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Abstract—A reliable source of randomness is not only an
essential building block in various cryptographic, security, and
distributed systems protocols, but also plays an integral part
in the design of many new blockchain proposals. Consequently,
the topic of publicly-verifiable, bias-resistant and unpredictable
randomness has recently enjoyed increased attention in a variety
of scientific contributions, as well as projects from the industry. In
particular random beacon protocols, which are aimed at continu-
ous operation, can be a vital component for many current Proof-
of-Stake based distributed ledger proposals. We improve upon
existing random beacon approaches by introducing HydRand,
a novel distributed protocol based on publicly-verifiable secret
sharing (PVSS) to ensure unpredictability, bias-resistance, and
public-verifiability of a continuous sequence of random beacon
values. Furthermore, HydRand is able to provide guaranteed out-
put delivery of randomness at regular and predictable intervals
in the presence of adversarial behavior and does not rely on a
trusted dealer for the initial setup. In comparison to existing
PVSS based approaches, our solution improves scalability by
lowering the communication complexity from O(n3) to O(n2).
Furthermore, we are the first to present a comparison of recently
described schemes in the area of random beacon protocols.

I. INTRODUCTION

The question of how to generate trustworthy random values
among a set of mutually distrusting participants over a message
passing network was first addressed by Blum in 1983, thereby
introducing the notion of coin tossing protocols [6]. Lately,
coin tossing protocols have received increased attention, in
part because randomness is proving to be a vital component
of most scalable distributed ledger approaches (e.g. [5], [15],
[19]) that do not require a computationally intensive Proof-of-
Work (PoW) mechanism as found in Bitcoin [21] and similar
cryptocurrencies. Specifically, Proof-of-Stake (PoS) blockchain
proposals, which rely on virtual resources in the form of
digital assets, call for manipulation resistant and unpredictable
leader election as part of a secure protocol design. In this
regard Kiayias et al. identified leader election as a fundamental
problem of PoS based protocols, since any introduced entropy
is subject to potential manipulation by an adversary [19]. The
distributed generation of trustworthy random values can hence
be considered a complementary problem to the development
of such protocols.

Random beacon protocols aim to generate publicly-
verifiable, bias-resistant and unpredictable randomness1 in
distributed environments. The concept of a random beacon
was first formalized by Rabin, which proposed a service that
emits a fresh random number at regular intervals [23]. Random

1In the following we will simply refer to this by the term randomness.

beacons can be particularly useful in the context of randomized
consensus protocols, where participants may rely on a shared
common coin [13], [22] to effectively break ties and ensure
eventual progress. However, establishing this common coin
generally relies on a trusted dealer, at least for the initial setup.
In addition to the scenario of leader election and establishing
consensus in Proof-of-Stake (PoS) based distributed ledgers,
random beacons are also useful in a variety of other scenarios:
This includes gambling and lottery services, publicly-auditable
selections such as soccer World Cup draws and the verifiable
assignment of a limited number of resources. Syta et al. [26]
list additional use cases for randomness including Tor hidden
services, generation of elliptic curve parameters, Byzantine
consensus and electronic voting. One prominent example from
the domain of cryptocurrencies is the provision of randomness
to Smart Contracts, which often rely on insecure sources (such
as the hash of block headers which is subject to manipulation
by miners) or trusted third parties (e.g. the NIST random
beacon service) [2], [10]. For all the mentioned scenarios the
following properties, as previously outlined in [3], [9], [26],
are desiderata of a random beacon protocol:

1) Availability/Liveness: Any single participant or a
colluding adversary should not be able to prevent
progress.

2) Unpredictability: Correct as well as adversarial
nodes should not be able to predict (precompute)
future random beacon values.

3) Bias-Resistance: Any single participant or colluding
adversary should not be able to influence future
random beacon values to their advantage.

4) Public-Verifiability: Third parties, i.e. processes
which are not directly partaking in the protocol,
should also be able to verify generated values. As
soon as a new random beacon value becomes avail-
able, all parties can verify the correctness of the new
value using public information only.

We give formal definitions and security proofs for these
properties in section VI. Although not always explicitly stated,
practical solutions should also achieve good efficiency in
terms of computational resources as well as communication
complexity. Furthermore, we suggest that guaranteed output
delivery, i.e., the inability for an adversary to prevent correct
nodes of the protocol from obtaining an output [14], can also
be considered a valuable property in practical random beacon
protocols. Another particular desirable property for random
beacons in the context of (permissionless) distributed ledgers
is the avoidance of an initial trusted setup, e.g. a trusted
dealer, [26].



Current random beacon protocols aim to provide solutions
by employing different techniques, reaching from Proof-of-
Delay [10], [12] and incentive based solutions [11], [24] over
publicly-verifiable secret sharing (PVSS) [3], [14], [19], [26]
and unique signatures [15], [17] to utilizing Bitcoin itself
as a source of randomness [4], [9]. The diversity of these
approaches, as well as the differences in their underlying
assumptions and characteristics, make them difficult to com-
pare and not equally suited for all use-cases. Moreover, some
recently described protocols in this field tend to be closely
coupled with their respective (PoS) blockchain schemes and
are therefore not easily comparable or deployable in other
settings, e.g. as a stand alone protocol.

A. Contribution

We present HydRand, a new PVSS based distributed ran-
dom beacon protocol geared towards the continuous provision
of randomness at regular intervals in a Byzantine failure
setting. HydRand provides guaranteed output delivery, i.e., it
guarantees the generation of new, bias-resistant randomness
in every round of the protocol. Unpredictability is furthermore
ensured with absolute certainty if a commitment is made to use
the random output of the beacon after at least f + 1 rounds
in the future.2 The protocol assumes a synchronous system
model and n = 3f + 1 participants. In respect to previous
approaches based on PVSS, the communication complexity is
hereby lowered from O(n3) to O(n2) as the initial overhead of
f+1 rounds is quickly amortized during continuous operation.
Our protocol is described in a self contained manner and does
not rely on a trusted dealer or distributed key generation (DKG)
protocol. Moreover, to the best of our knowledge, we are
the first to provide a detailed comparative overview of recent
random beacon protocols in this field.

B. Related Work

In recent years a substantial amount of research related
to random beacon protocols for distributed ledgers has been
published in academia as well as the industry:

Algorand [15] builds a distributed ledger by combining (i)
a randomness beacon based on unique signatures and hash
functions with (ii) a newly proposed randomized Byzantine
agreement protocol [20]. The protocol can be parameterized
to achieve good probabilistic liveness guarantees that are suf-
ficient for all intents and purposes. Considering the produced
randomness as part of the protocol execution, it is not fully
bias-resistant as protocol participants can decide to withold
information if they are selected as leader. Ouroboros [19] is
a provably secure Proof-of-Stake blockchain protocol. It relies
on a combination of publicly-verifiable secret sharing (PVSS)
and other cryptographic primitives to obtain randomness. The
agreed and bias-resistant randomness is then used as the
basis for the respective Proof-of-Stake algorithm, which is
the main focus of Ouroboros. The newer Ouroboros Praos
protocol [16] improves upon the communication complexity
of Ouroboros in a similar way to Algorand, but cannot ensure
our strong notion of bias-resistance. The protocol family Rand-
Share, RandHound and RandHerd [26] also employs PVSS

2Before the bound of f +1 rounds, the probability of prediction decreases
exponentially with each round to predict.

in combination with a Byzantine fault tolerant (BFT) con-
sensus algorithm (RandShare, RandHound) and additionally
with Collective Signing (RandHerd). For the scenario outlined
by the authors, the more scalable protocols RandHound and
RandHerd however operate with a failure probability of 0.08%.

In an orthogonal work, I. Cascudo and B. David [14]
present Scrape, thereby introducing an optimized variant of
Schoenmakers’ secret sharing protocol [25], which we use as
main building block for our protocol, and that can also be used
to reduce computation complexity in Ouroboros, RandShare,
RandHound and RandHerd. Scrape, Caucus [3] and Proof-of-
Delay [10], [12] build upon the assumption that a shared bul-
letin board, i.e., a distributed ledger, is available for exchanging
information between participants, thereby necessitating some
form of external blockchain or other consensus protocol if it
is to be used as a stand-alone random beacon implementation.
HydRand helps to close this gap by presenting a self-contained
protocol that is focused towards a permissioned system model.

The Dfinity project [18] of the equally named foun-
dation is aiming to build a decentralized verifiable random
function as the key ingredient for reaching consensus among
network nodes. Compared to the other schemes, they utilize
BLS signatures for that purpose [17]. BLS provides signature
uniqueness as well as support for signature aggregation [7],
[8]. Dfinity combines both of these key properties to obtain
a random beacon protocol. However, the security assumptions
required for BLS signatures are less analysed when compared
to traditional elliptic curve cryptography. HydRand does not
rely on assumptions for pairing based cryptography to achieve
its security goals.

C. Structure of this paper

The paper is structured as follows: Our system model is
described in section II. Section III gives a high level overview
of our protocol and outlines the basic properties of Publicly-
Verifiable Secret Sharing (PVSS), which is one of the main
cryptographic primitives in our design. The details of our
protocol are described in section IV and an example execution
of the protocol is provided in section V. Proofs showing
that the protocol indeed achieves the desired properties are
presented in section VI. Section VII compares the protocol to
other related schemes and sections VIII and IX discuss and
conclude the paper.

II. SYSTEM AND THREAT MODEL

We assume a fixed set of known participants, hereby re-
ferred to as nodes, of size n = 3f+1, of which at most f nodes
may exhibit Byzantine failures and can deviate arbitrarily from
the specified protocol. A node is considered to be correct if it
does not exhibit any incorrect behavior during the entirety of
the protocol execution, else it is considered to be faulty. The
terms Byzantine or malicious are used synonymous to refer to
faulty nodes. The set of nodes is denoted by P = {1, 2, ..., n}
and each node i ∈ P is assumed to have a private / public key
pair 〈ski, pki〉. The public keys of these keypairs are known
to all participants. We assume a synchronous system model
with a fully connected network of authenticated and reliable
bidirectional point-to-point messaging channels.
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III. PROTOCOL OVERVIEW

The aim of the HydRand protocol is to provide a bias-
resistant, publicly-verifiable and unpredictable stand-alone ran-
dom beacon which emits random values at a regular interval.
We target HydRand at a permissioned setting with a fixed set
of participants and assume a known upper bound ∆ on both
computation and message transmission times.

During the protocol setup, all participants have to exchange
their public keys and prepare an initial commitment. The proto-
col operation itself is separated into rounds, where each round
consists of three distinct phases. In each round, the previously
generated random value is used for uniquely selecting the
current leader of this round. Generally speaking, the selected
leader has two main choices: (i) The leader reveals the correct
secret value he has committed himself to the last time he was
leader (or during protocol setup) and attaches his next com-
mitment. (ii) The leader does not reveal his secret value and
therefore cannot attach another commitment. In the later case,
this previously committed secret value will be reconstructed
by f +1 other nodes, including at least one correct participant.
The properties of the underlying PVSS scheme ensure that the
random beacon value obtained by reconstruction is equal to the
value that would have been obtained if a leader has revealed
his secret – this establishes bias-resistance. Once the leader’s
previous commitment is reconstructed, the current leader is
excluded from being eligible as leader in further rounds since
he has not provided a new valid commitment.

If the leader is correct he constructs a new dataset, which
(simply speaking) includes: (i) the revealed secret value he
previously committed himself to, (ii) a new commitment to
a randomly chosen value and (iii) a reference to the dataset
of the previous round. The leader signs this dataset using his
private key and broadcasts this message and signature to all
other nodes in the network. After receiving and verifying the
dataset, each node can compute a new random value.

In case a leader fails or purposely does not broadcast
any data, other participants can collaborate to reconstruct the
missing secret value, i.e. the value the leader has previously
committed himself to in (ii). This reconstructed value can be
used by each node to obtain a new random beacon value and
thereby advance the protocol to the next round and hence to
the next leader. This process is repeated until eventually a
leader is selected that creates a new dataset that accounts for
all reconstructed datasets in between.

To ensure that a correct node is selected as leader after
(at most) f + 1 rounds, all previously selected leaders of the
last f rounds are not allowed to become leader in the current
round. Since malicious nodes do not know how a revealed or
reconstructed commitment of a correct node influences future
random beacon values, they cannot precompute future random
values once a correct node has been selected. Moreover, correct
participants agree on a single history after a correct node is
selected as leader, because correct leaders are assumed to build
on top of a single dataset and never sign different datasets
in the same round. The correct node hence acts as a barrier
for unpredictability and anchor for agreement on the protocol
state. Unpredictability is ensured with certainty for any round
after f+1 rounds in the future. By leveraging the properties of
the underlying PVSS scheme public-verifiability is established.

A. Publicly-Verifiable Secret Sharing

We use publicly-verifiable secret sharing (PVSS) as a
primary building block in the HydRand protocol. More specif-
ically, we make use of Scrape’s PVSS protocol [14], which
is an optimization of Schoenmakers’ PVSS scheme [25], and
allows a node (dealer) to efficiently share a secret value s ∈ Zq

among a set of n recipients, such that any subset of size ≥ t of
these nodes is able to recover / reconstruct the value hs ∈ Gq ,
, where h is one of two independent generators of this group.
The value of the reconstruction threshold t is set in a way that
does not enable a colluding adversary to successfully recover
a shared secret without requiring the collaboration of at least
one correct node, i.e. t = f + 1. A key property of a publicly-
verifiable secret sharing protocol is that, upon receiving the
secret shares, not only the recipients but any third party with
access to the public keys of the participants can verify the
correctness of the shares prior to reconstruction of the secret.
We use the term PVSS commitment, denoted by Com(sd), to
refer to the result of the share distribution process of Scrape’s
PVSS. To form a PVSS commitment, a dealer d provides:

• The encrypted shares for a secret sd, i.e. one encrypted
share ŝi for each node i encrypted with the receiver’s
public key.

• The commitments v1, v2, ..., vn to the individudal
shares.

• A non-interactive zero-knowledge (NIZK) proof en-
suring the correctness of the encrypted shares

For additional details we refer to the reader to [14].

B. Design Rationale

To bias the resulting sequence of random beacon values,
a malicious leader could try to construct and send different
commitments and hence different datasets to participating
nodes or selectively withhold information. Such a construction
necessitates some form of (Byzantine) consensus protocol for
participants to reach agreement upon either the existence of
a single, valid commitment or that the leader was faulty. In
this respect HydRand leverages on its intended application as
a continuous random beacon by reducing the communication
overhead of Byzantine agreement (BA) that would be incurred
at each round through bundling messages. Specifically, Hy-
dRand implements its own variation of a Byzantine agreement
protocol that defers consensus decisions for up to f + 1
rounds and combines information from multiple instances of
consensus that are executed with every consecutive new round
in the HydRand protocol. Thereby, the overall communication
(bit) complexity of comparable PVSS based random beacon
schemes is reduced from O(n3) to O(n2) as HydRand only
requires a single PVSS share distribution and potentially a
single PVSS recovery per round. Still the protocol outputs a
new random beacon value once per round, because these values
are not dependent on immediate agreement on the protocol
state.

IV. PROTOCOL DETAILS

The protocol proceeds in rounds. Each round r ≥ 1 consists
of three phases: propose, acknowledge and vote. Further, each
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round has an associated (randomly selected) leader `r ∈ P ,
denoted by ` if r is clear from the context.

In each round, `r is selected uniformly at random from
the set of all nodes, which have not been selected as leader
during the last f + 1 rounds.3 At the end of each round all
nodes learn a new random beacon value Rr. For simplicity, we
hereby assume that the correct nodes agree on the first random
beacon value R0 used to select the leader of round 0 as well
as the set of initial commitments of all nodes. Ro becomes
public knowledge only after the set of initial commitments
was defined during setup.4

To simplify our notation we assume that a node or leader,
which broadcasts a message is also recipient of that message.
Similarly, the dealer in the PVSS protocol provides a share for
himself. We denote a cryptographic signature on a message m
by 〈m〉i, where i denotes the node signing the message with
its private key ski. We further assume, that all correct nodes
discard invalidly signed messages and process only messages
for the round and phase it is currently working on.

A. Phase: Propose

During this phase the round’s leader reveals his previously
committed value s` and provides a new commitment Com(s?` ).
For this purpose, it is the leader’s task to propose a new dataset
Dr for the current round r. A dataset Dr consists of two parts,
a header and a body, where the hash of the header is simply
denoted by H(Dr). The header header(Dr) of dataset Dr

contains:

• the current round index r

• the rounds random beacon value Rr

• the revealed secret value s`

• the most recent round index r̂ for which `r is in pos-
session of a valid dataset Dr̂, as well as a confirmation
certificate CC(Dr̂) for this dataset. In the first round
of the protocol, this value is set to r̂ = 0 since no
such dataset can exist

• the hash H(Dr̂) for the referenced dataset Dr̂ if r̂ > 0

• a list of random beacon values {Rk, Rk+1, ...} for all
recovered rounds between r̂ and r such that r̂ < k < r

• coefficient C0 of the new commitment Com(s?` ),
which allows for later verification of s?`

• the Merkle tree root hash Mr over all encrypted shares
in the new commitment Com(s?` ) (see the definition
of the body below)

The body body(Dr) of dataset Dr contains:

• the commitment Com(s?` ) to a new randomly chosen
secret s?`

• a confirmation certificate CC(Dr̂), which confirms
that Dr̂ was previously accepted as valid dataset

3The detailed leader selection mechanism is described in section IV-D.
4In practice this initial random value can be obtained via Proof-of-

Delay [10] or a Proof-of-Work [4].

• a recovery certificate RC(k) for all rounds k ∈ {r̂ +
1, r̂ + 2, ..., r− 1}, which confirms that there exists a
recovery for all rounds between r̂ and r. If r̂ = r− 1
then no such intermediate round exists and this value
is omitted.

A correct leader ` broadcasts a signed propose message〈
propose, 〈header(Dr)〉`, body(Dr)

〉
`

to all nodes. Each node i, that receives such a message from
the leader before the end of the propose phase, checks the
validity of the dataset Dr. For this purpose i verifies that Dr

is constructed as defined and properly signed. This includes
a check that the revealed secret s` corresponds to the com-
mitment Com(s`) submitted previously by the current leader.
Additionally the validity of the confirmation and recovery
certificates is checked. A confirmation certificate for dataset
Dr̂ is valid iff it consists of f + 1 signed messages of the
form

〈confirm, r̂,H(Dr̂)〉i
from f + 1 different senders. Similarly, a recovery certificate
for some round k is a collection of f + 1 signed messages of
the form 〈recover, k〉i from f+1 different senders. The leader
selects r̂ as the highest possible round index for which he is
only in possession of a valid confirmation certificate CC(Dr̂)
but does not know a recovery certificate RC(r̂).

B. Phase: Acknowledge

If a node i receives a valid dataset Dr from the round’s
leader `r during the propose phase, it constructs and broadcasts
a signed acknowledge message〈

〈acknowledge, r,H(Dr)〉i, 〈header(Dr)〉`
〉
i

thereby also forwarding the revealed secret value s`. Further,
each node i collects and validates acknowledge messages from
all nodes.

C. Phase: Vote

Each node i checks the following conditions:

• During the current propose phase a valid dataset Dr

was received.

• During the current acknowledge phase ≥ 2f + 1
acknowledge messages from different senders have
been received.

• All of those messages acknowledge the received
dataset’s hash5 H(Dr).

If all conditions are met, node i broadcasts a signed confirma-
tion message:

〈confirm, r,H(Dr)〉i
Otherwise node i, broadcasts a recover message:〈

〈recover, r〉i, s`, Com(s`)[si], ŝi,Mk[ŝi]
〉
i

5Valid acknowledge messages for more than one value of H(Dr) form a
cryptographic proof of leader equivocation. E.g. in a Proof-of-Stake setting,
the protocol might be extended such that this equivocation proof in used to
seize the security deposit of the leader.
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Here, Com(s`)[si] denotes i’s decrypted share si and its
share decryption proof according to Scrape’s PVSS, which
cryptographically proves that si is a valid decryption of ŝi
under i’s secret key. Round k denotes the round in which `
has provided the commitment Com(s`) and a Merkle tree root
hash Mk. The Merkle branch Mk[ŝi] proofs that the encrypted
share ŝi was previously distributed as part of Com(s`) and
therefore also of Dk. The values ŝi and Mk[ŝi] are required
to enable nodes which are not in possession of Com(s`) to
verify the share decryption proof for si.

Correct nodes always include values for s`, Com(s`)[si], ŝi
and Mk[ŝi] if they are in possession of the required data.
Otherwise the unknown value(s) are omitted. Upon receiving
recovery messages from other nodes, correct nodes accept
messages with omitted values. This is not a problem since the
protocol ensures that there are always at least f + 1 correct
nodes that have received the dataset with a valid confirmation
certificate, and hence can provide the shares necessary for
reconstructing the secret of the respective dataset. An example
is presented in section V.

At the end of this phase each node i can obtain the round’s
random beacon value Rr. We distinguish two cases: (i) node
i already knows the secret value s`, because it received the
dataset Dr or an acknowledge message for Dr, and (ii) node
i has received at least f + 1 valid recover messages which
include at least f + 1 decrypted secret shares for s`. In this
case the reconstruction procedure of Scrape’s PVSS can be
executed to produce the value hs` . In both cases Rr is then
obtained by computing:

Rr ← H(Rr−1 || hs`) (1)

D. Leader selection

At the beginning of each round r ≥ 1, a node i determines
the round’s leader `r based on the available local information
it gathered so far. For this purpose node i uses the randomness
Rr−1 of the previous round to deterministically select `r
from the set Lr of potential leaders. We denote the canonical
representation of Lr as 〈l0, l1, ..., l|Lr|−1〉 and obtain `r as
follows:

`r ← l(Rr−1 mod |Lr|) (2)

Let Dr̂ denote the most recent valid dataset, for which node
i is not in possession of a corresponding recovery certificate
RC(r̂). If no such dataset exists6 we set r̂ = 0. Now we
introduce a method to determine recovered nodes rn(·) as a
component needed for the definition of Lr. Intuitively, the set
defined by rn(·) contains all nodes, which have not provided
valid datasets for some round where the node has been selected
as leader. We define this set of all leaders which have been
recovered in some round up to a referenced dataset as follows:

rn(Dx) =

{
∅ if x̂ = 0

{`k | RC(k) ∈ Dx} ∪ rn(Dx̂) otherwise
(3)

Here Dx̂ denotes the previous dataset referenced by Dx. This
function is used to construct the set of available nodes Pr for
round r recursively by excluding all nodes which have been

6In this scenario all rounds since protocol start can be recovered.

selected as leader in a round for which a valid reconstruction
certificate exists:

Pr = P \ rn(Dr̂) (4)

Based on this notion, the definition of the set of potential
leaders Lr for round r follows:

Lr = Pr \ {`r−f , `r−f+1, ..., `r−1} (5)

Intuitively, the set Lr only includes nodes, which have not been
selected as leader for at least f rounds in the past and have
not been reconstructed in any previous round, i.e., distributed
valid datasets for all rounds in which they have been selected
as leader.

V. EXAMPLE PROTOCOL EXECUTION

Figure 1 shows four rounds of an example execution of
the HydRand protocol in a setting of f = 2 Byzantine
nodes. We assume that the leaders in this specific execution
got selected randomly as described in section IV-D. The
sequence of leaders in this example execution includes a worst
case scenario, where f succinct leaders come from the set of
byzantine nodes (nodes n4 and n5), followed by a correct node
and then again the first byzantine node (n4).

Round r1: In this execution the first node that gets selected
as the leader (i.e., node n4) belongs to the set of byzantine
nodes. This leader selectively sends a propose message only
to a subset of correct nodes. In our case the nodes n1, n2 and
n3. Moreover, the Byzantine node n5 only sends acknowledge
messages to the very same nodes (n1, n2, n3). After that phase,
the Byzantine node n5 sends a recover message to the nodes
n6 and n7.

This leads to a situation where the correct nodes n1, n2 and
n3 receive f+1 acknowledge messages. Therefore, those nodes
(n1, n2 and n3) broadcast confirm messages which together
form a valid confirmation certificate known to every node.
Further, the nodes n6 and n7 as well as the adversary are
in possession of a valid recovery certificate RC(r1), as nodes
n5, n6 and n7 sent a recover messages.

Round r2: The next node (n5) that gets selected as leader is
also in the set of byzantine nodes and does not broadcast any
message. Therefore, the secret value of the rounds leader gets
reconstructed at the end of the vote phase and all nodes are
only in possession of a reconstruction certificate RC(r2) for
this round.

Round r3: The leader (n3) of this round belongs to the set
of correct nodes and has received f + 1 confirm messages in
round r1. Moreover, node n3 is not in possession of a valid
recovery certificate for r1 since he has only received f recover
messages, i.e. from node n6 and n7 but not from node n5.
Therefore, the leader broadcasts a new dataset D3 containing
a valid confirmation certificate CC(D1) for round r1, as well
as a recovery certificate RC(r2) for round r2.

After receiving the propose message, all correct nodes,
including n6 and n7, are safe to assume that at least f + 1
correct nodes are in possession of dataset D1. The justification
for this assumption comes from the fact that the propose
message contains a confirmation certificate composed of f +1
signed messages including a hash the header of D1. This
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Fig. 1. Example execution of four rounds of the HydRand protocol with n = 3f + 1 = 7.

necessarily includes at least one honest node which, per
definition, only sends a confirm message if he has received
2f + 1 valid acknowledge messages in advance. Therefore, at
least f+1 correct nodes have to be in possession of dataset D1.
As a result, all correct nodes accept this rounds new dataset
D3 containing CC(D1). This holds true, even for nodes n6

and n7 although they have not received dataset D1.

If node n6 or n7 would have been selected as leader in
round r3, then this node would have constructed a dataset D3

that contains a valid recovery certificate for round r1 and r2
as well. In that case the nodes n1, n2 and n3 would have
discarded their dataset D1.

Round r4: In this round node n4 is again selected as leader.
This is valid since f rounds have passed since this node has
been selected as leader. Therefore, at least one correct node
was selected as leader in between – in this case node n3.
Since there is no recovery certificate RC(r3) for round r3
available, all further leaders have to include the confirmation
certificate CC(D3) for round r3 to extend upon the chain of
valid datasets. Otherwise their future datasets would not be
valid and rejected by all correct nodes. Therefore, all nodes
including node n4, have to accept the view of node n3 in this
case.

In our example, node n4 tries to stall the protocol by
selectively releasing a new dataset D4 only to the nodes n2, n3.
But since those nodes are not able to reach the required
number of 2f + 1 acknowledge messages (together with the
byzantine nodes n4 and n5), no correct node will send a
confirmation message in the last phase of this round. As a
result all correct nodes will send reconstruct messages leading
to a total of 2f + 1 reconstruct messages, which is more than
f + 1 and hence enough to form a reconstruction certificate
and to reconstruct the leader’s secret for round r4.

Note that, although possible, the PVSS reconstruction of
the secret from r1 would not be necessary here, since in this
example the leader of r4 selectively sent out a new dataset
and therefore revealed the secret to at least one correct node.
Per definition, correct nodes broadcast the revealed secret in

their acknowledge messages. Therefore, all other correct nodes
receive the revealed secret in round r4 even if they have not
received the dataset D3 directly.

VI. PROTOCOL PROPERTIES

In the following, we show that HydRand achieves the
desirable properties of a random beacon protocol as outlined in
section I: liveness, guaranteed output delivery, unpredictabil-
ity, bias-resistance, and public-verifiability. We furthermore
show that our protocol also achieves uniform agreement. In our
proofs we might refer to the definitions introduced in section
IV.

Lemma 1: (Possibility of construction of valid datasets)
For each round r a correct leader `r can construct a valid
dataset Dr.

Proof: Since we are in a fully synchronous setting, we
assume a correct leader always knows the round number r.
Further, a correct leader is in possession of its own secret
s` and thus knows Rr. Furthermore, the leader can always
construct a new PVSS commitment for a new secret Com(s?` )
and is able to provide valid values for Mr and C0. Therefore,
it only remains to show that each correct node is able to
provide the required confirmation certificate CC(·) (and its
round number) and recovery certificates RC(·). During the
vote phase of all previous rounds, all correct nodes either
broadcast a recover or confirm message. As there are at least
2f +1 correct nodes, each node receives at least f +1 recover
messages or at least f +1 confirm messages (or both) for each
of these rounds. As f + 1 recover messages form recovery
certificate and f + 1 confirm messages form a confirmation
certificate, each node is in possession of a recovery certificate
or a confirmation certificate (or both) for each previous round,
and is therefore able to provide the required certificates for
Dr.

Lemma 2: (No recovery of correct leaders) If the leader `r
is correct, there does not exist a node i, which is in possession
of a valid recovery certificate RC(r).
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Proof: A correct leader `r sends valid proposal Dr to all
nodes during the propose phase. By lemma 1, `r can always
construct such a dataset. As all correct nodes consider Dr as
valid, at least 2f + 1 nodes broadcast acknowledge messages
for Dr during the acknowledge phase. All 2f + 1 correct
nodes therefore receive 2f+1 valid acknowledge messages for
Dr. As there cannot exist a valid acknowledge for a different
dataset D′r (because the leader only provided his signature for
Dr) all correct nodes broadcast confirm messages during the
vote phase. As correct nodes only broadcast either confirm or
recover messages, there are at most f recover messages (from
Byzantine nodes). A valid recovery certificate RC(r) however
requires at least f + 1 recover messages from different nodes,
and therefore cannot exist.

Lemma 3: (Availability of leaders) For each round r ≥ 1,
the set of potential leaders Lr contains at least f + 1 correct
nodes.

Proof: We first show that for each round r, the set of
available nodes Pr contains at least 2f + 1 correct nodes. By
definitions 3 and 4, we have that only leaders `k for some
round k, in which a recovery certificate RC(k) exists, are
excluded from the set P to form Pr. As we have shown in
lemma 2 there are no recovery certificates for rounds with
correct leaders. Therefore correct nodes cannot be excluded
from P to form Pr, and thus Pr contains at least 2f + 1
correct nodes.

Using the above result and definition 5, which excludes at
most f + 1 nodes from Pr to form Lr, Lr contains at least
f + 1 correct nodes.

Lemma 4: If a correct node knows the random beacon
value Rr−1, it can output the random beacon value Rr by
the end of round r (independent of the actions of the round’s
leader `r).

Proof: Following lemma 3 we guarantee the existence
of a leader `r. Since `r ∈ Lr and Lr ⊂ Pr, we know that
`r ∈ Pr. By applying definition 4 we get `r 6∈ rn(Dr̂). This
means that there exists some history of datasets with head Dr̂

in which there does not exist a recovery certificate RC(k) for
any round k < r̂ in which `r was also leader. Such a history for
any valid dataset Dk can only exist if at least one correct node
confirmed that Dk was correctly distributed and acknowledged
by 2f + 1 nodes by providing a confirm message. Hence, at
least f + 1 correct nodes know a common dataset Dk for
all rounds k where `r was previously selected as leader. In
addition all nodes know the shares for `r’s first commitment
provided (and agreed upon) during the protocol setup. Thus at
least f+1 correct nodes can (and will) broadcast the decrypted
share in case a recovery of the leader `r in round r is necessary.
Hence all nodes learn the value hs` corresponding to `r’s last
commitment Com(s`), and thus obtain Rr using hs` and Rr−1
via definition 1.

Theorem 1: (Liveness / Guaranteed Output Delivery) For
each round r correct nodes output a new random beacon value
Rr.

Proof: We use lemmas 3 and 4 and proof the theorem by
induction on the round index r. For the base case we have an
agreed random beacon value R0 as given by the protocol setup.
For the induction step, we assume that Rr−1 is known by all
correct nodes. Lemma 3 ensures that the set of potential leaders
Lr contains at least f + 1 correct nodes. Therefore, definition

2 can always be applied to selected a leader `r using Lr and
Rr+1. Hence, we can use lemma 4, to show that by the end
of round r each correct node outputs a value Rr.

Lemma 5: (Selection of correct leaders) In each interval
{k, k + 1, k + 2, ..., k + f} of f + 1 consecutive rounds there
is at least one round k̂ ∈ {k, k + 1, k + 2, ..., k + f} such that
the leader `k̂ of that round is correct.

Proof: We assume that there is no correct leader in
{`k, `k+1, `k+2, ..., `k+f} and derive a contradiction. We apply
the definiton of the set of potential leaders for round k + f :

Lk+f = Pk+f \ {`k, `k+1, ..., `k+f−1}

Notice that {`k, `k+1, ..., `k+f−1} denotes a set of f Byzantine
nodes. As there are only f Byzantine nodes in total, Lr+f

cannot contain any Byzantine nodes. However, the Byzantine
node `k+f is leader of round k+f and therefore `k+f ∈ Lk+f ,
which completes the contradiction.

Lemma 6: (Agreement on potential leaders) If a node
constructs a valid set of potential leaders Lr in round r then
every correct node constructs the same value for Lr.

Proof: Using lemma 5, for the interval {r − f − 1, r −
f, ..., r−1}, we know that there is some round r̂ with a correct
leader `r̂ in this interval. Using lemma 1, we know that `r̂
is able to construct a valid dataset Dr̂ in round r̂. As `r̂
is correct, it has distributed this dataset to all nodes during
the propose phase of round r̂. All correct nodes therefore
acknowledge Dr̂ in the acknowledge phase of round r̂. Since
there are at least 2f + 1 correct nodes, all correct nodes
receive at least 2f + 1 valid acknowledge messages for Dr̂

by the end of the acknowledge phase. No node can receive a
valid acknowledge for some different dataset D′r̂, because the
correct leader `r̂ does not provide a signature for a different
value. Therefore, all correct nodes broadcast confirm messages
for Dr̂. As all correct nodes broadcast either one confirm or
one recovery message, there are at most f recover messages
(by Byzantine nodes). Therefore, there is no valid recovery
certificate RC(r̂) for round r̂. Thus, any valid future dataset
needs to (indirectly) reference the common and unique dataset
Dr̂. Consequently, we established agreement on Dr̂ and its
common history provided by the references to the predecessor
datasets.

As the set of available nodes Pr̂ for round r̂ is defined
using only the agreed set of all nodes P and Dr̂, Pr̂ is also
agreed upon. Since the definition of Lr does not depended
on whether or not leaders are recovered during the rounds
{r − f, r − f + 1, ..., r − 1} and r̂ ≥ r − f − 1 agreement on
the set Lr follows.

Theorem 2: (Uniform Agreement) If a node outputs a valid
random beacon value Rr in round r then every node that
outputs a valid beacon value in round r outputs the same Rr.

Proof: We proof the theorem by induction on the round
index r. For the base case we have an agreed common random
beacon value R0 as given by the protocol setup.

For the induction step, we assume that every node that out-
puts a valid beacon value in round r−1 output the same Rr−1.
We have agreement on Rr−1 by the induction hypothesis and
shown agreement on the set of potential leaders Lr in lemma 6.
As the leader selection mechanism given in definition 2 only
depends on those two argument, all correct nodes agree on
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a common unique leader `r. By applying lemma 4 we obtain
that each correct nodes learns the leader’s previously commited
secret hs` . By either checking the revealed value of s` against
the leaders commitment or verifiying the validity of the share
decryption proof accoring to Scrape’s PVSS description [14],
uniqueness of a valid hs` and consequently of Rr is ensured.

Theorem 3: (Unpredictability) At the beginning of round
r, no node can predict the outcome Rr+f of the random beacon
protocol in round r + f .

Proof: By applying lemma 5 we know that there is at least
one correct leader during the interval of the f + 1 consecutive
rounds {r, r+1, r+2, ..., r+f}. Let k denote any round during
this interval in which the leader `k is correct. As `k follows
the protocol, it has not distributed the its secret value s`k to
any node at the beginning of round r. Additionally no correct
nodes does provide a decrypted secret share, which could be
used for the recovery process of the secret value. Therefore
only f secret share are available to Byzantine nodes which try
to recover the secret in order to compute Rk (and potentially
consecutive random beacon values). However, the protocol
defines the reconstruction threshold t used by the PVSS
scheme to be f + 1. Therefore, an adversary cannot obtain
the underlying secret before it is revealed or recovered during
round k. Consequently, Rk and all consecutive random beacon
values (including Rr+f ) are unpredictable at the begining of
round r.

Theorem 4: (Bias-Resistance) No node i can, for any
round r, influence the value Rr of the random beacon protocol
in a meaningful (i.e. predictable) way.

Proof: This property follows from unpredictability and
the fact that the protocol is constructed in a way that ensures
that any action a (Byzantine) nodes takes in some round r,
can only influence the value of the random beacon at round
r+f+1 or later. In theorem 3 we have shown that the random
beacon value at round r + f is unpredictable at the beginning
of round r. Therefore, a (Byzantine) node cannot influence the
random beacon values for rounds r to r + f , and may only
influence values at round r+f +1 or later in an unpredictable
manner.

Theorem 5: (Public-Verifiability) For each round r, an
external verifier can check the correctness of the random
beacon value Rr, at the end of round r.

Proof: The external verifier asks any correct node (i.e. at
most f + 1 nodes) to provide its history up to and including
round r. Then the verifier can, by following the protocol rules,
obtain the same random beacon value Rr if and only if the
provided history is correct. Additionally, any dataset Dr and a
its confirmation certificate CC(Dr) allow an external verifier
to obtain and check the random beacon value for round r and
all rounds k ∈ {r̂ + 1, r̂ + 2, ..., r − 1}.

Lemma 7: (Efficient-Verification) For each round r, an
external verifier can check the correctness of the random
beacon value Rr, without validation of all previous rounds.

Proof: The external verifier asks any correct node (i.e.
at most f + 1 nodes) to provide (i) the header of a dataset
Dr′ which includes the value of Rr (either directly or in the
list of random beacon values for recovered rounds) and (ii) a
confirmation certificate CC(Dr′) for this dataset. Under our
security assumption of n = 3f + 1, each valid confirmation

certificate includes at least one signature of a honest node, the
verification of the confirmation certificate is sufficient to check
the validity of Rr. As a confirmation certificate includes f +1
signatures this verifcation process in O(n).

VII. COMPARISON OF RANDOM BEACON PROTOCOLS

In this section, we provide an overview regarding the
characteristics of various random beacon protocols. Thereby,
we focus on designs that are suitable as building blocks in
(PoS) blockchain protocols. For a broader comparison, we are
also include Proof of Work (PoW) and Proof-of-Delay [10],
[12] in the given table. Simply speaking, a random beacon
value via Proof-of-Delay is computed by repeated hashing of
a seed value. Hereby, the number of iterations is set such that
a computationally bounded participant cannot bias the random
beacon value before the successor blocks are found.

The underlying models, assumptions, notations as well as
the context may differ from protocol to protocol. Therefore,
comparing existing approaches in this field is a non trivial
task. We performed the hereby presented comparison to the
best of our knowledge and explicitly state whenever we have
not been able to pinpoint certain properties or had to estimate
them. Table I presents a first step towards comparing current
approaches. A property prop is marked as uncertain using the
notation ∼prop if we have not been able to fully assess the
property using the available information. For cells marked with
’?’ we cannot provide an adequate evaluation due to a lack of
available information. The symbol ! is used to describe that a
property is fulfilled, whereas % refers to unfulfilled properties.
Additionally, we use (!) to indicate that a property is achieved
with probabilistic guaranties over time. Further information on
specific properties is indicated using the notation prop(1−13).
For the complexity evaluations, n refers to the number of
participants in the network, and c describes the size of the
subset used in the specific protocol. Notice that c is different
depending on the protocol.

In the following, we provide additional details in regard to the
assessment provided in table I:

(1) In [18], the author’s claim that their protocol “grace-
fully handles temporary losses of network synchrony
including network splits” but only proof the protocol
secure in the synchronous case.

(2) The authors of the RandShare, RandHound and Rand-
Herd protocols explicitly state asynchronous commu-
nication only for their RandShare protocol. However,
the author’s statement “The client chooses a subset
of server inputs from each group, omitting servers
that did not respond on time or with proper values
[...]” [26] indicates that the communication model for
RandHound is synchronous.

(3) The exact probability is configurable as a protocol
parameter. The given value represents a suggestion
by the by the respective authors.

(4) Liveness in the asynchronous communication model
is only achieved after a barrier point. Whether or not
this point is reached depends on the outcome of a
Byzantine agreement protocol, which RandShare uses
as a subprotocol [26].

(5) The protocols are not presented in a standalone set-
ting and assume an underlying blockchain or bulletin
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TABLE I. COMPARISON OF RANDOM BEACON PROTOCOLS
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PoW syn. ! O(n) (!) % very high(10) O(1) hash func. no
[15] Algorand semi-syn. 10−12

(3) ? (!) %(9) ? ∼O(1) VRF no
[13] Cachin et al. asyn. ! O(n2) ! ! ∼O(n) ∼O(1) uniq. thr. sig. yes

[3] Caucus syn. ! O(n)(5) (!) %(9) ∼O(1) ∼O(1) hash func. no
[18] Dfinity syn.(1) 10−17 ∼O(cn)(6) ! ! ? ∼O(1) BLS sig. yes
[19] Ouroboros syn. ! O(n3) ! ! O(n3)(11) O(n3)(11) PVSS no
[16] Ourob. Praos semi-syn. ! ? (!) %(9) ? ∼O(1) VRF no
[10] Proof-of-Delay syn. ! O(n)(5) ! ! high(10) high(13) hash func. no
[26] RandShare asyn. %(4) O(n3) ! ! O(n3)(11) O(n3)(11) PVSS no
[26] RandHound ∼syn.(2) 0.08% ∼O(c2n) ! ! ∼O(c2n)(12) ∼O(c2n)(12) PVSS/CoSi no
[26] RandHerd ∼syn.(2) 0.08% ?(7) ! ! O(c2 log n) O(c2 log n) PVSS/CoSi ?
[14] Scrape syn. ! O(n3)(5) ! ! O(n2) O(n2) PVSS no

HydRand syn. ! O(n2) (!)(8) ! O(n) O(n) PVSS no

board as communication channel. The herein pre-
sented communication complexity does not account
for this additional overhead.

(6) Due to a lack of information, we can only estimate
the communication complexity. Assuming that the
only communication strictly necessary to produce
the random beacon values is the broadcast of partial
signatures, which each member of the correct group
has to perform, the complexity O(cn) can be derived.
This estimate excludes further potential messages
exchange required for Dfinity’s group setup.

(7) According to our interpretation, the communication
complexity O(c2 log n) for RandHerd is stated per
server only. Therefore, this value is not comparable
to the other approaches, which consider the commu-
nication complexity of the overall system.

(8) HydRand reaches unpredictability with absolute cer-
tainty after f + 1 rounds in the future. Before that
point, the protocol provides unpredictability with
increasingly high probability (the likelihood of pre-
diction decreases exponentionally with the number of
round to predict).

(9) For Algorand, Ouroboros Praos and the Caucus pro-
tocol, our strong notion of bias-resistance is not
achieved because malicious leaders can selectively
withhold values to bias the produced randomness.

(10) The computation complexity is not dependent on
the number of participants and therefore is O(1).
However, as PoW and Proof-of-Delay inherently
computation intensive, the notation of O(1) would
be misleading compared to other schemes.

(11) Using the optimization of Schoenmakers’ PVSS pro-
posed by the authors of the Scrape protocol, the
complexity can be reduced by a factor of n.

(12) Again using Scrape’s optimization, the complexity
can be reduced. Since the PVSS protocol is executed
among a subset of participants, a reduction by a factor
of c is possible.

(13) For verification the delay function has to be recalcu-
lated. Using checkpoints, the verification time can be

parallelized to some extend. The validity / invalidily
of values is shown using an interactive process upon
disagreement.

VIII. DISCUSSION

For easier comparison and evaluation, HydRand is designed
as a stand-alone protocol, but with an application in the area
of blockchains in mind. Potential use-cases could be as part of
future Proof-of-Stake approaches or permissioned blockchains.
A desirable property for random beacons that our protocol
can provide is guaranteed output delivery, i.e. a new random
beacon value is guaranteed to be produced at each round
regardless of the adversary’s actions. This is important for all
application scenarios in which continuous operation is required
and an improvement compared to other commitment schemes,
such as collateral based approaches which cannot guarantee
output delivery at every round.

The main advantage of HydRand, compared to other PVSS
based random beacon protocols in this field, is its low commu-
nication complexity of O(n2) compared to O(n3). The com-
plexity of O(n2) includes all messages required to establish
Byzantine agreement. We estimate the required communication
overhead for the overall system for n = 100 and n = 250.
For n = 100, a typical round without recovery results in
an overall communication amount of ∼ 5.4 MB, while a
round with recovery leads to ∼ 5.6 MB transmitted. In the
scenario of n = 250, the respective values are ∼ 34.0 MB
and ∼ 31.0 MB. This is an important improvement regarding
the practicality of such approaches, and a further step towards
widespread deployment. The communication complexity is
reduced by shifting the transmission of messages of size n to
the leader and employing cryptographically signed conforma-
tion/recovery certificates to converge on a history of datasets.
Messages that need to be broadcasted by all nodes are always
of constant size.

Commit/reveal schemes and protocols like Algorand,
Ouroboros Praos and Caucus fail to establish the strong notion
of bias-resistance we set out to achieve. HydRand ensures that
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a unique, bias-resistant random number is produced at every
round of the protocol.

An additional advantage is that Hydrand does not require a
trusted dealer or distributed key generation protocol. Further-
more, the protocol setup and execution is publicly verifiable
by utilizing the underlying characteristics of the PVSS scheme.
Additionally, we do not rely on less established cryptographic
primitives such as cryptographic pairings.

However, our protocol assumes n = 3f + 1 in a syn-
chronous communication model, while existing efficient BFT
protocols (e.g. [1]) achieve a bound of n = 2f + 1. Protocols
like Algorand and Ouroboros Praos require weaker assump-
tions in regard to synchrony, while early coin-tossing protocols
(e.g. [13]) can operate under full asynchrony.

IX. CONCLUSION

We propose HydRand, a synchronous Byzantine fault tol-
erant random beacon protocol that tolerates up to one third
Byzantine nodes and show that the protocol achieves liveness,
public-verifiability, bias-resistance, as well as unpredictability
for all output values after (at most) f + 1 rounds in the future.
The presented protocol is designed for stand-alone usage, but
it could also find utility in the context of current and future
(PoS) and permissioned blockchain protocols. Furthermore,
we provide the first step towards a systematization of novel
random beacon proposals, which enables researchers to com-
pare current as well as future designs objectively with each
other. Thereby, we show that the HydRand protocol poses an
improvement regarding performance and scalability in respect
to comparable random beacon solutions.
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