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Abstract

We use historical data to estimate the potential benefit of speculative techniques for executing
Ethereum smart contracts in parallel. We replay transaction traces of sampled blocks from the Ethereum
blockchain over time, using a simple speculative execution engine. In this engine, miners attempt to
execute all transactions in a block in parallel, rolling back those that cause data conflicts. Aborted
transactions are then executed sequentially. Validators execute the same schedule as miners.

We find that our speculative technique yields estimated speed-ups starting at about 8-fold in 2016,
declining to about 2-fold at the end of 2017, where speed-up is measured using either gas costs or
instruction counts. We also observe that a small set of contracts are responsible for many data conflicts
resulting from speculative concurrent execution.

1 Introduction

A blockchain is a distributed data structure that implements a ledger : a tamper-proof, widely-accessible,
append-only sequence of transactions. Blockchains form the basis for cryptocurrencies [8, 10, 11, 12, 13] and
other applications that must maintain a shared state in the absence of a trusted central authority. In the
Ethereum [8] blockchain, for example, if Alice wants to send a coin to Bob, she broadcasts her transaction
to one or more miners, who package transactions into blocks, and then undertake a consensus protocol to
agree on which block should be appended next to the shared blockchain. A validator is any party who reads
the blockchain state and checks it for correctness. Miners are validators, of course, but so is any party who
needs to query the blockchain state.

In many blockchain systems, client transactions can invoke scripts, often called smart contracts, or just
contracts, that perform logic needed to support complex services such as trading, voting, and managing
tokens. Here, we focus on Ethereum-style smart contracts.

Ethereum’s smart contracts present a concurrency challenge. To reconstruct the blockchain’s current
state, each validator must re-execute, in a sequential, one-at-a-time order, every call to every smart contract.
Such sequential validation is unattractive because it fails to exploit the concurrency provided by modern
multicore architectures. Simply executing those calls in parallel is unsafe, because there may be dependencies
between contracts: if one contract depends on the results of another, then those contracts must be executed
in the same order by every validator. Because the Ethereum smart contract language is Turing-complete, and
because contracts can reference one another through untyped function pointers, static analysis is unlikely to
be broadly effective.

The most promising approach to concurrent execution of smart contracts is speculation [1, 4, 7]: the
virtual machine executes contract calls in parallel against the current state, tracking each transaction’s read
set and write set (memory locations read and written). Writes to memory are intercepted and buffered.
Two transactions conflict if they access the same memory location, and one access is a write. For every pair
of conflicting transactions, one is discarded, and the other is committed. Speculative techniques typically
work well when conflicts are rare, but perform poorly when conflicts are common.
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1.1 Contributions

How well does speculative concurrency work for smart contract execution? This paper makes the following
contributions. We exploit publicly-available historical data to estimate conflict rates in an existing blockchain.
This methodology, replaying the historical transaction record against proposed alternative run-times, could
be a useful model for other blockchain-centered investigations. This study is exploratory : it aspires to provide
a relatively fast and cheap estimate of how well certain strategies are likely to do in practice, with the goal
of focusing future research attention in directions more likely to be productive. Of course, an exploratory
study necessarily employs sampling, estimation, and approximation.

As described below in more detail, we re-execute blocks sampled from the Ethereum blockchain against
a simple speculative execution engine. This engine has two phases: in the first (concurrent) phase, all
transactions are run in parallel. In the second (sequential) phase, transactions observed to conflict are
discarded and re-run in one-at-a-time order. This execution strategy produced speed-ups ranging from
about 8-fold for blocks sampled from 2016, gradually declining to about 2-fold for blocks sampled from 2017.

This study makes the following observations.

• Even simple speculative strategies yield non-trivial speed-ups.

• Over time, however, these speed-ups declined as transaction traffic increased.

• Distinguishing between reads and writes is important: treating a transaction’s read and write sets as
a single conflict set substantially increases conflict rates.

• More aggressive speculative strategies, such as running multiple concurrent phases, yield little addi-
tional benefit.

• Accurate static conflict analysis may yield a modest benefit.

• Increasing the number of cores in the simulated virtual machine from 16 to 64 improved speed-ups,
but there was little improvement above 64 cores.

• In high-contention periods, most contention resulted from a very small number of popular contracts.

These observations suggest some directions for further research.

• In periods of high contention, most conflict is caused by a small number of very popular contracts.
Today, contract writers have no motivation for avoiding such conflicts. It could be productive to devise
incentives, perhaps in the form of reduced gas prices, for contracts that produce fewer data conflicts.

• Many data conflicts, such as crediting and debiting account balances, are probably artifacts of defining
conflict näıvely in terms of read-write sets. Perhaps conflicts could be reduced by extending the virtual
machine to provide explicit support for common commutative operations such as credits and debits.

1.2 Methodology in Brief

We replay each transaction in a block, computing each transaction’s read and write sets. We then greedily
sort the transactions into two bins: the concurrent bin holds transactions that do not conflict with any other
transaction already in the concurrent bin, and the sequential bin holds the rest.

We then estimate the elapsed time required to (1) execute the concurrent bin transactions in parallel
(including the cost of detecting and discarding conflicting transactions), followed by (2) sequentially executing
the sequential bin transactions.

Since we do not have a parallel EVM implementation to test, we estimate a transaction’s running time in
two ways: either by the gas it consumed, or by the number of Ethereum Virtual Machine (EVM) bytecode
instructions executed. (Both measures are easy to compute, and yield similar results.) The speed-up is
the ratio between the estimated elapsed times for the sequential executions versus the longest speculative
execution.

In the next section we describe related work. In Section 3, we outline Ethereum’s architecture, smart
contracts, and all relevant terminology. Section 4 describes the setup of our empirical study along with
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statistics summarizing observed results, while in Section 5, we consider various alternatives to the baseline
setup. Finally, in Sections 6 and 7, we discuss conclusions and potential future directions for extending this
work.

2 Related Work

Smart contracts were first proposed by Szabo [15].
Bitcoin [12] includes a scripting language of limited power. Ethereum [8] is perhaps the most widely

used smart contract platform, running on a quasi-Turing-complete virtual machine. Solidity [14] is the most
popular programming language for the Ethereum virtual machine. Other blockchains that support smart
contracts include Corda [5] and Cardano [9].

Hyperledger Fabric [4] is a permissioned blockchain where transactions (calls to smart contracts) are
executed speculatively in parallel against the latest committed state. Transactions’ read and write sets are
recorded and compared, and conflicting contracts are discarded.

Dickerson et al. [7] have proposed a speculative execution model where miners dynamically construct a
fork-join schedule that allows concurrent executions without violating transaction dependencies. Anjana et
al. [1] propose a way to extend this approach to lock-free executions.

3 Ethereum Smart Contracts

In this section, we sketch Ethereum smart contracts, mining, and validation of Ethereum blocks.

3.1 The Architecture

In Ethereum, as in other blockchains, multiple nodes follow a common protocol in which transactions from
clients are packaged into blocks, and nodes use a consensus protocol to agree on successive blocks. Each
block includes a cryptographic hash of its predecessor, making it difficult to tamper with the ledger.

Each client has ownership of one or more accounts, so that each transaction occurs between a sender
account and a recipient account. The majority of transactions are one of two kinds: either a value transfer,
which is a purely monetary transfer of ether from sender to recipient, or a contract call, where the sender
account makes a call to code associated with the recipient account.

Some Ethereum accounts, in addition to maintaining a balance of ether, possess associated code called
a smart contract. A smart contract resembles an object in a programming language, with a long-lived
state recorded in the blockchain. This state is manipulated by a set of functions called either directly by
clients (top-level calls) or indirectly by other smart contracts (internal calls). To ensure that function calls
terminate, each computational step incurs a cost in gas, paid by the caller. The caller specifies a maximum
amount of gas it is willing to pay, and if the charge exceeds that sum, the computation is terminated and
rolled back, and the caller’s gas is not refunded. Nevertheless, the rolled-back transaction is still recorded
on the blockchain.

A smart contract’s code consists of a sequence of bytecode instructions, taken from the Ethereum bytecode
instruction set. Every bytecode instruction consumes a certain amount of gas. Each client runs an instance
of the Ethereum virtual machine (EVM), which executes calls to smart contracts and runs their sequence
of instructions. While users may author smart contracts in higher level languages such as Solidity, these
contracts must ultimately be compiled into EVM bytecode, since it is the bytecode that is published in the
blockchain. The virtual machine specification, the bytecode instruction set, and all associated gas costs are
described in Ethereum’s “Yellow Paper” [16].

3.2 Mining and Validation

Smart contracts are first executed by miners, or nodes that repeatedly propose new blocks to append to
the blockchain. When a miner creates a block, it selects a sequence of client transactions and executes their
smart contract codes in sequence, transforming the old contract state into a new state.
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1 contract StorageInterface {

2 mapping (uint => uint) storage;

3
4 function getValue(uint key) returns (uint) {

5 return storage[key];

6 }

7
8 function setValue(uint key , uint value) {

9 storage[key] = value;

10 }

11 }

(a) This code is a simple smart contract written in the Solidity lan-
guage. The contract, StorageInterface, contains a Solidity mapping
named storage, and has functions getValue and setValue. Mappings
are essentially hash tables that store key-value pairs, and are the pri-
mary means of accessing Ethereum contract storage. Figure 1b shows
the a snippet of the bytecode after compiling the Solidity contract.
The bytecode is what is published in the blockchain.

247 ...

248 JUMPDEST

249 DUP1

250 PUSH1 0x0

251 DUP1

252 DUP5

253 DUP2

254 MSTORE

255 PUSH1 0x20

256 ADD

257 SWAP1

258 DUP2

259 MSTORE

260 PUSH1 0x20

261 ADD

262 PUSH1 0x0

263 KECCAK256

264 DUP2

265 SWAP1

266 SSTORE

267 POP

268 ...

(b) Bytecode resulting from com-
piling the contract.

Figure 1: An example Solidity smart contract and a fragment of the corresponding bytecode.

Once a block has been appended to the blockchain, that block’s smart contracts are re-executed by
validators, or nodes that reconstruct (and check) the current blockchain state. Each miner validates blocks
proposed by other miners, and older blocks are validated by newly-joined miners, or by clients querying the
contract state. Once a contract is in a block, it is effectively re-executed forever (in Ethereum), so contract
executions by validators vastly exceed executions by miners.

As noted earlier, one drawback of the Ethereum protocol is that a block’s contracts are executed in
a one-at-a-time order, so miners and validators cannot exploit modern multicore architectures. Contracts
cannot be executed concurrently in a näıve way, because they share storage, and may be subject to data
conflicts, that is, concurrent accesses to the same the storage variables.

In the absence of explicit concurrency guidelines, we execute transactions speculatively in parallel, allowing
non-conflicting contracts to commit, but rolling back conflicting transactions, and running them sequentially
in a second phase.

A novel aspect of this study is that we analyze the effectiveness of speculation against the historical
record of transactions actually executed on the Ethereum blockchain, replaying their bytecode instructions.
We are not aware of an Ethereum virtual machine implementation that supports concurrency, so we simulate
concurrent transaction execution by stepping through each transaction’s instructions, using eager conflict
detection to sort each block’s transactions into a conflict-free parallel bin, and a conflicted sequential bin.
This strategy is simple and scalable, a natural starting point for an empirical study.

4 The Baseline Experiment

Here we describe the baseline experiment testing the effectiveness of a simple speculative execution strategy
against historical transaction data from the Ethereum blockchain. In Section 5, we describe variations on this
baseline strategy that probe the sensitivity of our measurements, as well as alternative speculative strategies.

4.1 Setting up the Experiment

We set up an Ethereum node by installing and running the Ethereum Go client, also known as geth .
The geth client allows one to synchronize with other network nodes and reconstruct the blockchain by
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Figure 2: Historical periods analyzed superimposed on number of transactions per day

Period Interval Blocks Transactions Calls
1 Sept 1 – 8, 2016 4200 32502 11779
2 Nov 17 – 24, 2016 4200 32648 11070
3 Feb 2 – 9, 2017 3600 26415 10586
4 Apr 20 – 27, 2017 4100 56051 23684
5 July 6 – 13, 2017 3400 197003 84219
6 Sept 21 – 28, 2017 2100 200980 96043
7 Dec 7 – 14, 2017 4100 557471 255872

Figure 3: Number of blocks, transactions, and contract calls analyzed in each historical period

validating each block. The client comes packaged with an interface for fetching data from the blockchain,
as well as debugging tools for inspecting transactions. The debugging API includes a utility for reproducing
the bytecode trace of a given transaction.

The geth client can run in various synchronization modes, which determine what and how much old
state the client records. For example, a client running in light mode will keep track of the blockchain’s
current state only, while in archive mode, the client maintains the full log of all previous states.

Using the geth API, it is straightforward to retrieve any given smart contract’s bytecode. However, the
only way to tell how that bytecode affects the blockchain state is by re-executing each transaction before it.
Therefore we use geth’s tracing utility to re-execute transactions, running the client in archive mode so it
can reference past states. We found that reconstructing the blockchain from scratch in this way was much
too slow to be feasible on an ordinary computer (an archive blockchain sync could not even keep up with
the current blockchain growth rate), so we obtained a baseline copy of the blockchain from the ConSenSys
archive [3] dating from Ethereum’s origins in 2016 to early October 2017. Starting from this base, we used
the geth utilities to synchronize up to December 2017.

Between these dates, the Ethereum blockchain contains about 4 million blocks and 100 million transac-
tions, far too much data to analyze in detail in a reasonable time with reasonable resources. Instead, we
chose to focus on seven historical periods between July 2016 (after the DAO fork) and December 2017. Each
period spans roughly one week, with consecutive periods separated by 11 weeks, so that each day of the
month is considered. Due to computational limitations, we analyze every 10th block in each of the seven
historical periods. Figure 2 shows these periods superimposed on the number of transactions per day at that
time.

4.2 The Greedy Concurrent EVM

We simulated a concurrent EVM that executes transactions speculatively in parallel using the following greedy
strategy. For each block, execution proceeds in two phases, an initial concurrent phase, and a subsequent
sequential phase. We consider execution engines with either 16, 32, or 64 threads. In the concurrent phase,
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each thread chooses a transaction from the block and executes it speculatively. If that transaction encounters
a conflict, the transaction’s effects are rolled back, and that transaction is deferred to the second, sequential
phase. When a thread finishes executing a transaction, it picks another to execute, continuing until all
transactions in the current block have been chosen.

The second phase starts when the first phase is complete: the transactions that encountered data conflicts
in the first phase are re-executed sequentially. In the second phase, data conflicts are not an issue since
transactions are explicitly serialized and state changes committed sequentially.

Two transactions conflict if they access the same storage location, and at least one access is a write.
Transactions that do not conflict are said to commute, because interleaving them in any order yields the same
transaction and storage states. At a more granular level, two bytecode operations conflict if applying them
in different orders yields different storage states. Most bytecode operations, such as arithmetic operations
and others that interact with local state, commute with one another. Bytecode operations that interact with
shared state, on the other hand, can potentially conflict.

The EVM operations SLOAD and SSTORE read from and write to persistent storage, respectively, and are used
for nearly every state access and state modification. By far the most common conflicts arise from conflicting
these two operations. Other kinds of conflicts, while possible, are assumed to be too rare to monitor. For
example, one transaction might create a new contract, while another calls the newly created contract in a
way that creates a race condition: the call may or may not arrive before the contract is initialized. There is
also a bytecode operation that reads the a given account’s balance, which is part of the blockchain’s shared
state.

We detect conflicts by associating a read-write lock with each storage location. Each SLOAD (respectively,
SSTORE) operation requests that location’s lock in read (write) mode. If a transaction requests a lock that
is already held in a conflicting mode by another transaction, the requesting transaction is rolled back and
deferred to the next phase. No locks are released until the concurrent phase ends, even those held by aborted
transactions. This is to ensure that no interleaving of transactions in concurrent bin result in a conflict when
re-executed by validators.

4.3 Sampling and Evaluation

The Ethereum blockchain over the range of dates studied is much too large to analyze in detail in a reasonable
amount of time, using reasonable computational resources. Instead, we chose to focus on seven historical
periods between July 2016 (after the DAO fork) and December 2017. Each period spans roughly one week,
with consecutive periods separated by 11 weeks, ensuring that each day of the month is evenly sampled.
Due to computational limitations, we analyzed every 10th block in each of those seven historical periods.

Our principal figure of merit is speed-up: the ratio between the time to execute a block’s transactions
sequentially, and the time to execute the same transactions concurrently and speculatively. For now, we use
cumulative gas costs as a proxy for time, measuring the ratio between (1) the gas consumed to execute a
block’s transactions sequentially, versus (2) the maximum gas used by any thread in the parallel phase plus
the gas needed to execute the sequential phase. Note that a conflicted transaction may be counted twice,
once in the concurrent phase, and once in the sequential phase.
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4.4 Baseline Results
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Figure 4: Average speed-up and conflict rate for each of the seven historical time intervals. Increased
Ethereum activity over time is reflected by decreasing speed-up and higher conflict rates.

Figure 4 summarizes speed-up statistics over the seven historical periods, along with the conflict rates, or
the percentage of contract calls that abort per block. The average speed-up and conflict rate are shown
for simulated VMs of 16, 32, and 64 cores, where averages are weighted by the number of contract call
transactions in each block.

Earlier periods display higher speed-ups and lower conflict rates because transaction volume and con-
tention are low. For example, speed-up is as high as 3.23 in the second historical period on a simulated
EVM with 16 cores, and this number rises to 8.87 for a 64 core EVM. During the same interval, contract
calls abort at a rate of only 20%.

As the volume of transactions increases over time, however, so does the rate of transaction conflict, so
more time is spent sequentially re-executing transactions aborted during the concurrent phase. This naturally
leads to lower speed-ups, since there is less opportunity to parallelize transaction execution. Indeed, during
the December 2017 period, with 16 threads, roughly 34% of transactions abort. Nevertheless, it is notable
that there is still a modest but positive speed-up of 1.13 even then. Moreover, this speed-up effectively
doubles, to slightly more than 2 when there are 64 threads. When transaction volume is higher, using more
threads yields more speed-up.

4.5 Speed-up Distributions

The average speed-up of each historical period provides little insight into how the blocks’ speed-ups are
distributed in each period. Here, we further analyze the performance of speculative execution by looking at
the distributions of these speed-ups. Due to space limitations, we focus on historical periods 5, 6, and 7,
since these have the highest transaction volumes.
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Figure 5: Speed-up distributions for each combination of historical periods 5, 6, and 7, and with 16, 32,
and 64 cores. Each plot depicts one such combination. Blocks are binned in increments of 0.25 according to
speed-up realized. Distributions are normalized so that total area is roughly 1.

Speed-up distributions of the three periods are depicted in Figure 5. Each plot is normalized to represent
an approximate probability density, so that the y-axis is interpreted as a relative count. Since there is
relatively less contention in periods 5 and 6, their speed-up distributions are flatter, with longer tails. This
is because more blocks during these periods are able to exhibit a higher amount of speed-up. However, when
the transaction rate is higher, as in seventh period of December 2017, the distributions are concentrated
closed to 1, since more work is wasted as the number of aborted transactions rises.

As noted before, some blocks may realize a slowdown when using our concurrent execution strategy, a
result of the cost of aborting and re-executing conflicting transactions. The relative number of such blocks
is shown in plots of Figure 5, where regions to the left of 1 represent blocks that are slowed down. Making
more cores available to the EVM appears to reduce the number of slowed-down blocks for each of the three
historical periods. Though fewer than 3% blocks are slowed down for both periods 5 and 6 when using 16
cores, this percentage jumps to 46% for Period 7. However, when the EVM’s number of cores is increased
to 32, the percentage of blocks that are slowed down drops substantially to only 13%.

4.6 Storage Hot-Spots

Next, we investigate transaction contention by analyzing how often certain storage addresses are accessed by
transactions. In particular, we look at memory addresses that are conflict points for pairs of transactions,
and how many times each such address results in a conflict. Addresses that attract a high number of conflicts
are informally called hot-spots.
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Figure 6: Histograms of conflicts per address. Addresses that results in a large number of conflicts are
hot-spots. Period 7 has a much heavier tail, corresponding to many more address hot-spots.

In Figure 6, we plot histograms illustrating the number of conflicts per address, for historical periods 5,
6, and 7. Each storage address with at least one conflict is binned according to how many conflicts occurred
at that address. Periods 5 and 6 have relatively few storage addresses with high contention, and this pattern
is similar to the earlier historical periods. However, Period 7’s histogram has a much heavier tail than the
other two histograms, meaning that there are many more storage addresses with larger numbers of conflicts.
In other words, there is a handful of addresses that many different transactions attempt to access, most
likely a result of so many transactions calling the same few contracts. We elaborate on this observations in
Figure 5.6 below.

5 Alternative Experiments

We extended the baseline experiment with a number of other experiments intended to test the effectiveness
of alternative strategies, and to test the sensitivity of our approximations.

5.1 Sampling

Sampling rate
Speed-up Abort rate

16 cores 32 cores 64 cores 16 cores 32 cores 64 cores

1-in-10 sampling 2.063 2.694 2.859 25.98% 27.23% 27.88%

All blocks 2.085 2.717 2.913 25.96% 27.21% 27.86%

Figure 7: Accuracy of 1-in-10 sampling for historical period 5.

5.2 Multiple Phases
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Figure 8: Speed-up with multiple concur-
rent phases for transaction execution.

The greedy, two-phase strategy can be generalized to encom-
pass multiple concurrent phases, so that each transaction that
was deferred in one concurrent phase is instead re-executed in
another subsequent concurrent phase. It is possible that multi-
ple concurrent phases could provide additional speed-up. How-
ever, as illustrated in Figure 8, we found in our experiments
that executing two concurrent phases almost always yields less
speed-up than executing a single concurrent phase. This de-
crease is due to the duplicate work performed by transactions
rolled back in multiple phases, with not enough additional
speed-up yielded in the latter concurrent phases. Therefore,
in practice, one current phase is sufficient to realize almost all
potential concurrency.
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5.3 Data Conflicts
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Figure 9: Speed-up when the EVM uses
mutex locks to lock storage addresses.

In our simulated concurrent EVM, transactions access stor-
age addresses by first acquiring a read-write lock. This allows
multiple transactions to read an address, with no conflict, if
there are no concurrent writers. In principle, this decreases
the number of conflicts when compared to using mutex locks,
hence increasing the potential speed-up.

To determine whether read-write locks reduce data conflicts
in practice, we investigated the effect of simplifying the conflict
model by merging all data accesses into a single conflict set, by
using mutex locks for conflict detection. With the exception
of the last historical period in which speed-up is already low,
the speed-ups were substantially worse than the speed-ups ob-
tained by distinguishing between read and write accesses. See
Figure 9 for a comparison of the two locking schemes when us-
ing 16 cores. These results suggest that there is significant value in implementing a concurrent EVM with
read-write locks, instead of the simpler mutex locks.

5.4 Proxies for Time

1 2 3 4 5 6 7
Historical Period

0

1

2

3

4

Sp
ee

d-
up

Speed-up: Gas vs # Instructions
Proxy for Time

Gas
# Instructions

Figure 10: Speed-up when instruction
count is used to measure transaction exe-
cution time.

Since we do not have access to an actual concurrent EVM, we
must estimate how long it takes to execute each transaction.
There are two straightforward choices: we can count the num-
ber of instructions executed by each transaction, or we can tally
the gas cost of executing the transaction’s instructions. The
first choice assumes that each EVM instruction takes roughly
the same time to execute, while the second assumes that in-
struction gas cost is roughly proportional to execution time.
For example, the arithmetic operations MUL and DIV require 5
units of gas, while an SSTORE instruction can cost as much as
20000 units of gas.

All speed-ups reported so far were measured in terms of gas
costs. As a sanity check, for 16 cores, we recomputed speed-ups
using instruction count as a proxy for time. These speed-ups
are shown in Figure 10. There does not appear to be any
significant qualitative difference between gas cost and instruction count.

5.5 Static Conflict Prediction
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Figure 11: Speed-up under static conflict
prediction. In effect, aborted transactions
costs can be ignored.

If we were able to predict whether a transaction would abort
if executed speculatively, then we could save the cost of trans-
action roll-back and retry. We can simulate the effect of a per-
fect conflict predictor simply by ignoring the cost of aborted
transactions. However, doing so yield a negligible change in
speed-ups, less than 0.1% in most cases. The only exception
is the very last period (December 2017), where contention was
very high. For that historical period, the average speed-up in-
creases from 1.13 to 1.22. These numbers suggest that static
conflict analysis, if it accurate enough, may be yield modest
gains during periods of high contention.
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5.6 Omitting Hot-spot Contracts

In most of the previous analysis, period 7 stands out among the
selected historical periods as being particularly high volume
and contentious. Recall that this period was sampled from
December 2017, which is close to peak Ethereum transaction activity. More specifically, period 7 occurred
when there was great interest from the general public over CryptoKitties [2] [6], a recreational game deployed
on Ethereum in which users create, breed, and trade virtual cats. The popularity of CryptoKitties is
especially apparent when using any blockchain explorer to browse Ethereum transactions during December
2017. The popularity of CryptoKitties was responsible for congesting the Ethereum network, though interest
in it has since died down.

In light of the CryptoKitties frenzy, we reanalyzed period 7 under a hypothetical scenario in which the
CryptoKitties contracts 1 did not exist. This is easily accomplished by ignoring all calls to the CryptoKitties
contracts when tracing each block’s transactions and replaying them, and calculating the resulting statistics.
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(a) The effect on hot-spot counts when CryptoKitties
contract calls are ignored.
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(b) Speed-up when calls to the five most conflicting
contracts are ignored.

Figure 12: Speed-up analysis after removing high-contention or high-volume contracts.

After filtering out all calls to CryptoKitties contracts, speed-up using 16 cores rises from 1.13 to 1.65.
These calls accounted for about 31% of all contract calls, and furthermore, by filtering out CryptoKitties,
the number of contract calls per block drops from 62 to 43, which is much closer to the 46 calls per block in
period 6. While a speed-up of 1.65 does not quite match speed-up from older periods, it is still clear from
this simple analysis that much of the contention in period 7 is caused solely by CryptoKitties.

To further illustrate the impact that CryptoKitties had, we reproduce the conflict histogram from the
previous section, using the same hypothetical scenario with no CryptoKitties. Recall that the conflict
histogram of period 7 had a much heavier tail than the corresponding histograms of older intervals. However
when CryptoKitties is removed, period 7’s histogram (Figure 12a) has a much thinner tail, resembling the
other histograms. Indeed, in period 6, 10% of conflicting storage addresses have at least 5 conflicts, but
in period 7, this same number is 30%. However, if CryptoKitties contracts are ignored, then only 14% or
conflicting address have at least 5 conflicts. These numbers demonstrate that CryptoKitties is responsible
for many storage hot-spots.

We generalize this analysis to the other historical periods by determining the top five most conflicting
smart contracts in each period, and reproducing scenarios where none of the highly conflicting contracts
were called. As shown in Figure 12b, this results in a noticeable speed-up in each period, not just the 7th.
Most of these highly conflicting contracts are actually token contracts; in fact, the most contentious contract
from each period is either a token or a token exchange contract. Therefore, analyzing these small sets of

1The vast majority of calls to CryptoKitties are to its core contract (which has address hash
0x06012c8cf97bead5deae237070f9587f8e7a266d), and to an auction contract (which has address hash
0xb1690c08e213a35ed9bab7b318de14420fb57d8c).
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contracts may provide insight into how to reduce contention when speculatively executing smart contracts
in parallel.

6 Discussion

As noted, this study is exploratory, incorporating various approximations and omissions. Most such omissions
are the result of the absence of a standard concurrent EVM implementation. This study does not account
for some EVM overheads, such as the costs for value transfers, where one account transfers ether directly
to another, without modifying storage. Value transfers typically commute, and are likely much faster to
execute than contract calls, though they do make up the majority of all Ethereum transactions. Other
sources of overhead include solving a cryptographic puzzle to compute proof of work, which would affect
miners’ speed-up but not the validators’.

In the absence of a timing model for a concurrent EVM, this study uses gas costs (or instruction counts)
as proxies for time when computing speed-up. As noted, both proxies yield essentially equivalent results.

This study relies on sampled blocks because the volume of data in the Ethereum blockchain is simply too
large to make exhaustive analysis practical or rewarding. An archive synchronization of the blockchain was a
major computational overhead for this study, in addition to recovering transaction traces. These overheads
may be reduced as further Ethereum tools and utilities are developed.

There are several reasons why speculative parallelism may sometimes yield little, or even negative speed-
up. For example, a block might contain one transaction substantially longer than the others, whose execution
time dominates the block execution time. In this case, it is impossible to achieve much speed-up, no matter
how these transactions are scheduled and distributed among multiple cores. Or if a block contains very few
contract call transactions, there is little opportunity for speed-up. If a block’s transactions all access the
same storage location, perhaps because they all access the same popular contract [6], then speculation will
produce a negative speed-up as a result of the cost of rolling back so many misspeculated transactions.

7 Conclusions

Our results suggest that a simple speculative strategy based on read-write set overlap can produce non-
trivial speed-ups, but that such speed-ups will decline as transaction rates and conflict rates increase. More
aggressive strategies, such as adding additional parallel phases, seem to provide little additional benefit,
because conflict appears to be bursty: if one transaction conflicts with another, then it probably conflicts
with multiple others.

The results of this study suggest that the most promising way to further increase parallelism in Ethereum-
style smart contract execution is to reduce the conflict rate, perhaps by focusing on reducing unnecessary
conflicts. We observed that splitting transactions’ data sets into read sets and write sets decreased conflict
rates substantially, suggesting that conflict rates are sensitive to the semantics of concurrent operations on
shared data. This observation suggests that conflict rates might be reduced even further if the execution
engine could do a better job of recognizing when operations commute at the semantic level. For example,
transactions that increment or decrement the same account balance (a common occurrence) have overlapping
read and write sets, and are therefore deemed to conflict. At the semantic level, however, these operations
commute (in the absence of overflow or underflow), so as long as the virtual machine’s memory operations
are atomic, those operations need not conflict. (Our study could not detect which conflicts are real, and
which are artifacts, because only compiled bytecode was available for analysis).

It might be profitable to investigate the effects of endowing the virtual machine with intrinsic data types
such as atomic counters or atomic sets that provide many commuting mutator operations. Studying highly
conflicting token contracts may provide insight into which kinds of data types or operations would best
alleviate contention.

Periods of high contention and low speed-up are caused by a relatively small number of popular contracts.
Currently, smart contract designers have no guidance how to avoid speculative data conflicts, nor any incen-
tive to do so. Our results suggest that there is a need to devise incentives for smart contract programmers
to design contracts in ways that reduce conflicts, either by eliminating spurious conflicts, or by exploiting
improved commuting bytecode instructions.
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