+1), . . . , Bi(`′)},

k′ 6= k or `′ 6= ` that B′ 6= B in a view I ′(r′). By the definitions of a correct piece, we know
that Bi(k), Bi(k′), Bi(`), Bi(`′) are all CPs included in CON (r). Moreover, by Lemma 13,
we have ` = `′, Bi(`) = Bi(`′) if k = k′ and k = k′, Bi(k) = Bi(k′) if ` = `′.

Then, since both B and B′ are correct, all digests of all blocks in these pieces should
be correct. Then, since B 6= B′, there must exists two blocks Bi(n) 6= B′

i(n) such that
Bi(n + 1) = B′

i(n + 1), which suggests H(Bi(n)) = H(B′
i(n)). This contradicts the fact that

the digests are collision free. J

By Lemma 14, since the proofs of a transactions are simply a collection of pieces, we
directly have the following theorem.

I Theorem 15 (Consistency of the Proofs). If P is the correct and complete proofs of a
transaction tr(i → j, s) in a view I(r), then there does not exist proofs P ′ 6= P of the
transaction tr(i→ j, s) which are also complete and correct in any view I ′(r′), r′ ≥ r.

With the established lemmas and theorems, we prove the main theorem for the correctness
of the validation scheme.

I Theorem 16 (Correctness of the Validation Scheme). Assume that u is an honest node. Then,
if Vu(tr(i → j, s)) = validated, then tr(i → j, s) is valid. If Vu(tr(i → j, s)) = falsificated,
then tr(i→ j, s) is invalid.

Proof. We firstly proof the following statement: If Vu(tr(i→ j, s)) = validated and all of its
sources are valid, then tr(i→ j, s) is valid. If Vu(tr(i→ j, s)) = falsificated and none of its
source are falsificated, then tr(i→ j, s) is invalid. We prove this by contradiction.

Firstly, assume that there exist an invalid transaction tr(i → j, s) with valid sources
and it is validated by an honest node u. Then, the correct and complete proofs of this

Z. Ren, K. Cong, J. Pouwelse, and Z. Erkin 11

transaction must have been collected by u. Furthermore, it must have passed the validation
process. Then, since the steps in validation process (Definition 10) are precisely the validity
conditions (Definition 8) except the Correct Chains, which has already been guaranteed
by the proof collection. By Definition 8, there exists an observation of this network in which
all the validity conditions for this transactions are met, thus this transaction is valid. This
contradict our assumption.

Then, we assume that there exists a valid transaction tr(i → j, s) with no falsificated
source and it is falsificated by an honest node u. By the definition of the validation scheme,
node u must have collected all the proofs for this transaction, which includes all the proofs
for the sources. Hence all of its source are validated, thus are valid. Then, at least one of
the items in the Definition 10 except the Validated Sources is violated, which suggests
that the validity conditions (Definition 8) are not fulfilled. Then, by Theorem 15, the proofs
are consistent. Hence, there does not exist an observation by an honest node in which all
conditions are satisfied. By Definition 8, this transaction is invalid, which contradicts our
assumption.

The theorem is thus proved by recursively using the proved statement on the transactions
and their sources since the validity of the initial balance can be checked with CON (r). J

4 Performance

In this section, we compare the performance of our system to other blockchain systems in
the aspects of throughput, reliability, and storage requirement.

4.1 Throughput
By design, the throughput of our system is independent of the consensus scheme since the
creation of the transactions and TBs are completely independent of the consensus round. In
other words, each node can create as much transactions as they could with no guarantee
on validity. Hence, a fair throughput comparison should be between the rate of the valid
transactions in our system, i.e., the amount of total valid transactions made in our system
per second, to the transactions rate of the other blockchain systems. Here we lower bound
the rate of the valid transactions in our system. For the sake of easier comprehension, we
assume that the transactions rate, communication capacity, and computation capacity are
uniform for all nodes and all time and the adversaries do not spam invalid transactions.

We consider a subset of node in the network G, |G| = g ≤ N which only do transactions
with the nodes in the subset. Assume that each chain grows with a rate of R messages/second
and the duration of a consensus round is T . The amount of messages generated by this
subset of nodes in a round is RgT , which can be divided into two parts: valid transactions
and invalid transactions. Since the honest nodes only make transactions that they can
validate, the amount of valid transactions is at least RvgT where Rv is the validation rate.
The invalid transaction can only be made by adversaries. Since they do not spam, we have
the amount of the invalid transactions equals to RagT where Ra = O(Rv). Then, we have
R = Rv + Ra = O(Rv).

Let us analyze the duration that a node needs to validate all transactions that it makes in
a round. For the proof collection, it needs no more than all chains in G, which requires data
transmissions with no more than an amount of RgT messages since the proof collections is
incremental, i.e., only the newly generated parts of the chains are needed. The proofs are
collected based on point-to-point transmissions. Each node broadcasts its chain at a rate of
Ccomm/g, where Ccomm is the communication capacity (message/second) of the nodes. The

12 Implicit Consensus: Blockchain with Unbounded Throughput

collection rate is then Ccomm since nodes broadcast their chains simultaneously in different
channels. Hence, we have the duration of proof collection tp ≤ RgT

Ccomm
.

For validation, in the worst case, all of these transactions need to be validated, which
requires duration tv ≤ RgT

Ccomp
, where Ccomp is the computation capacity (message/second).

By basic queuing theory, we should have tp + tv = T .
Then, since honest nodes only make transactions that they can validate and the in all

the RgT messages, the expected invalid message Since all validated transactions are valid
(Theorem 16), combining all the inequalities above, we have a lower bound on the rate of the
valid transactions for each node Rv ≥ Ω(C

g), where C = CcommCcomp

Ccomm+Ccomp
. Then, the throughput

of this group is lower bounded by Ω(C) since a group has g nodes that can simultaneously
make transactions.

This lower bound suggests that the throughput in any separate group of nodes in the
network is completely independent of the rest of the network and only depends on the
communication and computation capacity of the nodes in that group. This is an ideal
property to have for a blockchain system since the throughput is no longer limited by the
throughput of the consensus algorithm. In the best case that nodes are paired and only do
transaction with each other, we achieve a throughput of O(CN). In the worst case that all
nodes make transactions with all other nodes, we achieve a throughput of O(C).

Since this throughput is significantly different from the scalable throughput achieved and
stated in other works [4, 12, 14], we claim that an “unbounded” throughput is achieved by
our system, In most literature, the term “scalable” is used to compare with the “unscalable”
throughput of classical BFT algorithms, which have communication costs of at least O(N2)
per transaction. Then, a scalable blockchain usually suggests a blockchain with a consensus
algorithm with a communication cost of O(N). Hence, the transaction rate of a scalable
blockchain system is upper bounded by O(C) even if the transactions are very uniformly
distributed. So far as we know, our scheme is the first and only blockchain system which
achieves unbounded performance, i.e., the transaction rate in between O(C) and O(CN).

Note that although our throughput is unbounded, the latency still depends on the BFT
algorithm, thus not scalable. More precisely, the consensus is reached on the CMs with a
size of O(N). As a result, the latency would be high in a large network. However, we can
reduce the latency by using more scalable and efficient BFT schemes like [8, 12, 14, 16] since
our scheme is not restricted to a specific BFT algorithm.

4.2 Reliability
In many existing blockchain systems, the throughput improvement is achieved by sacrificing
either the decentralization [2, 9] or the reliability [5, 13]. In our system, as discussed in
Subsection 1.3, going from explicit consensus to implicit consensus does not compromise
on either the decentralization or the reliability of the network. Firstly, it is clear that our
system is completely decentralized. Then, it has been shown that a transaction is validated
by an honest node, it is as reliable as a valid transactions in classical blockchain systems
with standard reliability assumptions. That is to say, a malicious node cannot convince an
honest node that an invalid transaction is valid unless it controls more than bN/3c nodes
and/or it breaks the hash function or the asymmetric encryption.

Certainly, as discussed in Subsection 3.1, the price we pay is that some of the invalid
transactions made by malicious node cannot be falsificated. The undecided transactions
themselves do very little harm to the reliability since honest nodes will not use undecided
transactions as sources thus this ambiguity will not propagate. However, it does give rooms
to the malicious nodes to spam invalid transactions to overwhelm the honest nodes. This

Z. Ren, K. Cong, J. Pouwelse, and Z. Erkin 13

problem is similar to the DDoS (Distributed Denial-of-Service) attack which can be solved
by some reputation/blacklist scheme that we will briefly discuss in Subsection 5.2. Actually,
we believe that keeping the record of the invalid transactions is beneficial to the reliability of
the system, since it provides the necessary information for the honest nodes to identify the
malicious nodes and take actions.

Another problem is the degradation in the reliability if we loosen the constraint of the
honest nodes in Definition 5 and allow honest nodes to be offline. This will harm the liveness
condition since there is a chance that the proofs of valid transactions cannot be obtained
when the nodes which have the proofs of this transaction all go offline. However, this problem
is actually solved by the logic behind our system and the “self interest” phenomenon, i.e.,
every node is responsible for its own transaction. In our system, a transaction is only valid if
it is validated by other nodes. Hence, it is in the interest of at least one of the related parties
to prove it to the other nodes. Furthermore, if a node wants to use a transaction as the source
for its transaction, it not only needs to prove the validation of this transaction, but also needs
to keep the proofs and show the proofs to the other related party. The validation scheme
is also censorship-free, which suggests that any node that has validated a transaction can
independently show the complete and correct proofs to other honest nodes for the validation.
As a result, the proofs of a transaction will also propagate with the transaction itself. In
other words, the more important the proofs are, the more copies there will be in the network.

4.3 Storage Requirement
Storage requirement is another important aspect of the blockchain. Many blockchain systems
require all nodes to store the whole chain by design, which would cause trouble in some
storage limited applications. Most of the current blockchain systems allow lightweight nodes
(the node which only store transactions that related to itself) at a cost of reliability since
traditionally, the reliability depends on all nodes knowing and validating all transactions.
In our system, on the other hand, all nodes are already semi-lightweight nodes by design
since all nodes are only required to store the transactions that related to it self and all the
proofs that support these transactions. The nodes are not completely lightweight since the
proofs require all the blocks that came before the related transactions. However, the storage
requirement is still significantly low comparing to other blockchain systems like Bitcoin, in
which all transactions of the whole network are required to be stored in each node.

5 Conclusions and Future Works

In this paper, we proposed a value-exchange blockchain system with a novel consensus
model, namely implicit consensus. There are three main difference from our system to other
blockchain systems.

Each node has its own blockchain.
The consensus is not on individual transactions, but on some special blocks called Check
Points.
Not all transactions on the chains are valid.

Our system achieves significant improvements in throughput and other important aspects
comparing to all other blockchains techniques.

Besides the benefits in performance, our system is also very flexible due to its distinctive
structure. Many extensions and mechanisms can be added to achieve additional functionalities
for various applications without the notorious risk of hard-forking (the splitting of the network
caused by an incompatible rule updated by part of the network). The reason is that the

14 Implicit Consensus: Blockchain with Unbounded Throughput

consensus is only on the CPs. Hence, a change in the content will only result in failures in
validations but not failures in reaching consensus. We end by listing a few of the extensions
which we think are the most interesting ones for future research.

5.1 Generalization
In our system we made the assumption of the two-party transaction for easier comprehension
and presentation. In fact, allowing multi-party transaction will not result in any significant
change to our system. Similarly, the agreements other than value exchange could also be
compatible with our system, e.g., smart contracts. However, the validation scheme should
be redesigned so that there are sufficient interest for the nodes to validate the chains of the
other nodes.

5.2 Reputation Scheme
Besides valid transactions, our system keeps the traces of the invalid transactions as well.
This fundamental difference gives room for reputation or blacklist schemes. By collecting
the information like the quantity, the type, and the patterns of the invalid transactions of
individual nodes, the nodes with malicious intentions can be detected and the reputation of
each node can be computed.

5.3 Privacy Enhancement
The privacy issue is one of the biggest concerns for the application of blockchain in the
industry since the reliability depends on the transparency and accessibility of the data in
classical blockchain systems. The structure of our system makes it easier to design a privacy
enhanced validation scheme. More precisely, since all validations are based on point-to-point
communications, advanced cryptographic techniques like Zero-knowledge Proof [7] can be
used to hide all information in the collected proofs while guarantees the correctness of the
validation.

5.4 Centralization
Centralization used to be undesirable in the context of blockchain. However, many blockchain
systems like [2, 9] introduce a certain level of centralization to provide efficiency, flexibility,
and privacy. Nowadays, the level of centralization is considered by many researchers as a
trade-off to reliability and security, and is highly application dependent. The structure of our
system supports various levels of centralization, which could meet the requirements of various
applications. The reason is that each node can decide their own strategy in validation. As a
result, groups with various levels of centralization can appear in our system simultaneously.
For example, let us assume that there is a subgroup of nodes in the network that only allow
a certain node to collect their chains and trust its validation result. Then, this subgroup
becomes a centralized system with no impact on the rest of the network, which might still
be decentralized.

5.5 Merging of Multiple Networks
Our system is essentially permissioned. However, unlike other permissioned blockchains, new
nodes can easily join the network by simply adding another consensus scheme with another
set of CPs without making any change on the existing chains.

Z. Ren, K. Cong, J. Pouwelse, and Z. Erkin 15

References
1 Gabriel Bracha. Asynchronous byzantine agreement protocols. Information and Computa-

tion, 75(2):130–143, 1987.
2 Christian Cachin. Architecture of the hyperledger blockchain fabric. In Workshop on

Distributed Cryptocurrencies and Consensus Ledgers, 2016. URL: https://www.zurich.
ibm.com/dccl/papers/cachin_dccl.pdf.

3 Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173–186, 1999.

4 Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed Kosba,
Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On scaling decentralized
blockchains. In International Conference on Financial Cryptography and Data Security,
pages 106–125. Springer, 2016.

5 Ittay Eyal, Adem Efe Gencer, Emin Gun Sirer, and Robbert Van Renesse. Bitcoin-NG: A
scalable blockchain protocol. In 13th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 45–59. USENIX Association, 2016.

6 Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable.
In International Conference on Financial Cryptography and Data Security, pages 436–454.
Springer, 2014.

7 Oded Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge
university press, 2009.

8 Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700
BFT protocols. In Proceedings of the 5th European conference on Computer systems, pages
363–376. ACM, 2010.

9 Mike Hearn. Corda: A distributed ledger. 2016. URL: http://block.academy/
researches/corda-technical-whitepaper.pdf.

10 Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.
ACM Transactions on Programming Languages and Systems (TOPLAS), 4(3):382–401,
1982.

11 Shengyun Liu, Paolo Viotti, Christian Cachin, Vivien Quéma, and Marko Vukolic. XFT:
Practical fault tolerance beyond crashes. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, pages 485–500, 2016. URL: http://dl.
acm.org/citation.cfm?id=3026877.3026915.

12 Loi Luu, Viswesh Narayanan, Kunal Baweja, Chaodong Zheng, Seth Gilbert, and Prateek
Saxena. SCP: A computationally-scalable byzantine consensus protocol for blockchains.
IACR Cryptology ePrint Archive, 2015:1168, 2015.

13 David Mazieres. The stellar consensus protocol: A federated model for internet-level con-
sensus. Stellar Development Foundation, 2015.

14 Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger of
BFT protocols. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 31–42. ACM, 2016.

15 Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. URL: https:
//bitcoin.org/bitcoin.pdf.

16 Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless
model, 2016. URL: http://eprint.iacr.org/2016/917.pdf.

17 Serguei Popov. The tangle. 2014. URL: https://iota.org/IOTA_Whitepaper.pdf.
18 Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin.

In International Conference on Financial Cryptography and Data Security, pages 507–527.
Springer, 2015.

19 Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
Project Yellow Paper, 151, 2014. URL: http://gavwood.com/paper.pdf.

https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
http://block.academy/researches/corda-technical-whitepaper.pdf
http://block.academy/researches/corda-technical-whitepaper.pdf
http://dl.acm.org/citation.cfm?id=3026877.3026915
http://dl.acm.org/citation.cfm?id=3026877.3026915
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/917.pdf
https://iota.org/IOTA_Whitepaper.pdf
http://gavwood.com/paper.pdf

	1 Introduction
	1.1 Problem Statement
	1.2 State-of-the-Art
	1.3 Implicit Consensus
	1.4 Structure of Our System
	1.5 Content of the Paper

	2 Our System
	2.1 Transactions
	2.2 Individual Blockchains
	2.2.1 Transaction Blocks
	2.2.2 Check Points

	2.3 Consensus Scheme
	2.4 Validation Scheme
	2.4.1 Validity and Conditions for Validation
	2.4.2 Proof Collection
	2.4.3 Validation Process

	3 Correctness of the System
	3.1 Liveness (of the Honest Nodes)
	3.2 Correctness

	4 Performance
	4.1 Throughput
	4.2 Reliability
	4.3 Storage Requirement

	5 Conclusions and Future Works
	5.1 Generalization
	5.2 Reputation Scheme
	5.3 Privacy Enhancement
	5.4 Centralization
	5.5 Merging of Multiple Networks

