
Agent-based Simulation of Blockchains

Edoardo Rosa
Intuity, Padova, Italy

edoardo.rosa@studio.unibo.it

Gabriele D’Angelo, Stefano Ferretti
Department of Computer Science and Engineering (DISI)

University of Bologna, Italy
{g.dangelo, s.ferretti}@unibo.it

Abstract—In this paper, we describe LUNES-Blockchain, an
agent-based simulator of blockchains that is able to exploit
Parallel and Distributed Simulation (PADS) techniques to offer
a high level of scalability. To assess the preliminary implemen-
tation of our simulator, we provide a simplified modelling of
the Bitcoin protocol and we study the effect of a security attack
on the consensus protocol in which a set of malicious nodes
implements a filtering denial of service (i.e. Sybil Attack). The
results confirm the viability of the agent-based modelling of
blockchains implemented by means of PADS.

Index Terms—Blockchain, Simulation, Distributed Ledger, Bit-
coin

1. Introduction

Blockchain technologies are getting more and more
hype these days, due to the vast range of possibilities of
application in many distributed systems and networks [8],
[23]. Traceability, auditing, attestation-as-a-service, regula-
tion, cooperation, are just few examples of scenarios, other
than the traditional fintech applications that made this tech-
nology famous.

The blockchain can be treated as a protocol stack,
in which each layer refers to a specific aspect of the
blockchain. Figure 1 shows a simplified view of such
blockchain protocol stack. At a coarse grained level of
description, there are at least three main layers, on top of
the Internet layer. The blockchain has an underlying peer-
to-peer protocol, in charge of disseminating information on
novel blocks being produced, to be added to the blockchain,
or novel transactions that might be inserted into novel
blocks. A flooding mechanism is often used to disseminate
information, while the peer-to-peer overlay is built using
some peer discovery mechanism [14]. For instance, a ran-
dom selection protocol is used in Bitcoin, while Ethereum
employs a UDP-based node discovery mechanism inspired
by Kademlia [16]. A consensus algorithm is used in order
to let all nodes agree on the blockchain evolution. While

0. The publisher version of this paper is available at https://doi.org/
10.1007/978-981-15-1078-6 10. This is the pre-peer reviewed version
of the article: “Edoardo Rosa, Gabriele D’Angelo, Stefano Ferretti.
Agent-based Simulation of Blockchains. Proceedings of the 19-th Asia
Simulation Conference (AsiaSim 2019).”.

the famous Bitcoin blockchain exploits a Proof-of-Work
consensus scheme, many other possibilities exist, ranging
from Proof-of-Stake and its plethora of variants, Proof-of-
Authority, up to the Practical Byzantine Fault Tolerance
consensus [22]. On top of the consensus layer, we have
the transaction ledger, that records transactions and data.
In the so called blockchain 2.0, i.e. since Ethereum, these
technologies offer the possibility to develop smart contracts,
executed on the blockchain. A smart contract is a program
representing an agreement that is automatically executable
and enforceable by nodes that participate in the blockchain
management. The execution of the program is triggered by
transactions generated by an external account (i.e. a user),
and the program deterministically executes the terms of a
contract, specified as software code [8].

It is clear that, while this layered organization of a
blockchain allows to isolate the very different aspects of
this technology and allows obtaining a better understanding
of the components’ protocols, the functioning of each layer
influences the performance of other layers. Thus, it be-
comes interesting to evaluate all possible alternatives of each
component, and how possible modifications affect other
aspects of the blockchain. However, the complexity of this
technology, and the large scale nature of this distributed
system make extremely difficult the evaluation process. In
this sense, the simulation of the blockchain becomes an
interesting evaluation strategy.

In this work, we present a novel blockchain simulator
called LUNES-Blockchain that is able to exploit Parallel
And Distributed Simulation (PADS) functionalities. The
simulator mimics several functionalities of a blockchain,
such as the peer-to-peer overlay management, its message
dissemination scheme, the mining process (i.e. the gener-
ation of a novel block) based on the generation of trans-
actions. In particular, we show a specific implementation
of the Bitcoin blockchain. Using the simulator, we then
study a simple Denial-of-Service (DoS) attack (i.e. Sybil
Attack [11]) to the Bitcoin blockchain. As concerns the
evaluation, in order to show the feasibility of the simulator,
we provide some results related to different configurations
of the DoS attack when applied to a simulated network
composed of a large number of nodes.

The remainder of this paper is organized as follows.
Section 2 describes the background related to the paper
subject. Section 3 presents the blockchain simulator. The

ar
X

iv
:1

90
8.

11
81

1v
2 

 [
cs

.C
R

] 
 6

 N
ov

 2
01

9

https://doi.org/10.1007/978-981-15-1078-6_10
https://doi.org/10.1007/978-981-15-1078-6_10


Figure 1: Blockchain protocol stack.

analysis of a DoS attack on the Bitcoin network is described
in Section 4. Finally, Section 5 provides some concluding
remarks.

2. Background and Related Work

Blockchain is a technology that was initially proposed in
the Bitcoin system, in 2009, by an anonymous author with
the pseudo-name of Satoshi Nakamoto [18]. In its first wave,
the blockchain allowed parties to transact directly, i.e. with-
out any intermediary, by exchanging crypto money (Bitcoin)
with confidence that no double spend was occurring. This
was basically achieved using three key technologies: i) a
globally shared ledger managed in a peer-to-peer fashion,
ii) a mechanism for reaching consensus on the state of the
ledger, and iii) immutability of the ledger and transactions
(see Figure 1). All parties exploit pseudonyms, thus while
transactions are known in the ledger, it is extremely difficult
(even if not impossible, in some cases) to identify the
involved parties, i.e. the blockchain is pseudo-anonymous.

While Bitcoin basically allows for money transfers, a
second wave of blockchain platforms followed, such as
Ethereum, that enable other types of more complex appli-
cations. These platforms are based on the use of “smart
contracts”, that promote the development of decentralized
applications, based on a Turing complete scripting lan-
guage [4]. The execution of the public code composing the
smart contract is carried out by the multiple nodes that are
part of the system.

2.1. The Peer-to-Peer Overlay and the Distributed
Ledger

Blockchains are distributed ledgers. To realize this, the
system is organized as a peer-to-peer system, in which each
participant has a copy of the shared ledger. This ledger
records all the transactions within the blockchain. In Bitcoin,
the ledger is a set of records of transactions that have
occurred. Transactions are grouped in blocks. Each block
contains a hash pointer to a previous block. It is this list of
concatenated blocks that creates the blockchain.

Each novel transaction, generated by a node, is dis-
seminated through the peer-to-peer system using a flooding

dissemination protocol [6], [12]. Such novel transaction will
be considered, together with other not yet confirmed trans-
actions, for the creation of a novel block. The generation
of a block is based on a specific consensus scheme, which
varies depending on the blockchain (see next section). Once
a novel block has been generated, this block is disseminated
in the overlay, through the same flooding dissemination
scheme.

2.2. Consensus Scheme

The consensus scheme is in charge of ensuring that all
nodes in the peer-to-peer system maintain the same view of
the blockchain. Put in other words, a mechanism is needed
to allow all participants with copies of the ledger to come
to consensus about the current state of the ledger and the
uniqueness of transactions in the ledger. Several consensus
schemes have been proposed in the past in the distributed
system research area. Some of these schemes are utilized
today in blockchain technologies (e.g. Practical Byzantine
Fault Tolerance [5]). However, the principle approaches in
blockchain are the Proof-of-Work (Pow, used in Bitcoin and
the actual Ethereum) and Proof-of-Stake (PoS, used in the
novel Ethereum version) [22].

PoW works as follows. Participants submit their trans-
actions to the network. Nodes that participate to the trans-
actions validation are called “miners”. Miners verify that
the submitted transactions are valid. Miners group these
transactions into “blocks”. Using this block as an input, the
miners solve a computational crypto-puzzle that requires a
large amount of computational power. When they solve the
puzzle, they propagate the answer to other nodes along with
the block of transactions. The other miners will accept the
solution along with the block of transactions and add those
transactions to the blockchain. As mentioned, a hash of this
previous block in the chain is inserted in the novel block.
This way, everyone can verify the ledger state in a tamper-
proof manner.

The miners work is not for free. A financial reward is
assigned to the first node that solves the crypto-puzzle. PoW
is often criticized for being a highly inefficient means of
transacting, since the crypto-puzzle requires a tremendous
waste of computation, hence causing a vast energy waste.

2.3. Simulation of the Blockchain

At the time of writing, literature on blockchain simula-
tors is scarce. Usually, the main focus was on the anal-
ysis of the blockchain, the use of smart contracts and
security issues. The typical approach is to develop smart
contracts and test them using local blockchains. Remix,
Metamask, Ganache, Multichain and the Ethereum test net-
works (e.g. Ropsten, Rinkeby) are examples of environments
thought to write, compile and debug smart contracts. In
accordance to the multi-layered vision of a blockchain we
discussed on the previous section, a common approach is to
simulate just few aspects of a blockchain at a time.



In [2], a blockchain network simulator is presented. It is
an event-driven simulator, that simulates the neighbor nodes
selection of the peer-to-peer overlay. The mining activity is
not simulated in detail, but a block generation is mimicked
based on the computational capabilities of nodes.

In [15], the mining strategy of Bitcoin is simulated
and studied. A network is modeled, but the propagation of
transactions is not simulated, since the focal point is to study
the impact of the block size, block interval, and the block
request management system.

VIBES is a blockchain simulator, thought for large mod-
eling scale peer-to-peer networks [20]. The rationale behind
this simulator is to provide a blockchain simulator that is not
confined to the Bitcoin protocol, trying to provide support
for large-scale simulations with thousands of nodes.

BlockSim is proposed as a Python framework to build
discrete-event dynamic system models for blockchain sys-
tems [1]. BlockSim is organized in three layers: incentive
layer, connector layer and system layer. Particular emphasis
is given on the modeling and simulation of block creation
through PoW.

In [17] is described a new methodology that enables
the direct execution of multi-threaded applications inside of
Shadow that is an existing parallel discrete-event network
simulation framework. This is used to implement a new
Shadow plug-in that directly executes the Bitcoin reference
client software (i.e. Shadow-Bitcoin).

At best of our knowledge, LUNES-Blockchain is the first
simulator of blockchains that is able to take advantage of
the performance speedup and extended scalability provided
by PADS.

3. Simulation of the Bitcoin Network

With the aim to make this paper as much self-contained
as possible, in this section we introduce some background
on Discrete Event Simulation (DES) and Parallel And
Distributed Simulation (PADS) techniques. After that, we
describe the ARTÌS/GAIA simulation middleware and the
LUNES simulation model that have been used for imple-
menting LUNES-Blockchain.

DES is a simulation paradigm much appreciated for its
usability and ability to model complex systems [13]. In
a DES, a simulation model is represented through a set
of state variables and the model evolution is modelled by
the processing of events in chronological order. To respect
the causality constraint of events in the real-world, each
simulated event is timestamped (i.e. occurs at a specific
instant in the simulated time) and it represents a change
of the state variables. Under the implementation viewpoint,
the changes in the simulated system can be seen as the
processing of an ordered sequence of timestamped events
in the simulated model.

In a monolithic (i.e. sequential) simulation, all the model
state variables representing the simulated model are allo-
cated in a single Physical Execution Unit (PEU) that is
in charge of generating new events, managing the pending
event list and processing the events that are extracted from

the ordered list in timestamp order. This kind of simulator
is very simple and it can be implemented using a single
executing process. On the other hand, the simplicity of
this simulator is often paid in terms of performance and
scalability. For example, the scalability of the simulator is
limited, both in terms of time required to complete the
simulation runs and complexity of the system that can be
modelled [10].

An alternative approach, that is called PADS, is based on
the parallelization/distribution of the simulator load. More
specifically, a set of networked PEUs (e.g. CPU cores,
processors or hosts [6], [13] is in charge of executing the
simulator. In this case, the simulation model is partitioned
in a set of Logical Processes (LPs) that are executed on
top of the PEUs that participate in the parallel/distributed
simulation. Under the implementation viewpoint, each LP
manages a local pending event list and the the events that
need to be delivered to parts of the simulation model that are
allocated in other PEUs are encapsulated in messages. The
main advantage of PADS is that it enables the modelling and
the processing of larger and more complex simulation mod-
els with respect to DES. On the other hand, the partitioning
of the simulated model is not easy [9] and a synchronization
algorithm among LPs is needed to guarantee the correct
simulation execution [13].

3.1. ARTÌS/GAIA

The Advanced RTI System (ARTÌS) is a parallel and
distributed simulation middleware in which the simulation
model is partitioned in a set of LPs. As previously described
the parallel/distributed simulator is composed of intercon-
nected PEUs and each PEU runs one or more LPs. The
main service provided by ARTÌS to LPs is time management
(i.e. synchronization) that is necessary for obtaining correct
simulation results in a parallel/distributed setup.

In a PADS, a relevant amount of execution time is
spent in delivering the interactions between the model
components. The means that the wall-clock execution time
of PADS is highly dependent on the performance of the
communication network (i.e. latency, bandwidth and jitter)
that connects the PEUs. It is obvious that reducing the
communication overhead can speed up the simulator runs.

The Generic Adaptive Interaction Architecture (GAIA)
is a software layer built on top of ARTÌS [7]. In GAIA,
the simulation model is partitioned in a set of Simulated
Entities (SEs) that can be seen as small model components.
Each LP allocates some SEs and provides to them the
basic simulation services (e.g. synchronization and message
passing). In other words, the simulated model behavior is
obtained through the interactions among the SEs. Under the
implementation viewpoint, the interactions are encapsulated
by timestamped messages exchanged between the LPs. From
the simulation modelling viewpoint, GAIA follows a Multi
Agent System (MAS) approach in which each SE represents
an agent. In fact, each SE is an autonomous agent that is
able to perform some specific actions (i.e. implementing an



TABLE 1: Simulation and model parameters.

Name Value Description
TTL 16 Time-To-Live
DISSEMINATION 7 Dissemination protocol
PROBABILITY FUNCTION 2 Dissem. probability function
FUNC COEFF HIGHER 4 Dissem. high-order function coef.
FUNC COEFF LOWER 74 Dissem. low-order function coef.
END CLOCK 5000 Time-steps in each run
NODES 10000 Number of nodes
MINERS COUNT 70% Percentage of miners
DIFFICULTY 6489747252517 Difficulty value
HASHRATE 43983561622000000000 Total hashrate (Hashes per sec.)
Network Topology random graph Topology of the Bitcoin network
Edges per Node 8 Number of edges per node

individual behavior) and to interact with other agents in the
simulation (i.e. implementing group behaviors).

GAIA is able to reduce the communication overhead,
that is common in PADS, clustering in the same LP the SEs
that frequently interact together. In terms of communication
overhead, clustering the heavily-interacting entities permits
to reduce the amount of costly LAN/WAN/Internet com-
munications that are replaced by efficient shared memory
messages. In the current version of GAIA, the clustering of
entities is based on a set of high-level heuristics that ana-
lyze the communication behavior in the simulation model
without any knowledge of the specific simulation domain.

3.2. LUNES

LUNES (Large Unstructured NEtwork Simulator) is a
simulator of complex networks implemented on top of
ARTÌS/GAIA. The main goal of LUNES is to provide an
easy-to-use tool for the modeling and simulation of inter-
action protocol on top of large scale unstructured graphs
with different network topologies [6]. The tool is imple-
mented following a modular approach (i.e. network creation,
dissemination protocols definition, analysis of results) that
facilitates its reuse. A main point of LUNES is that it is
designed and implemented for PADS using the services
provided by ARTÌS (i.e. parallel and distributed processing)
and GAIA (i.e. adaptive self-clustering, dynamic compu-
tational and communication load-balancing). This permits
the efficient simulation of very large scale models even in
presence of a high-level of details in the modelled sys-
tems. The communication between nodes in the unstructured
graphs is modelled in LUNES using a set of dissemination
protocols that are based on gossip. The usage of LUNES is
quite simple since it provides to the simulation modeller a
high-level Application Programming Interface (API) for the
implementation of the protocols to be simulated.

3.3. LUNES-Blockchain

LUNES-Blockchain is a simulation model based on
LUNES that implements an agent-based representation of
a generic blockchain. In LUNES-Blockchain, each node is
represented by means of an agent that implements a local
behavior and interacts with other agents. The representation

of network nodes by means of agents simplifies the devel-
opment of the model and, in our view, it adds a high-level
of extensibility to the simulation model.

In this preliminary work, we assess if it possible to study,
via simulation, some security issues common to blockchains.
In particular, we are interested in the behavior of the Bitcoin
blockchain. This aspect has influenced some of the design
choices that have been taken and that will be discussed in the
following of this section. The design of LUNES-Blockchain
has been organized in steps: i) modeling and simulation of a
generic blockchain; ii) modelling of the specific aspects of
the Bitcoin blockchain; iii) modelling of a malicious filtering
DoS attack on Bitcoin.

Since the implementation in LUNES of the dis-
semination mechanism used in Bitcoin (called Dande-
lion/Dandelion++) is currently under development, LUNES-
Blockchain models the dissemination in the Bitcoin network
using one of the gossip protocols already provided by
LUNES (i.e. the degree dependent dissemination algorithm
[6]). The main effect of this choice is the better communi-
cation delay (i.e. latency) provided by the degree dependent
dissemination with respect to Dandelion (due to the absence
of the anonymity phase implemented in Dandelion).

The next version of LUNES-Blockchain will support
Dandelion and a more accurate representation of the Bitcoin
network topology [19]. These modifications will be useful
to study some specific behaviors of the Bitcoin network. For
example, when studying scalability aspects that are related
to the Bitcoin implementation.

A relevant aspect in the modelling of the Bitcoin
blockchain is the network size. Given its dynamic nature,
it not possible to identify a specific number of nodes, but
estimates assert that the Bitcoin network size is about 10.400
nodes [3]. It is worth noticing that not all active nodes in the
network are miners. In fact, it is not mandatory that all nodes
participate in the creation of new block to be added to the
blockchain. On the other side, all active nodes participate in
the reception, validation and broadcast of new blocks, thus
maintaining updated their local copy of the blockchain. Due
to how PoW has been designed, in Bitcoin the majority of
miners are part of mining pools. In this work, we are not
interested in modelling each miner that is part of a mining
pool. This is due to the fact that the malicious behavior we
are interested in, considers each mining pool as a single



node. The current implementation of LUNES-Blockchain
permits to define the percentage of simulated nodes acting
as miners, and for each miner its specific hashrate. The
hashrate is defined as the speed at which a processing unit
is able to complete the hash operations that are used to
solve the cryptopuzzle of the PoW. In LUNES-Blockchain,
the simulation of the mining process is modelled to respect
the difficulty and behavior of the Bitcoin mining process,
but without the computational overhead caused by the real
implementation of PoW.

Another relevant issue is the modeling of time in the
simulation. The current behavior of the Bitcoin network is
to create and publish a new block every 10 minutes. On the
other hand, the simulation implements a time-stepped syn-
chronization algorithm [13] in which the simulated time is
dived in a sequence of time-steps. In the current implemen-
tation of LUNES-Blockchain, each time-step represents one
minute of simulated time. This means that, on the average,
every 10 time-steps a new simulated block is created and
propagated to the whole network by means of the gossip-
based dissemination protocol.

LUNES-Blockchain is available for peer-review and it
will be included in the forthcoming release of LUNES that
will be available in source code format on the research group
website [7].

4. Evaluation of a DoS Attack

In this paper we investigate the modelling and simulation
of a well-known type of DoS attack on the Bitcoin network.
To foster the reproducibility of our experiments, all the pa-
rameters used to setup up LUNES-Blockchain are described
in Table 1. The parameters reported in the table mimic the
Bitcoin network as it resulted in the fourth quarter of 2018.

The results shown in the following section have been
obtained running the simulator on an Intel i7-6700 3.40GHz
with 16GB of RAM and Arch Linux (x64) as operating
system. The execution of a single simulation run of LUNES-
Blockchain with the model parameters described in Table 1
and using a single LP (i.e. sequential simulation) requires an
average of 60 seconds. This means that LUNES-Blockchain
is quite efficient in the simulation of limited size blockchains
even in a sequential (i.e. monolithic) setup. More populated
networks, the modelling of more complex attacks and the
simulation of blockchains supporting Smart Contracts will
benefit of the PADS approach provided by ARTÌS/GAIA.
In future works, the preliminary evaluation reported in this
paper, it will be followed by a full-fledged validation and
scalability assessment of the simulator.

The attack that has been implemented is a filtering DoS
in which a set of malicious nodes silently drop all messages
that originated from a given node. This kind of filtering
evolves in a Sybil Attack when the attacked node is com-
pletely surrounded by attackers. In other words, we simulate
the condition in which the attacked node is totally unable to
communicate with the rest of the network, with the effect
that all its mining outcomes and transactions are discarded
by the malicious sybils, and none among honest nodes in the

blockchain overlay receive them. This specific experiment
has been implemented as a sequence of simulation runs. We
varied the number of malicious nodes from 1 up to 9999.
With 9999 attackers, the network is all made of malicious
nodes, with the exception of the attacked one. For every
run, the average number of nodes reached by each message
originated from the attacked node has been calculated.

It is worth noticing that this kind of evaluation, under
the simulation viewpoint, is quite costly. In fact, many
simulator runs have to be executed both for exploring all
the different configurations and for obtaining statistically
significant results. In other words, the efficiency of the
simulator (i.e. execution speed) is of main importance. The
results that have been obtained are reported in Figures 2 and
3. The outcomes reported in the figures are comparable with
theoretical results expected for this kind of attack against
peer-to-peer botnets [21]. Clearly, this does not represent
a validation of the proposed simulation model but it is a
positive outcome.

Figure 2 shows that the average number of nodes reached
by the messages proportionally decreases with the increase
of attackers. When the number of attackers is larger than
7000, there is a sharp decrease in the number of nodes
reached by the messages. With more than 7500 attackers,
the Sybil Attack is complete and the attacked node is
disconnected from the network.

Figure 3 shows the number of reached nodes when
considering up to 140 transactions that are one-by-one dis-
seminated in the network. In the figure, it is possible to see
the effect of an increasing number of malicious nodes on
each transaction that is delivered in the network. When there
are no attackers (or a few of them), almost every transaction
obtains a complete broadcast. When we increase the number
of malicious nodes, then the filtering effect is evident on the
number of reached nodes.

5. Conclusions

In this paper, we have introduced a new agent-based
simulator called LUNES-Blockchain for the simulation of
large scale and complex blockchains. LUNES-Blockchain
has been used for implementing a preliminary model of the
Bitcoin network and to study a simple filtering Denial-of-
Service that is usually called Sybil Attack. To the best of our
knowledge, this is the first blockchain simulator that is able
to exploit the performance speedup and improved scalability
offered by Parallel and Distributed Simulation (PADS).

As a future work, we plan to perform a more ex-
tended validation of LUNES-Blockchain, to improve the
accuracy the Bitcoin model implementing the Dande-
lion/Dandelion++ dissemination protocol and to consider
a more accurate topology of the Bitcoin network. On the
other hand, LUNES-Blockchain can be extended to model
blockchains that are capable of Smart Contracts execution
(e.g. Ethereum). Finally, we plan to investigate other com-
mon attacks on the network that are based on the presence
of malicious nodes.



Figure 2: Average number of reached nodes during a DoS filtering attack.

Figure 3: Number of reached nodes for each transaction during a DoS filtering attack. Different setups with an increasing
number of attacking nodes.

References

[1] M. Alharby and A. van Moorsel. Blocksim: A simulation frame-
work for blockchain systems. SIGMETRICS Perform. Eval. Rev.,
46(3):135–138, Jan. 2019.

[2] Y. Aoki, K. Otsuki, T. Kaneko, R. Banno, and K. Shudo. Simblock: A
blockchain network simulator. In Proc. of the 2nd Workshop on Cryp-
tocurrencies and Blockchains for Distributed Systems, CryBlock’19.
IEEE, 2019.

[3] Bitnodes. Global Bitcoin Nodes Distribution. https://bitnodes.earn.
com/, 2019.

[4] V. Buterin. A next-generation smart contract and decentralized
application platform. White Paper, 2018. https://github.com/ethereum/
wiki/wiki/White-Paper, Accessed on 2018-03-02.

[5] M. Castro and B. Liskov. Practical byzantine fault tolerance. In
Proceedings of the Third Symposium on Operating Systems Design
and Implementation, OSDI ’99, pages 173–186, Berkeley, CA, USA,
1999. USENIX Association.

[6] G. D’Angelo and S. Ferretti. Highly intensive data dissemination in
complex networks. Journal of Parallel and Distributed Computing,
99:28 – 50, 2017.

[7] G. D’Angelo and S. Ferretti. Parallel And Distributed Simulation
(PADS) Research Group. http://pads.cs.unibo.it, 2019.

[8] G. D’Angelo, S. Ferretti, and M. Marzolla. A blockchain-based flight
data recorder for cloud accountability. In Proc. of the 1st Workshop
on Cryptocurrencies and Blockchains for Distributed Systems, Cry-
Block’18, pages 93–98, New York, NY, USA, 2018. ACM.

[9] G. DAngelo. The simulation model partitioning problem: an adaptive
solution based on self-clustering. Simulation Modelling Practice and
Theory (SIMPAT), 70:1 – 20, 2017.

https://bitnodes.earn.com/
https://bitnodes.earn.com/
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://pads.cs.unibo.it


[10] E. Egea-Lopez, J. Vales-Alonso, A. Martinez-Sala, P. Pavon-Mario,
and J. Garcia-Haro. Simulation scalability issues in wireless sensor
networks. Communications Magazine, IEEE, 44(7):64 – 73, july
2006.

[11] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is
vulnerable. Commun. ACM, 61(7):95–102, June 2018.

[12] S. Ferretti. Gossiping for resource discovering: An analysis based
on complex network theory. Future Generation Computer Systems,
29(6):1631 – 1644, 2013.

[13] R. Fujimoto. Parallel and Distributed Simulation Systems. Wiley &
Sons, 2000.

[14] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer. Decen-
tralization in bitcoin and ethereum networks. CoRR, abs/1801.03998,
2018.

[15] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf,
and S. Capkun. On the security and performance of proof of work
blockchains. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16, pages 3–16,
New York, NY, USA, 2016. ACM.

[16] P. Maymounkov and D. Mazières. Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In P. Druschel, F. Kaashoek,
and A. Rowstron, editors, Peer-to-Peer Systems, pages 53–65, Berlin,
Heidelberg, 2002. Springer Berlin Heidelberg.

[17] A. Miller and R. Jansen. Shadow-bitcoin: Scalable simulation via
direct execution of multi-threaded applications. In 8th Workshop on
Cyber Security Experimentation and Test (CSET 15), Washington,
D.C., Aug. 2015. USENIX Association.

[18] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system,
http://bitcoin.org/bitcoin.pdf, 2009.

[19] T. Neudecker, P. Andelfinger, and H. Hartenstein. Timing analysis for
inferring the topology of the bitcoin peer-to-peer network. In 2016 Intl
IEEE Conferences on Ubiquitous Intelligence Computing, Advanced
and Trusted Computing, Scalable Computing and Communications,
Cloud and Big Data Computing, Internet of People, and Smart World
Congress, pages 358–367, July 2016.

[20] L. Stoykov, K. Zhang, and H.-A. Jacobsen. Vibes: Fast blockchain
simulations for large-scale peer-to-peer networks: Demo. In Proceed-
ings of the 18th ACM/IFIP/USENIX Middleware Conference: Posters
and Demos, Middleware ’17, pages 19–20, New York, NY, USA,
2017. ACM.

[21] A. L. Verigin. Evaluating the Effectiveness of Sybil Attacks Against
Peer-to-Peer Botnets. http://hdl.handle.net/1828/5095, 2018.

[22] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou. A survey of distributed
consensus protocols for blockchain networks. CoRR, abs/1904.04098,
2019.

[23] M. Zichichi, M. Contu, S. Ferretti, and G. D’Angelo. Likestarter:
a smart-contract based social dao for crowdfunding. In Proc. of the
2nd Workshop on Cryptocurrencies and Blockchains for Distributed
Systems, CryBlock’19. IEEE, 2019.

http://hdl.handle.net/1828/5095

	1 Introduction
	2 Background and Related Work
	2.1 The Peer-to-Peer Overlay and the Distributed Ledger
	2.2 Consensus Scheme
	2.3 Simulation of the Blockchain

	3 Simulation of the Bitcoin Network
	3.1 ARTÌS/GAIA
	3.2 LUNES
	3.3 LUNES-Blockchain

	4 Evaluation of a DoS Attack
	5 Conclusions
	References

