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Abstract—In most of the modern day blockchain, transactions
are executed serially by both miners and validators; also, PoW
is determined serially. The serial execution limits the system
throughput and increases transaction acceptance latency, even
unable to exploit the modern multi-core resources efficiently.

In this work, we try to increase the throughput by introducing
parallel execution of the transactions using a static analysis based
technique. We propose a framework DiPETrans for the dis-
tributed parallel execution of block transactions. In DiPETrans,
trusted peers in the blockchain network form a community
to execute the transactions and to find the PoW parallelly.
The community follows a master-slave approach for parallel
execution. The core idea is that master analyzes the transactions
using a static analysis based technique, creates different groups
(shards) of non-conflicting transactions, and distribute shards to
workers (community members) to execute them parallelly. After
transaction execution, communities compute power is utilized to
find PoW parallelly. On successful creation of a block, the master
broadcasts the proposed block to other peers in the network
for validation. On receiving a block, validators re-executes the
block transactions, either parallelly (community) or serially (solo
validators). If they reach the same state as shared by the miner,
then accept the block otherwise reject. We proposed two different
approaches for the validator. In the first Sharing Validator, the
miner shares the dependency information (shard) in the block
to help validators to execute the transaction parallelly, while in
another approach (Default Validator) no dependency information
is shared with validators and validators need to determine the
dependencies using static analysis of the block transactions.

We report experiments using 5,170,597 transactions from the
Ethereum blockchain and execute them using our DiPETrans
framework to empirically validate the benefits of our techniques
over traditional sequential execution. We achieved a maximum
speedup of 2.18× for the miner, 2.02× for the validator, without
information sharing (i.e., Default Validator), and 2.04× for with
information sharing validator (i.e., Sharing Validator) for 100
to 500 transactions per block, when using 6 workers (including
master) in the community.
Index Terms—Blockchain, Smart Contracts, Mining Pools, Par-
allel Execution, Sharding

I. INTRODUCTION

According to a report published by World Economic Forum
(WEF) based on a survey on the future of the blockchain tech-
nology predicted that ≈ 10% of the Global Gross Domestic
Product (GDP) would be stored on the blockchain by 2025 [1].
Furthermore, with an annual growth rate of 26.2%, the capital
market of $2.5 billion in 2016 may touch the $19.9 billion
by 2025 [2], [3]. Many well-known information technology
vendors, governments across the world, Internet giants, and
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banks are investing in blockchain to accelerate research to
make distributed ledger technology versatile [2].

A blockchain is a distributed decentralized database which
is a secure, tamper-proof, publicly accessible collection of the
records organized as a chain of the blocks [4], [5], [6], [7], [8].
It maintains a distributed global state of the transactions in the
absence of a trusted central authority. Due to its usefulness, it
has gained wide interest both in industry and academia.

A blockchain consists of nodes or peers maintained in a
peer-to-peer manner. The nodes of the network are known
as a miner or validator. Miner when proposing a block to
be added to the blockchain, while known as validator when
validating a block proposed by the miner. A block consists of
a set of transactions, timestamp, block id, nonce, coin base
address (miner address), previous block hash, its hash, and
other relevant information. Essentially, miner proposes a block
and rest all peers of the network validate that block. Later
based on majority consensus block is added to the blockchain.
Normally, the entire copy of the blockchain is stored on all
the nodes of the system. Clients (also known as users) external
to the system use the services of the blockchain by sending
requests to the nodes of the blockchain systems.

Bitcoin [4], the first blockchain system proposed (by Satoshi
Nakamoto), is the most popular blockchain system till date.
It is a cryptocurrency system which is highly secure where
the users need not trust anyone. Further, there is no central
controlling agency like current day banking system. Ethereum
[7] is another popular blockchain currently in use and provides
various other services apart from cryptocurrencies. As com-
pared to Bitcoin, Ethereum provides support for user-defined
programs (scripts), called smart contracts [9] to offer complex
services.

Smart contracts in the Ethereum are written in Turing
complete language Solidity [9]. These contracts automatically
provide several complex services using pre-recorded terms
and conditions in the contract without the intervention of
a trusted third party. In general, a smart contract is like
an object in object-oriented programming languages, which
consists of methods and data (state) [5], [9]. A client request,
aka transaction, consists of these methods and corresponding
input parameters. A transaction can be initiated by a client
(user) or a peer and executed by all the peers.

A client wishing to use the services of the blockchain,
contacts a node of the system and send the request, which
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is a transaction. A node Ni on receiving several such trans-
actions from different clients or other peers, forms a block
to be added to the blockchain. The node Ni is said to be a
block-producer and cryptocurrencies based blockchains such
as Bitcoin, Ethereum, block-producers are called as miners as
they can ‘mine’ new coins.

Drawback with Existing System: The drawback with the ex-
isting blockchain system is that miners and validators execute
the transactions serially and so is computing the PoW. Further,
finding the PoW [10] is highly computationally intensive
random process which requires a lot of computation to create
a new block. PoW is required to delay-wait the network to
reach consensus and allow miners to create a new block in
their favor. But the problem is that the high computation
requirements make it very difficult for a resource constraint
miner to compete for the block creation to get intensive [11].

Also, in the current era of distributed and multi-core system,
sequential transaction execution results in poor throughput.
Dickerson et al. [5] observed that the transactions are executed
serially in two different contexts. First, they are executed
serially by the miner while creating a block. Later, validator re-
executes the transactions serially to validate the block. Serial
execution of the transaction leads to poor throughput. Also,
block transactions are executed several times by the miners
and many many times by the validators.

In addition to these problems, due to the substantial high
transaction fee, poor throughput (transactions/second), signif-
icant transaction acceptance latency, and limited computation
capacities prevent widespread adoption [12], [13]. Hence
adding parallelism to the blockchain can achieve better ef-
ficiency and higher throughput.

Solution Approach: There are few solutions proposed and
used in Bitcoin and Ethereum blockchain to mitigate these
issues. One such solution is that several resource constraint
miners form a pool (community) known as mining pool and
determines the PoW, and after block acceptance, they share
the incentive among them [11], [14], [15], [16], [17], [18],
[19]. In the rest of the paper, we use pool and community
interchangeably.

Other solutions [5], [20], [21], [22] suggest concurrent
execution of the transactions at runtime. These are done in
two stages: first, while proposing the block, and second while
validating the block. This helps in achieving better speedup
in creating the block and its acceptance, and hence increase
the chance of a miner to receive their fees. However, it is
not straight forward and requires a proper strategy so that
a valid block should not be rejected due to false block
rejection or FBR error [22]. These techniques follow Software
Transactional Memory based runtime techniques to execute
transactions concurrently. Miner concurrently executes the
block transactions and construct the block graph alongside.
The block graph is used to record the dependencies between
the transactions where vertices depict the transactions and
edges between them stores the dependencies. In the end,
miner adds a block graph in block to help the validator

to execute transaction concurrently and to avoid FBR error.
During the concurrent execution at validator, the FBR error
may easily occur if transactions dependencies are not recorded
appropriately in the block graph.

In this work, our objective is to execute the transactions
in parallel based on a static analysis of the transactions,
using a community of trusted nodes (workers) modeled as a
master and slaves, along with finding the PoW in parallel,
to improve the performance of block creation and validation.
We proposed a framework for distributed parallel execution in
a formal setting inspired by Ethereum [7]. We follow a static
analysis based sharding technique to determine the transaction
dependencies. Hence, FBR error will not occur if the validator
does not use information shared by the miner as dependencies
remain the same in the statical analysis. A validator can
perform the static analysis before parallel execution, which
makes it very straightforward to adopt.

Unrelated transactions of the block are grouped into differ-
ent shards (see Fig. 2), and shards are assigned to different
nodes of the community (see Fig. 1), which the nodes execute
independently in parallel. To our knowledge, this is the first
work which uses static analysis for identifying block transac-
tions that can be executed in parallel, and combines these with
benefits associated with sharding and mining pools.
The major contributions of this paper are as follows:

• We propose a framework DiPETrans for parallel execu-
tion of the transactions at miners and validators based on
transaction sharding. This work is the first contribution
which uses static analysis based transaction sharding to
execute the transactions of the blocks in mining pools
parallelly.

• We implemented two different approaches for the valida-
tor. In the first approach known as Sharing Validator, the
miner incorporates some information about the dependent
transactions (shards) in the block to help the validators
to execute the block transactions deterministically and in
parallel. While in the second Default Validator, the miner
does not include dependency information in the block,
and validators infer the dependencies themselves.

• We report experiments using 5,170,597 transactions from
the Ethereum blockchain and execute them using our
DiPETrans framework to empirically validate the benefits
of our techniques over traditional sequential execution.
We achieved a maximum speedup of 2.18× for the miner,
2.02× for the validator, without information sharing (i.e.,
Default Validator), and 2.04× for with information shar-
ing (i.e., Sharing Validator) for 100 to 500 transactions
per block, when using 6 workers (including master) in
the community.

The rest of the paper is organized as follows: We present the
background and related work in Section II. While in Section
III, we describe the proposed DiPETrans architecture and
methodology Section IV consist of the experimental evaluation
and results. Finally, we conclude with some future research
directions in Section V.
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II. BACKGROUND AND RELATED WORK

This section presents the background and overview of
existing techniques for parallel execution of the transactions.
We first introduce the working of blockchain technology and
then summaries the work on concurrent execution of the smart
contract transactions. Then, we present the work on mining
pools and sharding techniques closest in spirit to this work.
Background: In most of the popular blockchain systems
such as Bitcoin and Ethereum, transactions in a block are
executed in an ordered manner first by the miners later by
the validators [5]. When a miner creates a block, the miners
typically choose transactions to form a block from a pool
based on their preference, e.g., giving higher priority to the
transactions with higher fees. After selecting the transactions
the miner (1) serially executes the transactions, (2) adds the
final state of the system to the block after execution, (3) next
find the proof-of-work (PoW) [10] and (4) broadcast the block
in the network to other peers for validation to earn the reward.
PoW is an answer to a mathematical puzzle in which miner
tries to find the hash of the block smaller than the given
difficulty. This technique is used in the Bitcoin and Ethereum.

Later after receiving a block, a node validates the contents
of the block. Such a node is called the validator. Thus when a
node Ni is block-producer, every other node in the system acts
as a validator. Similarly, when another node Nj is the miner,
then Ni acts as a validator. The validators (1) re-execute the
transactions in the block received serially, (2) verify to see
if the final state computed by them is same as the final state
provided by the miner in the block, and (3) also validates if the
miner solved the puzzle (PoW) correctly. The transaction re-
execution by the validators is done serially in the same order
as proposed by the miner to attain the consensus [5]. After
validation, if the block is accepted by the majority (accepted
by more than 50%) of the validators, then the block is added
to the blockchain, and the miner gets the incentive (in case
Bitcoin and Ethereum).

Further, blockchain is designed such a way that it forces a
chronological order between the blocks. Every block which is
added to the chain depends on the cryptographic hash of the
previous block. This ordering based on cryptographic hash
makes it exponentially challenging to make any change to the
previous blocks. In order to make any small change to already
accepted transactions or a block stored in the blockchain
requires recalculation of PoW of all the subsequent blocks
and acceptance by the majority of the peers in the network.
Also, if two blocks are proposed at the same time and added
to the chain, they form a fork. To resolve the forks, the branch
with the longest chain is considered as the final. This allows
mining to be secure and maintain a global consensus based on
processing power.
Related Work: Since the launch of Bitcoin in 2008 by
Satoshi Nakamoto [4] the blockchain technology has re-
ceived immense attention from research communities both
from academia and industries. Blockchain is introduced as
a digital distributed decentralized system of cryptocurrency

currency. However, decentralized digital currencies have been
introduced long back before Bitcoin in eCash [23] and later,
the peer-to-peer currency in [24], [25]. But none of them
concentrated on having a common global log stored at every
peer. Bitcoin introduces this concept as distributed decen-
tralized highly secure ledger as blockchain technology. Later
Ethereum [7] started using smart contracts (a user-defined
computer program) in the blockchain. Which further enhanced
the potential of blockchain technology from being a ledger
technology to more generalized technology for anything of
values. Due to the use of smart contracts in the blockchain, it
becomes versatile and adopted for many applications such as
digital identity, energy market, supply-chain, healthcare, real
estate, asset tokenization, etc. Following that many blockchain
platforms have been developed based on smart contracts
such as EOS [12], Hyperledger [8], MultiChain [26], Om-
niLedger [27], and RapidChain [28].

However, due to the substantially high transaction fee, poor
throughput, high latency, and limited computation capacities
prevent widespread adoption of the public blockchain [12].
Also, most of the existing blockchain platform executes the
transaction serially one after another and fails to exploit
the current day multi-core resources [5], [20]. Therefore to
improve the throughput and to utilize concurrency available
with multi-core systems, researchers developed the solutions
to execute the transaction parallelly.

For the concurrent execution of the smart contract, Dick-
erson et al. [5] and Anjana et al. [20], [22] proposed Soft-
ware Transactional Memory based multi-threaded approaches.
They achieved better speedup over serial execution of the
transactions; however, their techniques are also based on the
assumption of non-nested transaction calls. Saraph et al. [6]
performed an empirical analysis and exploited simple specu-
lative concurrency in Ethereum smart contracts, for this, they
grouped the transactions of a block into two groups one consist
of non-conflicting transactions that can be executed parallelly
while other consists of conflicting transactions and executed
serially. They proposed a lock based technique to avoid the
inconsistency that may occur due to concurrent execution. In
another contribution, Zang et al. [21] proposed a Multi-Version
Timestamp Ordering Concurrency Control based concurrent
validator. In their approach, the miner can use any concurrency
control protocol and generates the read-write set to help
the validators to execute the contract transaction of a block
concurrently. In [29], Bartoletti et al. presented a statical
analysis based theoretical perspective of concurrent execution
of the smart contract transactions.

Distributed mining pools in Bitcoin and Ethereum net-
work make use of distributed compute power to find the
PoW parallelly and share the incentive based on the pre-
agreed mechanism (proportional, pay-per-share or pay-per-
last-N-shares, etc.) [15], [16], [17]. The distributed mining
pool based centralized and decentralized solutions are prac-
tically implemented and utilized for determining PoW in both
Bitcoin and Ethereum. In Bitcoin network, approx 95 percent
mining power resides with less than 10 mining pools while in
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Ethereum network, roughly 80 percent mining power held by
6 mining pools [30]. In distributed mining pools, computation
constraint miner participates in the mining to earn the rewards
which they can’t achieve independently.

Furthermore, in sharding [31] based techniques either over-
all system is partitioned into smaller equally sized committees
or data (blockchain) is partitioned in such a way that a
new node need not to validate entire chain instead validate
only specific block from the chain. In EOS blockchain [12],
concept of sharding is proposed to be implemented for parallel
execution of the transaction. The static analysis of the block
can be performed to determine the non-conflicting transactions
in a block [29], [31], [32]. The two transactions that do
not modify the common data item (account) grouped into
different shards and different shards of the block executed
parallelly. So transactions of a block belong to different
shards executed concurrently using multiple threads first by
the miner, later during validation by the validators. EOS [12],
OmniLedger [27], and RapidChain [28] proposed to provided
optimization using sharding technique.

In this work, the idea of the mining pools is taken up to
parallelize the transactions execution, mining, and validation.
Essentially, we proposed to use these two concepts, static
analysis based transaction sharding, and distributed mining
pool to execute the transactions parallelly along with parallel
PoW computation.

III. DIPETRANS ARCHITECTURE

This section presents the proposed DiPETrans framework.
We first introduce a high-level overview of the architecture
that gives the functionalities of the miner and the validator.
Following that, the master-slave approach of a mining com-
munity is illustrated. Finally, the algorithms for static analysis
of transactions and distributed mining are explained.

A. DiPETrans Architecture

The architecture of the DiPETrans framework is shown
in Fig. 1. There are different mining communities, such as
Community 1 to 4 (Fig. 1, 2 ). Each community is a set of
devices (workers) which use their distributed compute power
collaboratively to execute transactions and solve the PoW in
parallel for a block. Workers in a community trust each other.
As with existing mining pools, all workers in a community
that participates in the parallel mining of a block get a part of
the incentive fee, based on pre-agreed conditions.

One of the workers in the community is identified as the
Master while the others are Slaves. The master serves as
the peer that represents the community with the blockchain
network for all operations. When a user submits their request
(Fig. 1, 1 ) to one of the peers in the blockchain network,
the transaction will be broadcast to all peers in the network,
including the master of each community, and be placed in their
pending transaction queue (Fig. 1, 3 ). Then all the miners
in the network compete to form the next block from these
transactions.

1) Functions of the Miner: We followed a master-slave
model within the community, and the master node is re-
sponsible for coordinating the overall functionality of the
community (Fig. 1 4 ). The master can be selected based on
a leader election algorithm or on some other approach. We
assumed that no workers fail within the community. When
the community acts as a miner to create new blocks, there
are two phases: one is transaction execution ( i ), and the
second is solving the PoW ( ii ). Both of these are parallelized.
When the community acts as a validator, it only executes the
first phase of executing transactions to validate them. In the
miner’s first phase, the master selects the transactions from the
pending transaction queue of the community ( 3 ) to construct
a block ( 5 ). Then, it identifies the independent transactions
by performing a static analysis of the transactions (discussed
later in Alg. 1). It groups dependents transactions into a single
shard, and independent ones across different shards ( 6 ). The
master then sends the shards to the slaves, along with the
current state of the accounts (stateful variables) accessed by
those transactions ( 7 , 8 ).

On receiving a shard from the master, the slave worker
executes the transactions present in its shard(s) serially ( 7 ),
computes the new state for the accounts locally, and sends the
results back to the master. While transactions across shards
are independent, those within a shard will have dependencies
(Fig. 2), and hence are executed sequentially. To improve the
throughput further, one can perform concurrent execution of
transactions within a shard based on Software Transactional
Memory (STM) to leverage multi-processing on a single
device [5], [20], [22]. This is left as a future extension. Once
all slaves complete execution of the shards assigned to them,
the master computes the final state of the block from the local
states returned by the slaves.

In the PoW phase ( 9 , ii ) of block creation, the master
sends the block (header along with transactions), and different
nonce ranges to the slaves to find the block hash that is smaller
than the required difficulty. This is a brute-force iteration over
different possible values of the nonce unit a match is found,
and forms the PoW. Different slaves operate on different
ranges of values in parallel to find the block hash. When
a slave finds the correct hash, it informs the master. The
master node then notifies the remaining workers to terminate
their computation. The master proposes the block with the
executed transactions and the PoW, updates its local chain
( 10 ), and broadcasts it to all peers in the blockchain network
for validation. A successful validation by a majority of peers
and addition of the block to the consensus blockchain will
result in the workers of the mining community receiving the
incentive fee for that block based on a pre-agreed condition.

2) Functions of the Validator: After receiving a block from
a miner (Fig. 1, A ), the remaining peers of the network serve
as its validators. They validate the block by re-executing the
transactions present in the block and check if the PoW hash
matches. Verifying the PoW hash is not very expensive. When
a DiPETrans community acts as a validator, the devices follow
a similar approach as the first phase of mining (Fig. 1 A –
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Fig. 1: Overview of the DiPETrans Architecture and Functions

G , i ). However, the only difference is that validators do
not find the PoW ii , instead verify whether miner has done
sufficient work to finding the correct PoW, and validate the
final state computed by them based on their local chain with
the final state supplied by the miner in the block (Fig. 1
E ). Alternatively, a validator can also execute the transactions
serially if they are not part of any community.

We take two different approaches for the validation. In the
first, miner offer hints on the dependency information as part
of the transactions in the block with the validators. Specifically,
the miner includes the shard ID for each transaction in the
other field of the block (Fig. 1 O), and this can directly
be used by the validator to shard the transactions for parallel
validation. This avoids a call to Alg. 1 by each validator in the
blockchain network. We refer to these as Sharing Validators.
The second approach is the Default Validator, and here no
additional details about shards are included in the block. The
validator, if part of a community, may use the same Alg. 1 for
static analysis of the dependencies themselves, or if a stand-
alone validator may validate the transactions sequentially.

3) Sharding of the Block Transactions: Sharding is the pro-
cess of identifying and grouping the dependent transactions in
a block, with one shard created per group. This is illustrated in
Fig. 2. Transaction T1 accesses the account (stateful variables)
A1 and A3, T5 accesses A1 and A8, while T7 accesses A2 and
A3. Since T1, T5, and T7 are accessing common accounts, they
are dependent oneach other and grouped into the same shard,
Shard1. Similarly transactions T2, T3, and T9 are grouped
into Shard2, while T4, T6, and T8 are grouped into Shard3.
Transactions in each shard are independent from those in other
shards, and each shard can be executed in parallel by different
slaves of the community.

We model the problem of finding the shards as a graph
problem. Specifically, each account serves as a vertex in the
transaction dependency graph, identified by its address, and

Slave1

Slave2

T1	(A1,	A3)
T5	(A1,	A8)
T7	(A2,	A3)

T2	(A9,	A0)
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T9	(A5,	A9)
Shard2
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T4	(A4,	A6)
T6	(A6,	A7)
T8	(A4)
Shard3

Shard1

Transaction AccountsAccessed
T1	(A1,	A3) A1								A3
T2	(A9,	A0) A9								A0
T3	(A0,	A9) A0								A9
T4	(A4,	A6) A4								A6
T5	(A1,	A8) A1								A8
T6	(A6,	A7) A6								A7
T7	(A2,	A3) A2								A3
T8	(A4) A4													

T9	(A5,	A9) A5								A9

Sharding

Dependencies

Fig. 2: Sharding of the transactions in a block

Algorithm 1: Analyze()
Data: txnsList
Result: sendTxnsMap

1 Procedure Analyze(txnsList):
// prepare AdjacencyMap, ConflictMap,

AddressList to find WCC
2 Map<address,List<txID>> conflictMap;
3 Set<address> addressSet;
4 Map<address,address> adjacencyMap;
5 for tx ∈ txnsList do
6 conflictMap[tx.from].put(tx.txID);
7 conflictMap[tx.to].put(tx.txID);
8 addressSet.put(tx.from);
9 addressSet.put(tx.to);

10 adjacencyMap[tx.from].put(tx.to);
11 adjacencyMap[tx.to].put(tx.from);

12 Map<shardID, Set<txID>> shardsMap;
// Call to WCC till all addresses are visited

13 shardsMap = WCC (addressSet,conflictMap);
14 Map<workerID,List<Transaction>> sendTxnsMap;

// equally load balance the shards for slaves
15 sendTxnsMap = LoadBalance (shardsMap);

we introduce an undirected edge when a transaction access two
accounts, identified by its transaction ID. A single transaction
accessing n addresses will introduce n(n−1)

2 edges. Next,
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we find the Weakly Connected Component (WCC) in this
dependency graph. Each connected component forms a single
shard, and contains the edges (transactions) that are part of
that component. The transactions within a single shard are
present in their sequential order of arrival. Transactions that
are not dependent on any other transaction are not present in
this graph, and are placed in singleton shards.

The number of shards thus created may exceed the number
of slaves. In this case, we attempt to load balance the number
of transactions (shards) per device. Here, we assume that all
transactions take the same execution time, which may not be
true in practice since smart contract function calls may vary
in latency, and be costlier than non-smart contract (monetary)
transactions.

B. Sequence of Operations

Fig. 3 shows the sequence diagram for processing a block
by a miner and a validator community in DiPETrans. There
are 4 roles as MasterMiner, SlaveMiner, MasterValidator, and
SlaveValidator. The MasterMiner starts the block execution
by creating a block from the transaction queue. The created
block consists of a set of transactions b , including block
specific information such as timestamp, miner detail (coin base
address), nonce, hash of the previous block, final state, etc. The
transactions of the block are formed into a dependency graph
for static analysis using WCC c to identify disjoint sets of
transactions that form shards. Load balancing and mapping of
shards to slaves is done as well. The MasterMiner then sends
the shards for each slave to the devices in parallel d and
these are executed locally on each slave e . After successful
execution, each SlaveMiner sends the updated account states
back to the MasterMiner f . The MasterMiner updates its
global account state based on the responses received from all
the SlaveMiners g .

Once all SlaveMiner complete executing their assigned, the
MasterMiner switches to the PoW phase. It assigns them
the task to find the PoW for different ranges of nonces
concurrently h . The SlaveMiner searches the range to solve
the PoW for the block i and sends back a response either
when the PoW is solved or their nonce range has been
completely searched j .

Finally, the MasterMiner broadcasts the block containing
the transactions, the updated account states, the PoW, and
optionally the mapping from shards to transactions to the peers
in the blockchain network for validation k .

When a MasterValidator receives a block to verify, it needs
to re-execute the block transactions and match the resulting
account states with those present in the block. For this Mas-
terValidator, either use the shard information present in the
block (shared validator) or if not present, determine it using
the same dependency graph approach as the MasterMiner c .
Then MasterValidator assigns the shards to the SlaveValidator
s l . After successful execution of the transactions assigned by
MasterValidator m , each SlaveValidator returns the account
states back to the MasterValidator n . The responses are
verified by the MasterValidator with the states present in the

Slave
Miner

Master
Miner

Create	block	from	transaction	queue;

Identify	shards	from	block	and	load	balance;

Send	shard(s)	to	slaves;
Execute	transactions
in	shard	sequentially;Return	updated	states	to	master;

Try	and	solve	PoW;

Update	global	state;
Send	nonce	range	for	PoW	to	slaves;

Return	solution	if	found;

Broadcast	block
for	verification;

Transactions
a b

c

d

f
g

h
i

j
k

e

Master
Validator

Slave
Validator

Optionally	shard	transactions	in	the
block,	and	send	to	slaves;

Execute	transactions
in	shard	sequentially;

Update	state	and	verify;

Verify	PoW;

l
m

o

p

Return	updated	states	to	master; n

Fig. 3: Sequence diagram of operations during mining and validation

block o . The MasterValidator also confirms that miner has
correctly found the PoW p . After successful verification of
both these checks, the MasterValidator accepts the block and
propagates the message to reach the consensus.

IV. EXPERIMENTS AND RESULTS

In this section we first provide a general overview of imple-
mentation detail; then we present the transactions workload
and experimental setup; and in the end, performance analysis
presents the analysis based on execution time and speedup
achieved by the proposed approach over the serial.

A. Implementation

Incorporating our proposed approach into an existing
blockchain framework like Ethereum is time-consuming due
to the complexity of the codebase of these current platforms.
Instead, we implement a stand-alone version of a blockchain
framework that models the peers as a set of micro-services
that perform the various mining and validation operations that
are essential to a blockchain network. This also includes the
operations proposed in DiPETrans. The implementation is in
C++ using the Apache thrift cross-platform micro-services
library.

B. Transactions Workload

We use historic transactions from the Ethereum blockchain
in our experiments. These are acquired from the public-
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data archive available on Google’s Bigquery Engine [33]. We
have chosen the transactions starting from the block number
4, 370, 000, which forms a hard fork when Ethereum changed
the mining reward from 5 to 3 Ethers. We extract ≈ 80K
blocks containing ≈ 5M transactions. While the original
transactions had 17 fields, we selected 6 fields of interest as
part of our workload. These include the from_address of
the sender, the to_address of the receiver, value trans-
ferred in Wei, the unit of Ethereum currency, input data sent
along with the transaction, receipt_contract_address
which is the contract address when it is created for the first
time, and block_number where this transaction was present
in.

There are two types of transactions we consider: monetary
transactions and smart contract transactions [6]. In the former,
also known as value transfer or non-contractual transaction,
coins are transferred from one account to another account.
This is a simple and low-latency operation. In a contractual
transaction, one or more smart contract functions are called.
As we analyzed the Ethereum transactions, we found out
there are 127 unique functions in 20K contracts, out of
which top 11 (most number of times called) function calls
covers ≈ 80% of contract transactions. We re-implement
these contract functions from the Solidity language used by
Ethereum into C++ function calls that can be invoked by our
framework.

Of the 5, 170, 597 transactions present in the Ethereum
blocks we consider, 193, 959 are contract transactions. How-
ever, the wider use of smart contracts will see them have a
larger fraction in future, compared to just monetary transac-
tions. Contract transactions are also more compute intensive
to execute than the monetary transactions, and benefit more
from our parallelism. Hence, we create workloads with dif-
ferent ratios between the contract and monetary transactions:{

1
1 ;

1
2 ;

1
4 ;

1
8 ;

1
16

}
. Each block formed by our miners have 100

to 500 transactions that are in this ratio, depending on the
workload used in an experiment (see Table I Appendix A).

C. Experimental Setup

We used a commodity cluster to run the master and slaves
in the mining and validation communities for our DiPETrans
blockchain network. Each node in the cluster has an 8-
core AMD Opteron 3380 CPU with 32 GB RAM, and are
connected using 1 Gbps Ethernet. A mining community has
a master running on one node, and between one to five
slaves each running on a separate node, depending on the
experiment configuration. Similarly, a validation community
has one master and between one to five slaves.

D. Performance Analysis

For each simulated data, blocks are executed for serial and
1 to 5 slaves configurations. The serial results serve as the
baseline for comparing the performance. Block Execution time
is broken down to compare the time taken by transaction
execution time along with end-to-end execution time on per
block basis. Block execution with mining gives end-to-end

block creation time at the miner while without mining provides
the transaction execution time at the miner. However, trans-
action execution time at validator includes the time taken by
transaction re-execution and verification. For Default Validator
time taken by static analysis also included as the part of the
time taken by the validator.

We selected 3 different workloads for the analysis and aver-
age total time required over all the blocks. In Workload-1, the
number of transactions varies from 100 to 500, while execution
time is averaged across the data set runs (contract : non-
contract transactions = 1:1, 1:2, 1:4, 1:8, 1:16). In Workload-
2, the data set varies from 1:1 to 1:16, and transactions remain
fixed to 500 per block. While, in Workload-3, transactions is
fixed to 500 per block, and community size varies from 1 to 5.
For all this analysis, we computed execution time and speedup
(with and without mining). The analysis for Workload-3 and
tables for execution time and speedup is given in Appendix C.

1) Block Execution Time without Mining: This section
presents the experimental analysis done for transaction execu-
tion time at miner without mining and at validator. In all the
figures, serial execution served as a baseline. The subfigure (a)
shows the line plots for mean transactions execution time taken
by the miner. subfigure (b) shows the transactions execution
time taken by Default Validator while subfigure (c) shows
transactions execution time taken by Sharing Validator. The
subfigure (d) shows comparison for average transactions exe-
cution time taken by Default Validator and Sharing Validator.

Workload-1: Fig. 4 shows the average transactions ex-
ecution time taken by the miner and validator (Table III
Appendix C) . As shown in the Fig. 4(a), Fig. 4(b), Fig.
4(c), and Fig. 4(d) the time required to execute transactions
per block increases as the number of transactions increases
in a block. Also, the 1 slave is performing worst due to the
overhead of static analysis and communication with the master.
Other slave configurations from 2 to 5 are all better than serial
execution.

Fig. 4(d) shows the line plot comparison for mean transac-
tions execution time taken by Default Validator and Sharing
Validator. The only difference between these two validators
is that Default Validator needs to run static analysis on
block transactions before execution. The Default Validator is
supposed to take more time compared to Sharing Validator.
But the experiment shows no significant difference (can be
observed in Table III) as the static analysis is taking very less
time.

Workload-2: In this workload, transactions per block are
fixed to 500. Fig. 5 (Table IV Appendix C) shows the line
plots of mean transactions execution time taken by the miner
and validator. In Fig. 5(a), 5(b), and 5(c), it can be seen that by
varying the ratio of contractual to non contractual transaction
i.e., when the number of contract transactions decreases per
block, the overall time required to execute transactions also
decreases because contractual transaction includes the external
calls.

Another observation is that serial execution outperforms 1
slave configuration. Because in 1 slave configuration, there
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Fig. 6: Workload-1: Average Speedup by Miner (Without Mining) and Validator for Transaction Execution
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Fig. 7: Workload-2: Average Speedup by Miner (Without Mining) and Validator for Transaction Execution

will be overhead of static analysis and communication with
the master. However, all other slave configurations from 2 to 5
performance increases with an increase in the number of slaves
in the community. But with the increase of non-contractual

transaction in the block serial execution started giving better
performance because it may be possible that communication
time increases in the proposed parallel approach. In Fig. 5(c),
we can see that the time required to execute more transactions
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Fig. 9: Average End-to-End Block Creation Speedup by Parallel
Miner over Serial Miner with Mining

per block decreases as the number of contract transactions
decreases.

Fig. 5(d) shows that the parallel validator is always taking
less time than serial, and we can also observe a significant
gap when number of non-contractual transactions per block
increases. However, the Default Validator is supposed to take
more time compared to Sharing Validator. But the experiment
shows that the analyze function is not taking much time, so
there is no much difference between them.

Speedup Analysis: The speedup for Workload-1, Workload-
2, and Workload-3 is given in the Fig. 6 (Table V), Fig. 7, and
Fig. 11 (Table VI) respectively. In all the experiments, serial
execution is considered as a baseline, and parallel execution
speedup is shown in the form of the line chart. We achieved
≈ 2× speedup, using just 5 slaves in the community. It can
be observed that speedup is linearly increasing from 2 slaves
to 5 slaves, so it will increase further if the community size
increases or the number of transactions per block increases.
However, 1 slave community is not achieving any speedup
over serial due to static analysis and communication cost.

Further, Sharing Validator was assumed to outperform
Default Validator, but their performance is almost the same,
which means static analysis is not taking much time. We have
achieved on an average 1.33×, 1.255×, and 1.259× speedup
respectively for parallel miner, Default Validator and Sharing
Validator. Achieved max speedup of 2.18× for miner, 2.02×
for Default Validator and 2.04× for Sharing Validator for 100

to 500 transactions per block. Experiments show that parallel
execution gives better speedup and can be used by the trusted
node to form a community to receive the incentive by mining
the block in the blockchain.

2) Block Execution Time with Mining: Here we present
the analysis for end-to-end block creation time at miner with
mining. We have observed that with the increase in the number
of transactions per block end-to-end time is increased for
fining the PoW. This is because the difficulty is fixed for all
the experiments at the start of the experiments. Finding PoW
is a random process so we cannot guarantee the maximum
time to find PoW.

Existing blockchain platforms calibrate the difficulty to keep
the mean end-to-end block creation time within limits like in
Bitcoin; the block is created every 10 minutes and every two
weeks 2016 blocks. After every 2016 blocks, the difficulty is
calibrated based on how much time is taken if it has taken
more than two weeks, the difficulty is reduced otherwise
increased also several other factors are also considered to
change the difficulty. While in Ethereum blockchain, roughly
every 10 to 19 seconds a block is produced, so the difficulty is
fixed accordingly. After every block creation, if mining time
goes below 9 seconds, then Geth a multipurpose command
line tool that runs Ethereum full node tries to increase the
difficulty. In case when the block creation difference is more
than 20, Geth tries to reduce the mining difficulty of the
system. In the proposed DiPETrans framework throughout the
experiments, we fixed the difficulty, and due to that reason with
an increase in transaction per block increase in mining time
can be observed.

As shown in Fig. 8 and Fig. 9, when the number of slaves
increases in the community end-to-end block creation time
decreases. In Workload-1 with an increase in the number
of transactions per block time taken by mining algorithm
also increases, as shown in 8(a). While as shown in Fig.
8(b) when monetary transaction increases per block mining
time sometimes increase and sometimes decrease. In both of
these observations, the possible reason can be that we are
not changing the difficulty while varying the transaction and
transaction ratio. In Fig. 9 (a) and (b), with the varying number
of transactions and transaction ratio the speedup is almost
similar but with an increase in community members speedup
is higher over the smaller community as well over serial.

Due to page limitation remaining results are presented
in appendix as follows: Remaining results for transaction
execution time and speedup in Appendix C. Block execution
time (end-to-end time) at miner Appendix D. For varying
number of transaction from 500 to 2500 Appendix E.

V. CONCLUSION

The main question we try to answer in this work is
that, is it possible to improve the throughput by adding
distributed power collectively through mining pools in the
current blockchain system? Hence we proposed a distributed
framework DiPETrans to execute transactions of block paral-
lelly on multiple trusted nodes (part of the same community).
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We tested our prototype on actual Ethereum transactions and
achieved linear performance gain to the number of workers.
We saw performance gain in the runtime of contract and mone-
tary transaction. We tested DiPETrans on different workloads
where number of transactions varies from 100 to 500 with
varying contract transactions : non-contract transactions = 1:1,
1:2, 1:4, 1:8, 1:16. We found that with the increase in the
number of transactions per block, speedup also increases in
a distributed setting and helps in improving the throughput.
We observe that if the number of contract call increases in
a block execution time also increases. We also observed that
speedup linearly increases with the increase in the size of the
community. In literature, there is no such study done before,
and that can be the novelty of this work.

As part of our future work, assuming the number of trans-
actions will increase over time, we can think of a community
to work on proposing multiple blocks parallelly. As suggested
earlier, another way to improve performance is to use STM
at slave nodes and parallelly execute the transactions using
multi-cores instead of serial execution. In this work, we have
assumed that there are no nested contract calls, but we can
think of an approach to provide support for those transactions.
Also, we can further improve the performance of mining by
making use of all the cores available with the system and
dividing the search space for POW based on that. Apart
from the above optimization, we are also planning to adopt
a distributed approach within the community instead of the
master-slave approach.
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APPENDIX

This section is organized as follows:
Section No. Section Name

A Summary of Ethereum Transaction Data
B Remaining Proposed Algorithms

C Remaining Results and Observation for Transaction
Execution Time and Speedup

D Remaining Results and Observation for Block Exe-
cution Time (End-to-End Time) with Mining at Miner

E Results and Analysis when Number of Transaction
Varies from 500 to 2500 per Block

A. Summary of Ethereum Transaction Data

This section presents the data set designed for the exper-
iment using extracted transaction from Ethereum blockchain
and smart contract calls implemented in C++ are given in the
Table I and Table II. In the Table I data-1-1-100 represents
that 1:1 is the ratio of contractual : monetary transactions per
block while 100 is the total number of transaction per block.

TABLE I: Summary of Simulated Transactions Data
S. No. Data (#Txns/Block) #Blocks #Contract Txns #Non Contract Txns

1 data-1-1-100 3,880 193,959 194,000
2 data-1-1-200 1,940 193,959 194,000
3 data-1-1-300 1,294 193,959 194,100
4 data-1-1-400 970 193,959 194,000
5 data-1-1-500 776 193,959 194,000
6 data-1-2-100 5,705 193,959 376,530
7 data-1-2-200 2,895 193,959 385,035
8 data-1-2-300 1,940 193,959 388,000
9 data-1-2-400 1,448 193,959 385,168

10 data-1-2-500 1,162 193,959 386,946
11 data-1-4-100 9,698 193,959 775,840
12 data-1-4-200 4,849 193,959 775,840
13 data-1-4-300 3,233 193,959 775,840
14 data-1-4-400 2,425 193,959 776,000
15 data-1-4-500 1,940 193,959 776,000
16 data-1-8-100 16,164 193,959 1,422,432
17 data-1-8-200 8,434 193,959 1,492,818
18 data-1-8-300 5,705 193,959 1,517,530
19 data-1-8-400 4,311 193,959 1,530,405
20 data-1-8-500 3,464 193,959 1,538,016
21 data-1-16-100 32,327 193,959 3,038,738
22 data-1-16-200 16,164 193,959 3,038,832
23 data-1-16-300 10,776 193,959 3,038,832
24 data-1-16-400 8,082 193,959 3,038,832
25 data-1-16-500 6,466 193,959 3,039,020

TABLE II: Summary of Contract Transactions Calls

S.No. Fn Name Fn Hash Parameters #Txns Percentile
1 transfer 0xa9059cbb address, uint256 56,654 37.72
2 approve 0x095ea7b3 address, uint256 11,799 45.58
3 vote 0x0121b93f uint256 11,509 53.24
4 submitTransaction0xc6427474 address, uint256,bytes 8,163 58.67
5 issue 0x867904b4 address,uint256 5,723 62.49
6 callback 0x38bbfa50 bytes32, string, bytes 5,006 65.82
7 playerRollDice 0xdc6dd152 uint256 4,997 69.15
8 multisend 0xad8733ca address,

address[],uint256[]
4,822 72.36

9 SmartAirdrop 0xa8faf6f0 - 4,467 75.33
10 PublicMine 0x87ccccb3 - 4,157 78.10
11 setGenesisAddress0x0d571742 address, uint256,

bytes
3,119 80.17

B. Remaining Proposed Algorithm

This section describes the proposed algorithms and a short
description of them.

Algorithm 2: MasterMinerTask()
Data: ethereumData, slaveList, dataItemMap
Result: blockchain (blockList)

1 Procedure MasterMinerTask(ethereumData):
2 Block block;
3 for data ∈ ethereumData do

// creates candidate block
4 block = CreateBlock(data);
5 if block.txnsList.size() > 0 then

// Identify disjoint sets of txns
(Weakly Connected Components)

6 sendTxnsMap = Analyze(block.txnsList);
// Parallel call to each slave to

assign transactions
7 for slave ∈ slaveList do
8 ConnectSlave(slave, sendTxnsMap);

// wait till all slave execution
completes

// Start Block Mining
9 miningStatus = false;

10 for slave ∈ slaveList do
// Parallel call to each slave to mine

block
11 SlaveMineBlock(slave, block);

12 while !miningStatus do
13 wait();

// Broadcast the block for validation to
all other peers and after more than 51%
acceptance

14 blockchain.append(block);

Algorithm 2: MasterMinerTask() – The MasterMiner starts
block creation by calling CreateBlock() (Algo. 4). The candi-
date block consists of block number, nonce, previous hash,
miner detail (coin base address), transaction list, etc. The
Analyze() (Algo. 1) is used to analyzes the candidate block
transactions for sharding. The master receives a response
sendTxnsMap from Analyze(), which consist a map of slaveID
and transactions list. Each slave is allocated a unique id during
the initialization of the master server. Master connects to the
slave by creating parallel threads with a call to ConnectSlave()
(Algo. 7). The master waits for the slave’s to complete the
transaction execution. So as soon as the master receives the
slave response (SResponse), it makes changes to its state in
dataItemMap.

After transaction execution, the master starts mining (deter-
mine PoW) by setting miningStatus to false. For this master
distributes task among the slaves to mine the block using
asynchronous call to SlaveMineBlock() (Algo. 6). Master calls
each slave to mine from different starting nonce in sequence.
In this way, search space is distributed among the slaves
for PoW calculation. The master waits until the miningStatus
turned to be true by a slave. The slave who finds the correct
PoW sends the information to the master. Finally, master
saves the nonce and broadcast the block in the network for
validation.

Algorithm 3: DefaultValidator() – When validator receives
a block for the validation, it re-executes the transactions and
match the final state of the dataItemMap state. Since in this
approach dependency (shard) information is not added to the
block by the miner, the master validator needs to call the
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Analyze() to determine the disjoint sets of transactions. Then
master validator follows the same approach as the miner to
distribute transactions to the slave and waits for all slaves to
complete. The master validator does not have to mine the
block. The master validator updates its dataItemMap state
based on the responses from the slaves. Finally, it verifies
its dataItemMap state with the block’s dataItemMap state.
If dataItemMap state matches after successful execution of
block’s transaction, then it checks for PoW by verifying
hash(block) < difficulty. If both the checks come out
to be successful, an acceptance message propagated in the
network. Otherwise, the block is rejected by the validator, and
no propagation can and can’t be entertained. After majority
acceptance or consensus, the block is added to the blockchain.

Algorithm 3: DefaultValidator()
Data: block
Result: blocklist

1 Procedure MasterValidator(block):
2 if block.txnsList.size() > 0 then

// Identify disjoint sets of txns (Weakly
Connected Components)

3 sendTxnsMap = Analyze(block.txnsList);
// Parallel call to each slave to assign

transactions
4 for slave ∈ slaveList do
5 ConnectSlave(slave, sendTxnsMap);

// wait till all slave execution completes
6 reject = false;

// Verify PoW
7 if hash(block) > difficulty then

// PoW is incorrect
8 reject = true;
9 else

// Verify dataItemMap with block’s
dataItemMap state.

10 for adr, value ∈ block.dataItemMap do
11 if dataItemMap[adr] != value then
12 reject = true;
13 break;

// Accepted by more than 51% peers
14 if !reject then
15 blockchain.append(block);

SharingValidator () – In this function sharding information
is added in the block by the miner, so the master validator
need not to call the Analyze() at line 3 in Algo. 3. Therefore
the overhead caused by Analyze function can be avoided,
and the validator utilizes the analysis work done by the
miner for parallel execution. So, in the Sharing Validator, the
MasterValidator deterministically assign the different shards
based on the dependency information in the block to the
different SlaveValidator along with the current state of the
data items from its local chain for transaction execution. The
rest of the functionality of this algorithm is same as Default
Validator.

Algorithm 4: CreateBlock() – In this function, the master
creates the candidate block by picking pending transactions
from pending transactions pool. Master also assigns block
number, previous hash, and miner (coin base address) to
the block. There can be some uncles blocks which are valid

blocks and the miner who proposed that blocks deserve
incentive for their work. If these blocks are added by the
upcoming blocks (< 8), also called nephew blocks, they are
given partial incentive based on the below formula. And
some incentive is also given to the miner who adds the uncle
blocks.
uncleMinerReward = ((uncleBlockNumber + 8 −
nephewBlockNumber) ∗ baseReward)/8

nephewMinerReward = (baseReward)/32

The maximum limit on the inclusion of uncle blocks is 2.

Algorithm 4: CreateBlock()
Data: data, prevHash
Result: block

1 Procedure CreateBlock(data, prevHash):
2 Block block;
3 block.number = data.number;
4 block.prevHash = prevHash;
5 block.miner = data.miner;

// creates candidate block
6 for tx ∈ data.txns do
7 Transaction txn(tx.txID, tx.to, tx.from, tx.value, tx.input,

tx.creates);
8 block.txnsList.append(txn);

9 for u ∈ data.uncles do
10 Uncle unc(u.number,u.miner);
11 block.unclesList.append(unc);

Algorithm 5: MiningStatus() – This function is called by
a slave to send the nonce value for the block to master and
signaling master that mining has complete. In this function,
slave checks for block number on which master is working
on with its block number and the miningStatus not true.
Then, the slave updates the nonce value of the block and set
miningStatus to true. Master notices change in miningStatus
variable and come out of the wait loop. And starts working on
the next block after sending the current block for its inclusion
in blockchain and verification by validators.

Algorithm 5: MiningStatus()
Data: block, nonce, number
Result: block

1 Procedure MiningStatus(nonce, number):
2 if block.number == number && !miningStatus then
3 block.nonce = nonce;
4 miningStatus = true;

Algorithm 6: SlaveMineBlock() – In this function, slaves
receive the starting nonce and interval along with the block
to find the PoW. The PoW is found when hash(block) <
difficulty is found for a particular value of nonce. Otherwise,
a nonce is incremented by interval to try again in an infinite
loop. The difficulty we have set for now takes approximately
15 seconds to mine a block, which is close to the current aver-
age time of Ethereum block execution. The actual difficulty is
much larger than what we are using, considering the resources
deployed by miners to find PoW.

Algorithm 7: ConnectSlave() – Master calls Connect-
Slave() (Algo. 7) using parallel threads to assign different
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Algorithm 6: SlaveMineBlock()
Data: block, nonce, interval, difficulty
Result: nonce

1 Procedure SlaveMineBlock(block, nonce, interval):
2 while true do
3 if hash256(block) < difficulty then
4 MiningStatus(nonce,block.number);
5 break;

6 nonce += interval;

task to the slaves. Here master identifies each slave local-
DataItemMap state from it’s (master’s) dataItemMap state
based on the transactions a slave is going to execute. Master
sends transaction list (shards) and associated dataItemMap
to each slave by calling SlaveRecvTxns() (Algo. 8). On this
call slave executes the transactions while master waits for the
slaves responses (SResponse). The SResponse is used to update
the master’s dataItemMap.

Algorithm 7: ConnectSlave()
Data: slave, sendTxnsMap, dataItemMap
Result: dataItemMap

1 Procedure ConnectSlave(slave, sendTxnsMap):
// Identify Associated dataItemMap for each

slave
2 for tx ∈ sendTxnsMap[SID] do
3 localDataItemMap[tx] = dataItemMap[tx] ;

// send txns to slave to execute, receive
updated state

4 SResponse = SlaveRecvTxns(sendTxnsMap[slave],
localDataItemMap);

// update master’s dataItemMap state
5 for adr, dataItem ∈ SResponse.dataItemMap do
6 dataItemMap[adr] = dataItem;

Algorithm 8: SlaveRecvTxns() – While executing
SlaveRecvTxns() (i.e., Algo. 8), the slave receives the trans-
action list and associated dataItemMap state from the master.
The slave first identifies smart contract and non-smart contract
calls (transactions). If the transaction is a smart contract call,
then the transaction is executed by invoking CallContract()
to execute respective smart contract method. Otherwise, non-
smart contract calls are considered as monetary exchanges and
executed within the scope of this function. For CallContract()
transaction execution, we have implemented top 11 functions
calls in Ethereum which cover 80% of real transactions of
block numbers between 4370000 and 4450000.

C. Remaining Results and Observation for Transaction Exe-
cution Time and Speedup

This section presents the experimental analysis done for
transaction execution time for Workload-3 and speedup
achieved in transaction execution by parallel miner and val-
idator over serial. First, we present the analysis for transaction
execution time for Workload-3. Then we present the analysis
for the remaining analysis of the speedup for Workload-1,
Workload-2, and Workload-3.

Algorithm 8: SlaveRecvTxns()
Data: txnsList, dataItemMap
Result: SResponse

1 Procedure SlaveRecvTxns(txnsList, dataItemMap):
// Execute txns serially

2 for tx ∈ txnsList do
// Smart Contract txn

3 if tx is contractCall then
4 CallContract (tx);

// Non-Smart Contract txn
5 else if tx.value ≤ dataItemMap[tx.from].value then
6 dataItemMap[tx.fromAddress].value -= tx.value;
7 dataItemMap[tx.toAddress].value += tx.value;
8 else

// Invalid txn: txn execution failed!

1) Transaction Execution Time Analysis: Workload-3: Fig.
10 shows the analysis for a fixed number of transactions
(500) per block with varying community size. This workload
is designed to see how the transaction ratio (contract call:
monetary transaction) in each block will have an impact
on the performance. We can observe in Fig. 10(a), 10(b),
10(c), and 10(d) that 1 slave is performing worst due to the
overhead of static analysis and communication with master.
Other slave configurations from 2 to 5 are all outperforming
over serial, and execution time decreases as the number of
slaves increases. Also, the smaller the number of contractual
transaction per block the performance will be the better. This
is because of the external method call by the contractual
transaction. Similar to Workload-1 and Workload-2, Fig. 10(d)
shows that there is no much performance difference in Sharing
Validator and Default Validator.

2) Speedup Analysis: Here we will present the result anal-
ysis for all three workloads based on speedup achieved by
parallel miner and validator over serial miner and validator.

Workload-1: Fig. 6 shows the average transactions speedup
achieved by the miner (without mining) and validator. As
shown in the Fig. 6(a), 6(b), 6(c), and 6(d) the mean speedup
increases as the number of transactions per block increases.
Also, one slave is performing worst due to the small overhead
of static analysis and communication with the master. Other
slave configurations from 2 to 5 are all working better than
serial. Fig. 4(d) shows the line plot comparison for aver-
age speedup over serial by Default Validator and Sharing
Validator. The only difference between these two validators
is that Default Validator needs to run static analysis on
transactions present in a block before execution. The Default
Validator is supposed to take more time compared to Sharing
Validator. But the experiment shows no significant benefits
of information sharing as the time taken by static analysis
function takes very less time. However, when the number
of transaction per block increases further, then possibly, the
benefits of information sharing can be observed.

Workload-2: In Fig. 7(a), 7(b), and 7(c), we can observe
that when the number of contract transactions decreases per
block, the overall speedup increases because contractual trans-
action includes the external contract method calls. Also, we
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Fig. 10: Workload-3: Average Transaction Execution Time by Miner (Without Mining) and Validator

can see that the speedup increases till 1:4 (contract : monetary
transactions) and then decreases with a further decrease in the
number of contract transactions per block. Fig. 7(d) shows
the line plot comparison for speedup over serial by Default
Validator and Sharing Validator. The experiment shows there
is no significant time taken by analyzing function to gain some
performance improvement over Sharing Validator. Hence both
Default Validator and Sharing Validator are performing almost
same.

Workload-3: As we can see in all this Fig. 11(a), 11(b),
11(c), and 11(d) that 1 slave is performing worst due to the ob-
vious reason of overhead of static analysis and communication
with slave. Other slave configurations all outperforming over
serial. Also, the smaller the number of contractual transaction
per block the performance will be the better. However Fig.
11(d) shows that there is no much performance benefit due to
information sharing with the validator.

Below tables shows the respective numbers for the work-
loads. Table III and Table IV shows the transaction execution
time while Table V and Table VI the respective speedup.

TABLE III: Workload-1: Average Transaction Execution Time (ms)
taken by Miner (Without Mining) and Validators

Workload 1: Execution Time-Averaged Across Data Set
Average Transaction Execution

Time (ms)
Number of Transactions/Block

100 200 300 400 500

Number
of

Slaves

Serial Miner 209.178 259.680 333.517 485.548 652.948
Validator 209.178 259.680 333.517 485.548 652.948

1 Slave
Miner 214.934 338.606 449.450 560.487 670.041

No Info Validator 222.632 345.584 455.267 564.490 673.896
Info Validator 222.769 345.301 454.884 564.661 673.295

2 Slave
Miner 163.906 239.518 304.819 372.045 435.397

No Info Validator 175.435 250.367 315.849 384.773 449.132
Info Validator 175.397 250.078 315.076 383.825 447.844

3 Slave
Miner 145.597 202.979 255.478 305.016 352.256

No Info Validator 159.253 218.479 270.447 320.623 365.106
Info Validator 159.765 218.633 269.393 319.897 363.379

4 Slave
Miner 138.346 188.285 231.101 272.976 314.880

No Info Validator 154.815 204.332 248.875 289.148 332.949
Info Validator 154.416 203.515 247.842 287.508 331.248

5 Slave
Miner 137.786 181.983 219.573 255.971 292.882

No Info Validator 153.819 198.089 236.746 273.503 316.972
Info Validator 155.583 196.923 235.712 270.301 314.148

D. Block Execution Time (End-to-End Time) with Mining at
Miner

This section presents the analysis for the end-to-end block
creation time, including mining (PoW) at the miner for trans-
action varies from 100 to 500 in Workload-1 while it is fixed to

TABLE IV: Workload-2 and Workload-3: Average Transaction Ex-
ecution Time (ms) taken by Miner (Without Mining) and Validators
for Fixed 500 Transactions/Block

Workload-2 and Workload-3: for Fixed 500 Transactions/Block
Average Transaction
Execution Time (ms)

Data Set (Contractual:Monetary Transactions)
1:1 1:2 1:4 1:8 1:16

Number
of

Slaves

Serial Miner 899.501 803.577 745.571 467.861 348.230
Validator 899.501 803.577 745.571 467.861 348.230

1 Slave
Miner 903.435 752.360 643.278 561.328 489.806

No Info Validator 904.015 752.003 648.402 568.377 496.685
Info Validator 903.008 752.794 647.327 567.520 495.829

2 Slave
Miner 588.783 500.214 416.558 357.128 314.299

No Info Validator 602.825 509.827 428.580 375.175 329.252
Info Validator 602.512 508.785 428.127 372.610 327.189

3 Slave
Miner 476.162 403.198 339.778 288.770 253.375

No Info Validator 488.707 417.246 354.410 300.697 264.469
Info Validator 487.988 413.735 353.356 299.257 262.558

4 Slave
Miner 431.591 361.182 299.185 255.518 226.925

No Info Validator 456.401 377.233 316.041 268.871 246.201
Info Validator 459.720 372.981 314.459 265.778 243.300

5 Slave
Miner 403.518 334.074 278.474 236.432 211.909

No Info Validator 441.508 350.673 295.938 263.882 232.858
Info Validator 437.905 347.662 293.810 261.896 229.465

TABLE V: Workload-1: Average Speedup by Parallel Miner (With-
out Mining) and Validator

Workload-1: Execution Time-Averaged Across Data Set

Average Speedup Number of Transactions/Block
100 200 300 400 500

Number
of

Slaves

Serial Miner 1 1 1 1 1
Validator 1 1 1 1 1

1 Slave
Miner 0.869 0.723 0.723 0.843 0.953

No Info Validator 0.838 0.708 0.713 0.837 0.947
Info Validator 0.837 0.709 0.714 0.837 0.948

2 Slave
Miner 1.148 1.024 1.068 1.271 1.467

No Info Validator 1.069 0.979 1.029 1.230 1.421
Info Validator 1.067 0.980 1.031 1.233 1.425

3 Slave
Miner 1.295 1.209 1.273 1.550 1.813

No Info Validator 1.179 1.121 1.200 1.475 1.747
Info Validator 1.174 1.119 1.205 1.479 1.755

4 Slave
Miner 1.371 1.303 1.406 1.734 2.032

No Info Validator 1.217 1.198 1.305 1.636 1.921
Info Validator 1.220 1.202 1.311 1.648 1.933

5 Slave
Miner 1.388 1.350 1.478 1.848 2.185

No Info Validator 1.249 1.237 1.370 1.728 2.022
Info Validator 1.244 1.243 1.376 1.747 2.040

500 in Workload-2 and Workload-3 however other parameters
as data set and community size varies respectively.

1) Transaction Execution Time Analysis: Fig. 8(a) shows
the line plots for mean end-to-end block creation time taken
by the miner (with mining) for Workload-1. The overhead of
static analysis and communication is negligible with mining.
Here, all slaves configuration are performing better than serial.
Since the PoW is random nonce for which the hash of a block
is less than the given difficulty, it can take a variable amount
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Fig. 11: Workload-3: Average Speedup by Miner (Without Mining) and Validator for Transaction Execution

TABLE VI: Workload-2 and Workload-3: Average Speedup by
Parallel Miner (Without Mining) and Validators

Workload-2 and Workload-3: for Fixed 500 Transactions/Block

Average Speedup Data Set (Contractual:Monetary Transaction)
1:1 1:2 1:4 1:8 1:16

Number
of

Slaves

Serial Miner 1 1 1 1 1
Validator 1 1 1 1 1

1 Slave
Miner 0.995 1.067 1.158 0.832 0.710

No Info Validator 0.994 1.068 1.149 0.822 0.701
Info Validator 0.996 1.067 1.151 0.823 0.702

2 Slave
Miner 1.527 1.605 1.788 1.308 1.107

No Info Validator 1.491 1.575 1.738 1.245 1.057
Info Validator 1.492 1.578 1.740 1.253 1.064

3 Slave
Miner 1.888 1.992 2.193 1.617 1.373

No Info Validator 1.840 1.925 2.102 1.553 1.316
Info Validator 1.842 1.941 2.108 1.561 1.325

4 Slave
Miner 2.083 2.223 2.490 1.828 1.534

No Info Validator 1.970 2.129 2.357 1.737 1.413
Info Validator 1.956 2.153 2.369 1.757 1.430

5 Slave
Miner 2.228 2.404 2.675 1.975 1.642

No Info Validator 2.036 2.290 2.517 1.770 1.494
Info Validator 2.053 2.310 2.536 1.783 1.517

 0

 10

 20

 30

 40

 50

 60

 70

Serial 1 2 3 4 5

Fixed 500 Transactions/Block

Miner: Workload-3

# Slaves (Community Size)

 1:1
1:2

1:4
1:8 

1:16

Fig. 12: Workload3: Average End-to-End Block Creation Time by
Miner with Mining (PoW)
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Fig. 13: Workload3: Average End-to-End Block Creation Speedup
by Parallel Miner over Serial Miner with Mining (PoW)

of time to find nonce. Also, the serial and slave configurations
have a different order of transactions in the final block. Both
blocks are correct as proposed by the miner and considered as
the final order of transaction execution. It is possible that due
to some outliers in serial execution resulted higher mean for
the end-to-end time required to create a block as compared to
1 slave. Another observation is that the time required to create
block increases linearly as the number of transactions per
block increases. Across the different number of transactions,
the trend remains consistent with slaves, the higher number of
slaves takes less time than the less number of slaves.

For Workload-2 results are shown in Fig. 8(b). The reason
for serial and one slave for these plots remains the same as
explained above. The time required to create block across
different data sets varies and does not show any pattern
based on a contract to monetary transactions ratio. Since it
largely depends on the PoW search. With PoW, we are always
guaranteeing that when the number of slaves increases, it will
take less time to create a block (with mining) than the serial.

Similarly, in Workload-3 when the number of transactions
per block is fixed to 500 and community size increases (i.e.,
slaves in the community increases) the time taken to mine
a block always takes lesser time than the serial and smaller
size community. Fig. 12 confirms this observation; however,
it is challenging to claim about which data set is doing better
over others, and the reason is that mining time dominates the
transaction execution time.

2) Speedup Analysis: For Workload-1 Fig. 9(a) shows the
mean speedup achieved by parallel community-based miner
over serial by the miner (with mining). Here, all slaves
configuration are achieving better speedup over serial. The
observation here is that the speedup varies as the number of
transactions per block increases. Across the different number
of transactions, the trend remains consistent with slaves, the
higher number of slaves gives higher speed up than the less
number of slaves.

Fig. 9(b) shows the line plots for mean speedup achieved
over serial by the parallel miner with mining for Workload-2.
The time required to create block across different data sets
varies and does not show any pattern based on transactions
ratio (i.e., contractual : momentary transactions). Since it
largely depends on the PoW search. With PoW, we are always
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guaranteeing that more number of slaves gives higher speedup
over serial with mining. In Workload-3 the speedup increases
with increase in the size of the community, but there are no
fixed trained with varying transaction ratio.

E. Results and Analysis when Number of Transaction Varies
from 500 to 2500 per Block

This section includes the experiment done on a varying
number of transactions from 500 to 2500 per block. Similar
to the earlier experiments where the number of transactions
per block varies from 100 to 500, here in this experiments for
Workload-1 number of transactions vary from 500 to 2500 and
transaction execution time, and the speedup is averaged over
varying data sets (i.e., from 1:1 to 1:16). In Workload-2 data
set varies from 1:1 to 1:16 while the number of transactions per
block remains fixed to 2500. While in Workload-3 community
size varies from 1 slave up to 5 slaves in the community, and
the number of transactions per block remains fixed to 2500.
In all the figures, serial execution served as a baseline.

1) Transaction Execution Time Analysis: Workload-1: Fig.
14 shows the average transactions execution time taken by
the miner and validator. As shown in the Fig. 14(a), Fig.
14(b), Fig. 14(c), and Fig. 14(d) the time required to execute
transactions per block increases as the number of transactions
increases in a block. Also, the 1 slave is performing worst
due to the overhead of static analysis and communication
with the master. Other slave configurations from 2 to 5 all
are better than serial. Fig. 14(d) shows the mean transactions
execution time taken by Default Validator, Sharing Validator
and Serial. The only difference between these two validators
is that Default Validator needs to run static analysis on
block transactions before execution. The Default Validator is
supposed to take more time compared to Sharing Validator.
The experiment shows slight performance improvement for
Sharing Validator over Default Validator as the execution time
and is significant enough to see the difference.

Workload-2: In this workload, the number of transactions
per block is fixed to 2500 while the data set varies from 1:1
to 1:16. In Fig. 15(a), 15(b), and 15(c), it can be seen that
decreasing the number of contract transactions than monetary
transaction per block the overall time required to execute
transactions also decreases because contractual transaction
includes the external calls. Further, it can be noticed that
serial execution outperforms 1 slave configuration due to
the static analysis and communication overhead associated
with one slave configuration. But other configurations from
2 to 5 slaves per community outperform over serial with
the increases in the number of slaves in the community.
But with the increase of monetary transaction in the block,
serial execution started giving better performance because it
may be because of communication dominates the transaction
execution. In this figures, we can see that the time required to
execute more transactions per block decreases as the number
of contract transactions decreases. Fig. 15(d) shows that the
parallel validator is always taking less time than serial, and we
can also observe a significant gap as we increase the number

of monetary transactions per block. The Sharing Validator
achieved a slight improvement over Default Validator infect
they are very close to each other.

Workload-3: Fig. 16 shows the analysis for a fixed number
of transactions (2500) per block with varying community size.
Here we see how the transaction ratio in each block will have
an impact on the performance. We can observe in Fig. 16(a),
16(b), 16(c), and 16(d) that 1 slave is performing worst due to
the overhead of static analysis and communication with master.
Other slave configurations from 2 to 5 are all working better
than serial, and execution time decreases as the number of
slaves increases. Also, the smaller the number of contractual
transaction per block the performance will be the better, i.e.,
1:1 is taking higher time then 1:2 and 1:16 is taking least time
among them since it consist 16× more monetary transactions
than contractual transactions in a block. In Fig. 16(d) we can
see the slight performance difference in Sharing Validator and
Default Validator.

2) Speedup Analysis: Workload-1: Fig. 17 shows the mean
speedup obtained by the parallel miner (without mining) and
validator over serial miner and validator.

As shown in the Fig. 17 the mean speedup increases as
the number of transactions per block increases but, the serial
is outperforming 1 slave configuration of community-based
parallel execution. This happens due to the static analysis and
communication overhead associated with master and one slave
communicate with the master. Other settings, i.e., 2 to 5 slaves
in the community, all achieving better speedup over serial.
Also, there is a drop in speedup going from 500 to 1000,
but then onwards there is a steady increase in speedup. Next
Default Validator and Sharing Validator is outperforming over
serial which can be seen in Fig. 14(d).

Workload-2: In this workload, we fixed the number of
transactions per block to 2500. However, the data set varies
from 1:1 to 1:16, i.e., contractual to monetary transaction ratio
varies. In Fig. 18(a), 18(b), and 18(c), it can be observed that
by varying the ratio of contractual to monetary transaction
the overall speedup increase because contractual transaction
drops with number of increase in monetary transaction per
block. Further, we can observe that speedup increases till 1:8
and then decreases on the further decrease in the number of
contract transactions per block. Fig. 18(d) shows there is a
slight performance improvement in Sharing Validator over
Default Validator.

Workload-3: Fig. 19 shows that 1 slave is performing worst
due to the overhead of static analysis and communication.
Other slave configurations from 2 to 5 are all doing better than
serial, and speedup increases as the number of slaves increases.
Also, the smaller the number of contractual transaction per
block the performance will be the better. As explained in the
Workload-2, this is because of the external method call by the
contractual transaction.
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Fig. 14: Workload 1: Average Transaction Execution Time by Miner (without Mining) and Validator when Transactions Varies from 500 to
2500
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Fig. 15: Workload 2: Average Transaction Execution Time by Miner (without Mining) and Validator for 2500 Transactions/Block
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Fig. 16: Workload 3: Average Transaction Execution Time by Miner (without Mining) and Validator for 2500 Transactions/Block
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Fig. 17: Workload 1: Average Speedup by Miner (without Mining) and Validator for Transaction Execution when Transactions Varies from
500 to 2500

17



 0

 0.5

 1

 1.5

 2

 2.5

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(a) Miner

S
p

e
e

d
u

p
 o

v
e

r 
S

e
ri
a

l 
M

in
e

r

Data Set

 

 0

 0.5

 1

 1.5

 2

 2.5

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(b) Default Validator

S
p

e
e

d
u

p
 o

v
e

r 
S

e
ri
a

l 
V

a
lid

a
to

r

Data Set

 Serial 1 Slave 2 Slave 3 Slave 4 Slave 5 Slave

 0

 0.5

 1

 1.5

 2

 2.5

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(c) Sharing Validator

S
p

e
e

d
u

p
 o

v
e

r 
S

e
ri
a

l 
V

a
lid

a
to

r

Data Set

 

 0

 0.5

 1

 1.5

 2

 2.5

1:1 1:2 1:4 1:8 1:16

Fixed 2500 Transactions/Block

(d) Sharing v/s Default Validator

S
p

e
e

d
u

p
 o

v
e

r 
S

e
ri
a

l 
V

a
lid

a
to

r

Data Set

 
Serial

Default 
Sharing

Fig. 18: Workload 2: Average Speedup by Miner (without Mining) and Validator for Transaction Execution for 2500 Transactions/Block
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Fig. 19: Workload 3: Average Speedup by Miner (without Mining) and Validator for Transaction Execution for 2500 Transactions/Block
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