
SPECTRE:

A Fast and Scalable Cryptocurrency Protocol

Yonatan Sompolinsky, Yoad Lewenberg, and Aviv Zohar

School of Engineering and Computer Science,
The Hebrew University of Jerusalem, Israel

{yoni sompo,yoadlew,avivz}@cs.huji.ac.il

Abstract

A growing body of research on Bitcoin and other permissionless
cryptocurrencies that utilize Nakamoto’s blockchain has shown that they do
not easily scale to process a high throughput of transactions, or to quickly
approve individual transactions; blocks must be kept small, and their creation
rates must be kept low in order to allow nodes to reach consensus securely. As
of today, Bitcoin processes a mere 3-7 transactions per second, and transaction
confirmation takes at least several minutes.

We present SPECTRE, a new protocol for the consensus core of
crypto-currencies that remains secure even under high throughput and fast
confirmation times. At any throughput, SPECTRE is resilient to attackers
with up to 50% of the computational power (up until the limit defined by
network congestion and bandwidth constraints). SPECTRE can operate at
high block creation rates, which implies that its transactions confirm in mere
seconds (limited mostly by the round-trip-time in the network).

Key to SPECTRE’s achievements is the fact that it satisfies weaker
properties than classic consensus requires. In the conventional paradigm, the
order between any two transactions must be decided and agreed upon by all
non-corrupt nodes. In contrast, SPECTRE only satisfies this with respect to
transactions performed by honest users. We observe that in the context of
money, two conflicting payments that are published concurrently could only
have been created by a dishonest user, hence we can afford to delay the
acceptance of such transactions without harming the usability of the system.
Our framework formalizes this weaker set of requirements for a crypto-currency’s
distributed ledger. We then provide a formal proof that SPECTRE satisfies
these requirements.

1 Introduction

Bitcoin is an open crypto-currency system that was invented and later deployed by
Satoshi Nakamoto [14]. The main challenge in creating an open P2P system that

1

handles money is making the system resilient to Sybil attacks. In a Sybil attack,
the attacker joins the system under multiple identities, and subverts its operation
from within [4]. The main tool that Nakamoto used to overcome this problem
is Proof-of-Work (PoW) – a cryptographic primitive that allows one machine to
validate that another had invested some large amount of computational power [5].
While attackers can spawn additional identities, their constrained computational
resources prevent them from solving too many PoW puzzles [10]. Nakamoto utilizes
this primitive to maintain a consistent transaction ledger, called the blockchain.
The blockchain is composed of individual blocks, which are essentially collections
of transactions that are included in the ledger.

The Bitcoin system follows the replicated state machine approach [18]: nodes have
local replicas of the ledger, and they reach agreement on the full order of blocks (and
by extension on the full order of transactions) via the Nakamoto protocol. This allows
nodes to agree on a consistent set of transactions by accepting only the first of any
conflicting set.

Unfortunately, recent research has shown that the Nakamoto consensus has severe
scalability limitations [3, 19, 7, 15]. If honest nodes do not synchronize fast enough,
consensus cannot be achieved, and the irreversibility of transactions cannot be
assured. To avoid this, Bitcoin was set to operate at extremely low rates. The
protocol enforces a slow block creation rate, extending the blockchain only once every
10 minutes in expectation. Users must thus wait a long while to receive approval for
their transfers.1

In addition to the restriction that this requirement places on the block creation
rate, it also places a limit on the block size: blocks that are very large would take
too long to propagate to other nodes. The combined limit on block creation rate and
on block size effectively imposes a limit on the throughput of transactions that the
system can process. If the throughput grows (either via an increase in block size or
block creation rate), Nakamoto’s original guarantee no longer holds—attackers with
less than 50% of the computational power can disrupt the system.

Disruptions to the consensus core of crypto-currency systems generally take one
of two forms: attackers either compromise the liveness property of the system,
which implies that they can ensure that transactions are not accepted into the
system, or they compromise the safety property, which implies that transactions
can be reversed and money can be double-spent. Indeed, as Bitcoin’s throughput is
increased both attacks become feasible for attackers with less computational power;
they can postpone the acceptance of any transaction indefinitely, and double spend
any transaction they issue, regardless of the amount of time that has elapsed since its
publication.

Our contribution. In this paper we present SPECTRE, a PoW-based protocol that
can process a high throughput of transactions and maintain fast confirmation times
while remaining secure from attackers with up to 50% of the computational power.
SPECTRE relies on a data structure that generalizes Nakamoto’s blockchain into a
direct acyclic graph (a block DAG). We provide extensive theoretical analysis of the

1Other cryptocurrencies that run slightly modified versions of Bitcoin’s code have sometimes
opted for higher block creation rates. These come at some cost to their security

2

protocol, its security and scalability. We additionally provide simulation results that
demonstrate SPECTRE’s advanced capabilities.

The name SPECTRE stands for “Serialization of Proof-of-work Events:
Confirming Transactions via Recursive Elections”.

Properties of SPECTRE. SPECTRE’s design is intended to avoid the need for
nodes to reconcile their different world views regarding the identity of a selected chain
at the time of block creation. By maintaining a full DAG of blocks, SPECTRE can
allow miners to create blocks concurrently and much more frequently. Agreement
on the main chain is not required when a block is created,2 nor is any knowledge
of the propagation delay in the network required to run a mining node. Instead,
the decision on which transactions have been approved by the system is made after
the fact, by anyone that observes a recent version of the block DAG. SPECTRE
guarantees that such decisions will be consistent and that transfers remain secure
from double spending or delays.

The block creation rate in SPECTRE is not constrained by network propagation
delays, implying that large and fast blocks can be created, up to the limit imposed by
network congestion and bandwidth that is required from nodes to receive a full copy
of all transactions.3 This results in fast confirmation times of transactions, especially
so for small sized attackers.4 Below are some confirmation times that can be achieved
with SPECTRE, by creating 10 blocks per second. These numbers assume that blocks
(e.g., of size 100 KB) propagate to the vast majority of mining nodes within 5 seconds.

protocol λ d α
time until
ϵ = 0.01

SPECTRE 10 5
0.05 10.07 sec
0.1 11.3 sec

Bitcoin 1/600 5
0.05 2700 sec
0.1 4500 sec

In Section 6 we show that the acceptance times in SPECTRE can be further
accelerated by tightening the analysis. We additionally show that confirmation times
are highly affected by the delay diameter; we believe that 5 seconds for 100 KB
blocks represents a sufficiently conservative estimate (for example, the “Bitcoin Relay
Network” performs much better with 1 MB blocks).

An additional benefit of SPECTRE’s high block creation rate is that mining
rewards have significantly lower variance compared to Bitcoin: if the block creation
rate is set to 10 blocks per second then a solo-miner will receive rewards 6,000 times
more often. This will reduce the need for large mining pools, and will therefore
contribute to the system’s decentralization.

2In contrast, Bitcoin nodes must choose a single chain to extend when building blocks at the
moment of block creation.

3We note that these limits are not too restrictive: 2,000 bitcoin transactions take up roughly 1MB,
which implies that a 10MBps connection could transmit 20,000 transactions per second, rivaling the
global transaction rate of Visa at peak times.

4Merchants conducting transactions at a physical point of sale are mostly concerned with fast
confirmation times while securing themselves against small attackers (hence their willingness to settle
for 0-confirmation transcations in Bitcoin).

3

The resilience of SPECTRE to attackers with up to 50% of computational power
comes at a cost. While Nakamoto’s protocol resolves conflicts between any pair of
transactions (by deciding their order), SPECTRE only guarantees this with respect
to some pairs of transactions. In SPECTRE, if two conflicting transactions were
published at about the same time, the identity of the prevailing transaction might
remain undetermined for arbitrarily long periods of time. Our key insight is that
in the context of crypto-currencies transactions only conflict if they move the exact
same funds to two different locations, which implies that they were both generated by
the original owner of the funds (cryptographic signatures ensure that only the owner
may move his funds). Hence, an honest participant will never create such conflicts,
and we can afford to delay the decision regarding transactions that have been visibly
double spent.

The Requirements from Distributed Ledgers (RDL) framework. To
make our arguments precise we provide a formal framework to reason about the
required properties of distributed ledger protocols for crypto-currencies, which is
of independent interest. By specifying weaker properties that distributed ledgers
must satisfy, we include solutions such as SPECTRE that provide better security and
performance.

According to the RDL-framework, a distributed ledger protocol must provide a
pair of procedures GetAccepted and ChkRobustAccept. The GetAccepted procedure
takes as input a user’s current world view (in our case, this is in the form of the
block DAG that it observes locally) and outputs a consistent subset of accepted
transactions.5 ChkRobustAccept enables the user to determine whether he can safely
consider funds to have been transferred. For example, a merchant receiving payments
will only deliver the good or service to the buyer once he had determined that the
funds are securely his. ChkRobustAccept takes as input the user’s world view, a
transaction from the accepted subset, and ϵ; it returns ACCEPT if the user can
safely consider funds to have been received with probability of transaction reversal
that is smaller than ϵ, or WAIT otherwise. In the former case we say that the user
has ϵ-accepted the transaction. We require that the following properties be satisfied:

• Consistency: GetAccepted returns a consistent set.

• Safety: if an honest user ϵ-accepted a transaction (using ChkRobustAccept)
then w.h.p. eventually any honest user will do the same.

• Progress: if an honest user ϵ-accepted a transaction then w.h.p. it will
eventually ϵ′-accept it (for any ϵ′).

• Weak Liveness: if a transaction is contained in a published block, then as
long as its inputs remain ϵ-accepted, and as long as no conflicting transactions
are published, eventually an honest node will ϵ-accept it.

We formalize these properties in Section 4.
The highlight of this work is the SPECTRE protocol, whose GetAccepted and

ChkRobustAccept procedures satisfy these requirements:

5The consistency notion depends on the system of transactions that the ledger serves. In Bitcoin
for example, two transactions are in conflict if they spend the same outputs.

4

Theorem (informal). If honest nodes possess a majority of the computational
power, then regardless of the network’s communication delay, SPECTRE satisfies
Consistency, Safety, Progress, and Weak Liveness.

Fast acceptance times and scalability. A scalable protocol is one in which waiting
times for transaction processing remain short even under high transaction throughput.

In SPECTRE, we achieve waiting times that are O
(

ln(1/ϵ)
λ(1−2α) +

d
1−2α

)
, where d is a

bound on the time it takes to reach honest nodes that have at least 1−α fraction of the
computation power (and α is the fraction of computational power of the attacker along
with additional distant nodes), ϵ is a bound on the probability that nodes are willing
to tolerate of transaction reversal, and λ is the rate of block creation. Considering the
expression above, it is easy to see that SPECTRE operates best with low propagation
delays, and high block creation rates. As block creation rates are increased, the
first term becomes negligible, and the dominating term is O (d/(1− 2α)), which is
essentially a measure of the propagation delay to reach a large amount of honest nodes
in the network.

Simulations. In addition to the theoretical analysis, we provide the results obtained
by running the protocol on a simulated network topology. We show how waiting times
change in practice as parameters are adjusted, and provide evidence for the protocol’s
applicability.

Organization of the paper. The remainder of this paper is organized as follows: In
the subsequent subsection we discuss related work. We describe the basic operation
of SPECTRE in Section 2. Next, in Section 3, we provide examples of attacks
and provide intuition for why they fail to disrupt the protocol. A formal model is
provided in Section 4. We then return to present SPECTRE’s procedures formally in
Section 5. In Section 6 we present our simulation results for the protocol and evaluate
its performance. We discuss some implementation details in Section 7, including more
details about minting, denial-of-service attacks, and re-targeting. In Section 8 we
outline the proof of the main theorem that we have stated above. We conclude in
Section 9. Finally, we provide the full proof in Section 10.

1.1 Related Work

Previous research has produced several suggestions for protocols that attempt to
address the security-scalability challenge, but all protocols still provide a total order
over blocks:

The GHOST protocol is an alternative chain selection rule that gradually chooses
a tree of blocks until converging on a single chain [19]. GHOST utilizes pointers
from off-chain blocks in an attempt to overcome the disadvantage of honest nodes
compared to a centralized attacker. It can be shown that the Liveness property of
GHOST can be attacked in several ways, as was demonstrated by [11].

The use of block DAGs was proposed in the Inclusive protocol [13], in which
throughput was increased by combining discarded blocks into the ledger. However,
the protocol modification of Inclusive [13] still relies internally on a simple chain-based
protocol to provide a total order over blocks. As such, it mitigates but does not

5

avoid the security-scalability trade-off. The Inclusive paper further includes a game
theoretic analysis of the incentives of nodes to embed different transactions in their
blocks (without the ability to coordinate).6

Bitcoin-NG [6] provides a clever chain structure that is composed of two type of
blocks key blocks that require PoW but contain no transactions and mini-blocks that
do not require proof of work but do contain transactions. Indeed, Bitcoin-NG manages
to obtain a significant scalability increase, but its key blocks are still generated slowly,
hence, confirmation times remain high.

The work of Pass and Shi [16] constructs an interesting hybrid model that combines
consensus protocols, building on a previous work by [12, 2]. In Hybrid Consensus, the
Nakamoto consensus is used only to select a subset of nodes out of the entire (a priori
unknown) set of nodes. The selected committee then communicates internally and
runs some conventional consensus algorithm to confirm new transactions. Arguably,
the consensus protocol run by Hybrid Consensus’s rotating committee has its own
scalability limitations. Concretely, committee members must remain available online
for some period after they are chosen, and need to directly communicate with one
another, which introduces a new set of considerations, e.g., availability, DoS attacks,
and anonymity concerns. In contrast, SPECTRE only relies on miner nodes to
create blocks of transactions that extend their local DAGs, and to publish them.
Miners in SPECTRE are not directly involved in any explicit consensus protocol
and moreover can operate with little regard of other nodes’ synchronization status.
Lastly, Hybrid Consensus is only resilient to attackers that control less than 33% of
the total computational power, whereas SPECTRE is resilient to any attacker up to
50%. This gap is inevitable, as Hybrid Consensus satisfies stronger properties than
SPECTRE and the RDL-framework set out to meet: It achieves regular (rather than
weak) Liveness and ensures a full order of transactions.7

To the best of our knowledge, this is the first work to propose a native PoW-based
protocol for crypto-currencies that does not rely on the selection of a main chain.

2 The SPECTRE Protocol (informal)

In this section we describe the basic operation of SPECTRE, via informal instructions.
A formal specifictation of the procedures will appear in Section 5.

2.1 Basic notation

A block DAG is typically denoted by G = (C,E), where C represents blocks E
represents the hash references. For a block z ∈ C we will frequently abuse notation
and write z ∈ G. past (z,G) ⊂ C denotes the subset of blocks reachable from z, and
similarly future (z,G) ⊂ C denotes the subset of blocks from which z is reachable
(these are blocks that are provably created before and after z, correspondingly). Note
that an edge in the DAG points back in time, from the new block to previously created

6We build on this argument, and indeed assume that nodes will maximize their profits by avoiding
transaction “collisions” and will try to embed unique content in their blocks.

7The 33% is tight when aiming at classic consensus properties [16].

6

blocks which it extends. We denote by anticone (z,G) the set of blocks that the DAG
does not directly order compared to z, that is: G\ (past (z,G) ∪ {z} ∪ future (z,G)).
The unique block genesis is the block created at the inception of the system, and
every valid block must have it in its past set. The set past (b,G), in sharp contrast
to future (z,G) and anticone (z,G), is fixed once and for all at the creation of b,
and does not require specifying the “context” G. Finally, we relate to a hypothetical
block, virtual (G). This block satisfies past (virtual (G)) = G. While its role is merely
methodological, virtual (G) can also be thought of as representing the next block that
a node whose current observed DAG is G attempts to create.

2.2 The generation of the block DAG

We begin by reiterating the extremely simple instructions of SPECTRE to miners,
described in Section 4:

1. When creating or receiving a block, transmit the block to all peers.

2. When creating a block, embed in its header a list containing the hash of all
leaf-blocks in the locally-observed DAG.

In particular, all blocks are incorporated into the DAG. Note that these instructions
allow miners to operate concurrently irrespective of potential conflicts in the contents
of their blocks. The

2.3 Layout

SPECTRE is composed of two layers: interpreting the blcok DAG, and estimating
the robustness of this interpretation. Its layout can be summarized as follows:

1. GetAccepted(G):

(a) Calculate pairwise relation ≺ on blocks in G (Alg. 1)

(b) Accept transactions that defeat all conflicts (Alg. 2)

2. ChkRobustAccept(G, tx, ϵ):

(a) Estimate robustness of the relation ≺ for relevant pairs of blocks
(Algs. 3, 7)

(b) ϵ-accept tx if the block that contains it robustly precedes all
counterparts (Algs. 4,5,6)

The first layer is an implementation of GetAccepted. Given a block DAG, this
procedure outputs a consistent subset of its transactions. This is done by first
computing a pairwise relation ≺ over the blocks (in the context of some G, we
informally say that block x precedes or defeats block y if x ≺ y). Then, any transaction
is accepted if its blocks defeats the blocks of all conflicting transactions in its anticone.
The relation ≺ is generated by a pairwise vote procedure that occurs independently
for every pair of blocks.

7

Although we may at times refer to ≺ as though it orders blocks, we stress that ≺
is not necessarily a transitive relation. It is possible to have a series of blocks that
defeat each other cyclically.8 This is in fact the way SPECTRE utilizes the weaker
requirements in the RDL-framework (the lack of total ordering over blocks).

The next layer implements ChkRobustAccept. Here, similarly, we first estimate
the robustness of ≺ regarding certain pairs of blocks, namely, the one containing the
given transaction vs blocks containing possible conflicts; then we ϵ-accept the given
transaction if its containing block indeed defeats all of these blocks with a sufficient
margin of safety.

2.4 Pairwise ordering of blocks

The basic layer of SPECTRE involves deciding on a pairwise order over the block
DAG, which we denote ≺ informally. Fix two blocks x, y ∈ G. In order to decide if
x ≺ y or y ≺ x, we interpret the structure of the DAG as representing an abstract vote.
Every block z ∈ G is considered a voter with respect to the pair (x, y), and its vote is
inferred from its location in the DAG. We represent a vote by a number in {−1, 0,+1},
and we denote its voting-profile on all pairs by vote (z,G). votex,y (z,G) = −1
represents x preceding y (x ≺ y), votex,y (z,G) = +1 represents y preceding x, and
votex,y (z,G) = 0 represents a tie. Importantly, vote (z,G) is an asymmetric relation:
votey,x (z,G) = −votex,y (z,G).

To simplify presentation, we associate a vote with virtual (G) as well. Recall
that the virtual block of G is a hypothetical block which satisfies past (virtual (G)) =
past (G) (Section 4). The vote of virtual (G) represents essentially the aggregated vote
of the entire block DAG. The basic rules of z’s vote, for any z ∈ G ∪ {virtual (G)},
are as follows:

• if z is in future (x) but not in future (y) then it will vote in favour of x (i.e.,
for x ≺ y).

• if z is in future (x) ∩ future (y) then z’s vote will be determined recursively
according to the DAG that is reduced to its past. If the result of this vote is a
tie, z breaks it arbitrarily.9

• if z is not in the future of either blocks then it will vote the same way as the
vote of the majority of blocks in its own future.

• if z is the virtual block of G then it will vote the same way as the vote of the
majority of blocks in G.

Additionally, z will vote for itself to succeed any block in past (z) and to precede any
block outsize past (z).

Figure 1 illustrates the voting procedure with regards to a single pair of blocks
(x,y). Additional examples along with intuition regarding this key algorithm are
provided in Section 3.

8This is related to the Condorcet paradox in social choice [1].
9We can use information encoded in z’s header, e.g., explicit instructions for tie-breaking, or using

the lexicographical ordering of (hashes of) tied blocks, etc.

8

DAG used in recursive

call for block 12

(X<Y)

(X<Y)

(X<Y) (X<Y)

(X<Y)

(X<Y)

(X<Y)

(Y<X)

(Y<X)

(X<Y)

(X<Y)

(Y<X)(Y<X)

(X<Y)

1

2

3

4

X

5

Y

6

7

9

10

8

12

11

Figure 1: An example of the voting procedure on a simple DAG. Blocks x and 6-8
vote x ≺ y as they only see x in their past, and not y. Similarly, blocks y and 9-11
vote y ≺ x. Any block from 1-5 votes x ≺ y, because it sees more x ≺ y voters in its
future than y ≺ x voters. Block 12 votes according to a recursive call on the DAG
that does not contain blocks 10,11,12.

It is easy to see that all votes respect the DAG’s topology: If x is reachable from
y then all blocks vote unanimously x ≺ y. Observe further that the vote of any z that
has either x or y in past (z) is fully determined by past (z,G), a set which is fixed
at z’s creation. Accordingly, we refer to such a z as a strong voter w.r.t. the pair x
and y. In contrast, other z’s are called weak voters, as their vote can be changed by
future events: their votes depend on votes of blocks in their future sets (which grow
over time).

The pairwise ordering of SPECTRE has the following highly valuable property:
Once a block is published, the set of blocks that precede it in the pairwise ordering
closes fast—w.h.p. it only consists of blocks that were published before or right after
its publication.

The implications of this guarantee to the security of transactions is immediate, at
least at the intuitive level: A user whose transaction is embedded in some published
block x can guarantee its safety by waiting some time after x’s publication before
accepting it; he is then guaranteed that any block published later on – and that
might contain a conflicting transaction – will be defeated by x hence will not threaten
the acceptance of his transaction. In Section 3 we will explain how this guarantee is
achieved.

2.5 Accepting transactions

Equipped with the pairwise relation over blocks, we now turn to construct the set
of accepted transactions. Basically, we mark a transaction as accepted iff all three

9

conditions below hold true:

• all of its inputs have been accepted.

• all conflicting transactions that are in its anticone set (i.e., that are not related to
it topologically) are contained in blocks that are defeated by the block containing
the transaction.

• all conflicting transactions that are in its past set (i.e., that precede it in the
DAG, topologically) have been rejected.

3 Intuition and Examples

In this section we provide some basic explanations and intuitions regarding the
operation of SPECTRE. We focus primarily on explaining the ideas underlying
Algorithm 1 that is at the core of the protocol. We later go on to present examples
for simple attacks that shed some light on how resilience is achieved.

Intuition 1 (Vote in favour of visible blocks). If a block x is known by honest
participants, their blocks will include it in their past. Given that blocks vote in
favour of blocks in their past (over other unknown blocks), and given that honest
nodes publish their blocks quickly, hidden attacker blocks lose votes.

Intuition 2 (Majority amplification). Given blocks x, y that contain potential
conflicts, blocks that are generated by honest participants after their publication
reference both of them in the DAG. According to Algorithm 1, these new blocks
adopt the vote of the sub-DAG in their past with regards to x and y. Thus, if block
x defeats block y, additional votes that support this decision are added, and the
attacker will find it more difficult to reverse the vote.

Intuition 3 (Referencing recent blocks is beneficial). Blocks from the past vote
according to their future. Thus if an attacker creates a block that does not reference
recent blocks, it is at a disadvantage compared to other blocks that do (it loses votes
from recent blocks it did not reference and did not “convince”).

Intuition 4 (Votes from the past counter pre-mining attacks). Consider an attacker
that creates a block y, withholds it, and constructs many blocks on top of it over an
extended period of time. After a long while, a conflicting transaction is released to
the network, and eventually ends up in some block x. Block y has many blocks (built
by the attacker) that reference it. Thus, if only votes from the future are counted,
block y would prevail even if x is allowed to accumulate some votes. In SPECTRE,
blocks that were created by honest nodes while y was withheld, look to their future
for their votes. These will usually vote in favour of x and will usually outnumber the
attacker blocks that were created when y was withheld (an example of pre-mining
appears in Figure 3).

10

4

5 6 7 8

9 10 11

1 2 3

Figure 2: SPECTRE coincides with the longest-chain rule when it is applied to
“simple” chains of blocks. In the depicted DAG, the chain ending at block 8 is
longer and would be selected in the longest chain protocol. In SPECTRE each one of
the blocks 5,6,7,8 defeats each of the blocks in 9,10,11. Consider for instance blocks
6 and 10 and the pairwise vote that involves them. Blocks 6-8 vote strongly 6 ≺ 10,
as they see block 6 in their past but not block 10. Block 5 is a weak voter, as it sees
neither 6 nor 10 in its past, hence it votes as the majority of its future (thus voting
6 ≺ 10 as well). For similar reasons, blocks 9-11 all vote 10 ≺ 6. Block 4, at the
fork of the two chains, is a weak voters as well, as it sees neither 6 nor 10 in its past;
it therefore votes according to the majority of future blocks. As block 4 sees four
votes in favour of 6 ≺ 10, and three votes in favour of 10 ≺ 6, it will vote in favour
of 6 ≺ 10. Blocks 1-3 similarly vote according to their future, and see an increasing
number of votes for 6 ≺ 10, adding their own vote to the result. Thus, the end result
is that 6 defeats 10.

3.1 Equivalence to longest-chain

We first demonstrate how SPECTRE coincides with Bitcoin’s longest-chain rule, in
the case of a “simple” fork between two chains. Consider the DAG illustrated in
Fig. 2. In Bitcoin, the longer chain would be selected. Similarly, in the pairwise
ordering of SPECTRE, each of the blocks in the longest chain 5,6,7,8 would defeat
each of the blocks in the shorter one 9,10,11. To see why this is true refer to the
caption of the figure.

We now turn to examine two different attack scenarios, which we name
double-spending, and censorship. Recall the requirement from our miner protocol:
each miner is required to (i) reference recent blocks, and to (ii) publish his blocks
immediately. Each attack is basically a violation of one of these requirements. In the
double-spending attack, the attacker delays the publication of a set of blocks (that
includes a conflicting transaction), and in the censorship attack he publishes blocks
but “ignores” a certain block and transactions inside it, hoping to convince nodes
that it did not secure enough votes, and thus cannot be accepted.

3.2 Example of a double-spending attack

Figure 3 depicts an (unsuccessful) double-spending attack. The attack is composed
of three main phases:

Phase I: Pre-mining. In phase I, the attacker begins building blocks and

11

(X<Y)

1

(X<Y)

3
(X<Y)

4

(X<Y)

5

(X<Y)

2

(X<Y) (X<Y)

6

(X<Y)

7

(Y<X) (Y<X)

13

(Y<X)

14

(Y<X)

16

(Y<X)

17

(Y<X)

18

Phase I:

pre-mining

(X<Y)

8

(X<Y)

9

(Y<X)

15

time
Phase II: attack remains hidden

until merchant accepts

(X<Y)

11

Transaction X

is broadcast

Attacker

broadcasts blocks

Phase III:

race to overtake

(Y<X)

19

(X<Y)

10

(X<Y)

12

Y

X

Figure 3: An example of the voting procedure on a DAG in which a double spending
attack is (unsuccessfully) attempted. Blocks x and 6-8 vote strongly x ≺ y as they
only see x in their past, and not y. Similarly, blocks y and 9-11 vote strongly y ≺ x.
Blocks 1-5 vote x ≺ y. This is because they see more x ≺ y voters in their future than
y ≺ x voters. Block 12 votes according to a recursive call on the DAG that does not
contain blocks 12,19.

withholding them from the network. The first block that is constructed (named
block y) contains a transaction that will later conflict with the transaction sent to the
honest nodes. Blocks built by the attacker ideally form a chain, and due to the voting
rules in SPECTRE, will all vote y ≺ x (blocks y,13,14). Blocks built by the honest
node are unaware of y (and also of x that is yet to be created), and will eventually vote
according to the majority of future votes. During this phase, attacker blocks reference
honest blocks that are built (in hopes of later convincing them to vote y ≺ x). After
some time, the attacker transmits the transaction to the network, and proceeds to
phase II.

Notice that at the exact time that phase I ends, the attacker has more blocks
above block 4 than honest nodes have, so it starts at an advantage: it will more easily
sway the vote of block 4 towards y ≺ x (this advantage later disappears as honest
nodes typically build blocks faster than the attacker).

Phase II: Waiting for acceptance. The attacker now continues to build blocks
in secret. If he publishes his blocks, then his conflicting transaction will be visible to
all, and the double-spend will be detected. Instead, he waits for block x to receive
sufficient weight (in the form of blocks built on top of it) so that the recipient of the
transaction in x accepts it, and provides the attacker with some service or product.
During this phase, attacker blocks that are created (blocks 15-17) vote y ≺ x, as the
attacker is careful to have them reference only his secret chain, and never indirectly
reference block x. Honest blocks created during this phase will typically vote x ≺
y since y is hidden from them. Some small number of blocks (created before x
propagated to the whole network – block 5 in this example) do not reference x, and

12

so will vote according to the result of future votes.

Phase III: Race to overtake. Once x was ϵ-accepted by the victim, the attacker
wishes to publish his secret blocks in hopes of causing his conflicting transaction in
y to precede x. In this case, the transaction in x will be considered rejected, and the
payment will be canceled (leaving the attacker with an item he did not pay for). He
publishes his secret chain (which from this point on is referenced by honest nodes),
and continues to build upon it. Blocks that he builds, again do not reference x, and
so they vote y ≺ x, supporting his goal. New honest nodes are for the first time
exposed to the conflicting transaction y, and thus vote according to the result in the
sub-DAG in their past.

Why the attack fails. First, notice that the attacker in the above example creates
fewer blocks in each phase than the honest nodes. This will usually be the case if
attackers have less computational power than all honest nodes. “Poisson bursts” in
block creation by the attacker are possible, and this will allow him to overtake the
network, but these are less likely if the attack lasts for a long period of time. The
defender can control the length of phase II by waiting a long while before accepting
the transaction, which decreases the probability of such bursts. If phase II is long
enough, x will have more votes in this period than y. Weak blocks in the past of x
will then vote in favour of x, according to this majority. Such blocks that look at their
future begin a cascade: each block further in the past adds a vote that agrees with the
majority of future blocks and thus strengthens the decision. The greater the majority
obtained in Phase II, the less likely it is that the attacker will be able to catch up from
behind in Phase III. The attack therefore depends heavily on successfully swaying the
votes of blocks that were created just before x (e.g., block 4).

It is important to note that an attacker that creates more blocks in expectation
than the honest network will succeed in carrying out this attack. The blocks voting
y ≺ x would outnumber those who vote to the contrary. Hence the 50% threshold in
Theorem 1.

3.3 Example of a censorship attack

Figure 4 depicts an (unsuccessful) censorship attack. The attack is composed of a
single main phase during which an attacker creates his own blocks, publishes them
instantly, but also ignores (and does not reference) recent blocks created by the honest
network. The figure depicts (in stage I on the left side) the current state of the
blockchain (where all blocks are published at this point). An honest participant that
then observes the network and wishes to tell if a transaction in block x is secure, can
see a large number of blocks that do not reference x. These blocks are not guaranteed
to vote in favour of x. An attacker may later insert a conflicting transaction y and add
blocks atop it (this projected attack is depicted on the right-hand side of the figure).
These may potentially sway previously created attacker blocks to vote against x.

The main risk from the censorship attack is that merchants, upon seeing the
attacker’s blocks, will consider transactions in block x not sufficiently secure. This
could potentially delay the acceptance of transactions forever. Our analysis of
SPECTRE shows that even in this case the merchants accept transactions quickly

13

(X<Y)

1
(X<Y)

2

(X<Y)

4

(X<Y) (X<Y)

5

(X<Y)

6

(X<Y) (X<Y)

13

(X<Y)

14
(Y<X)

16

(Y<X) (Y<X)

17

Phase I: X gains confirmations, but attacker

blocks ignore X.

(X<Y)

7

(X<Y)

8

(X<Y)

15

time

(X<Y)

10

Projected Future attack.

(double spend Y appears)

(Y<X)

(X<Y)

9

(X<Y)

11

(X<Y)
X 3

12 18Y

Present

Figure 4: An example of the voting procedure on DAG in which an unsuccessful
censorship attack is depicted. The left side depicts the current state of the block
DAG. The right-hand side depicts its likely future development. Blocks 12-16 do not
add strong votes to x. Can they be convinced to vote for block y when it appears? Will
they further sway other blocks in their past? The vote of each block in this projected
future are depicted: Blocks 2-9 vote strongly for x as they see it in their past (but not
y). Blocks 17-18 similarly vote strongly for y. Block 16 is indeed convinced to vote for
y as more blocks in its future vote for y than for x. Blocks 1, 12-15 vote for x. They
each see more votes in favour of x than votes in favour of y in their future. Blocks
10-11 see more x ≺ y voters in their past when they make a recursive call.

(and securely).

4 Model and Notation

Below we provide the model for this paper. The familiar reader will notice that we
share most of the primitives and features of the Nakamoto consensus and Bitcoin,
e.g., PoW, blocks of transactions, etc.

Miners and network. The system is operated by nodes (also called miners),
connected by a P2P network N . We denote by honest ⊂ N the set of nodes that
always follow the protocol (in a manner that will become precise later). We assume
that the honest nodes make up a connected component in the network graph, and that
messages that they send are forwarded to their peers via gossip algorithms (networking
attacks that disrupt or slow such connectivity were considered in Bitcoin before [9, 8]).

Transactions. Users create, sign, and publish transactions. As several copies of the
very same transaction may appear in the system, we denote by [tx] the equivalence
class of tx, containing all of the different copies of the same transactions. The
consistency of a transaction tx is governed by two relations: First, the inputs of
a transaction denoted inputs (tx) are the (equivalence classes of) transactions that
must be accepted before tx can be accepted (these are essentially the transactions

14

that have provided the money that is being spent in tx).
Second, two transactions tx1 and tx2 that are not equivalent may be in conflict,

i.e., they cannot be accepted by the system at the same time (this is if they are
conflicting orders to move the same money to different destinations). We denote by
conflict (tx1) the set of transactions that conflict transaction tx1 (this is a symmetric
relation, and we assume that copies of tx1 do not mutually conflict).

Blocks and the block DAG. We denote the creator of block b by node(b) and
the time it was created by time(b). Every block obtains a unique id (in the form
of the cryptographic hash of its header). The body of a block contains a subset
of transactions (that were already created by time(b)), chosen freely by node(b).10

The notation ZG(tx) stands for all blocks in G that contain tx. We slightly abuse
notation and denote tx ∈ G where it should read ∃b : tx ∈ b ∈ G. The block size is
limited by some constant B. The block header contains an ordered list of references
to other blocks (that were already created by time(b)), by simply listing their ID (a
cryptographic hash). As a result, blocks are formed in the structure of a DAG—a
Directed Acyclic Graph whose edges correspond to the references between blocks (in
contrast, the Nakamoto consensus utilizes a block chain with only one pointer to a
single predecessor).

A block DAG is typically denoted byG = (C,E), where the vertex-set C represents
the blocks and the edge-set E represents the hash references. The DAG is essentially
a representation of the causal order between block creation events. For any z ∈
C, past (z,G) ⊂ C denotes the subset of blocks reachable from z, and similarly
future (z,G) ⊂ C denotes the subset of blocks from which z is reachable (these are
blocks that are provably created before after after z correspondingly). Note that an
edge in the DAG points back in time, from the more recently created block to the one it
extends. We denote by anticone (z,G) the set of blocks that the DAG does not directly
ordered compared to z, that is: G \ (past (z,G) ∪ {z} ∪ future (z,G)). Additional
notation includes: past (z,G) := past (z,G) ∪ {z}, antipast (z,G) := C \ past (z,G),
and similarly for the future and anticone sets. To avoid cumbersome notation we
will frequently abuse notation and write z ∈ G instead of z ∈ C. The notation |G|
represents the number of blocks in C. The unique block genesis is the block created
at the inception of the system, and every valid block must have it in its past set.

An honest node v does not consider block b as valid (or as received by it) if
it hasn’t received first past (z,G). Moreover, no one can modify the contents of a
block or of its header once it has been created (as these will invalidate the PoW, and
the block’s hash). These two facts imply that the set past (b,G), in sharp contrast
to future (z,G) and anticone (z,G), is fully determined by b and does not require
specifying a “context” G. Accordingly, we will most of the time omit G and simply
write past (b) (we may also write future (z), if the context is of no importance).

Finally, for any DAG G we relate to a hypothetical block, which we denote
virtual (G). This block satisfies past (virtual (G)) = G. While its role is merely
methodological, the virtual block of G can also be thought of as representing the next

10To avoid cumbersome notation, we assume a valid block does not contain two conflicting
transactions. In practice, the order between such two transaction can be decided by the order
in which they appear in the block.

15

block that an honest node whose current observed DAG is G attempts to create.

Message broadcasting. Nodes are instructed to send to their network peers all
blocks that they have created as well as blocks they have received from other peers.
We denote by publication(b) the time at which some node had begun the transmission
of b to some other honest node. We denote by receivedv(b) the time at which node
v received b. We assume the existence of a constant D > 0 such that any message
(of size ≤ B) transmitted by an honest node arrives after at most D seconds at
nodes that possess together at least (1 − α) of the computational power, regardless
of any manipulation of the attacker. Every time a user estimates the robustness
of transactions in the ledger, SPECTRE’s ChkRobustAccept procedure requires he
specifies an upper bound on the recent D in the network. In the analysis below we
denote this estimate by d (see Footnote 12). Miners, however, do not require any
knowledge of the value of D.

The miner protocol. Denote by Gvt the DAG that node v ∈ N observes at time
t. The requirement from a given node v to broadcast all blocks upon receiving or
creating them, is given formally as: ∀u ∈ N : Gut+D ⊇ Gvt . The requirement that v
list in its new block all leaf-blocks of its current DAG is given formally as: ∀b with
v = node(b): past (b) = Gvtime(b). To avoid redundancy, we additionally require that

the list of pointers in b’s header will include only leaf-blocks of past (b). The set
honest is defined formally by all nodes that at any time satisfy these requirements,
and the set attacker consists of the rest of the nodes. We will occasionally abuse
notation and use these sets to denote blocks created by these types of nodes (e.g.,

b ∈ honest reads node(b) ∈ honest). The DAG Gpubt is defined by ∪u∈honestGut , and
the DAG Goraclet is defined by ∪u∈NG

u
t .

Proof-of-work. In order to be considered valid, a block must contain a proof-of-work
in the form of a valid nonce, as is used in Bitcoin. This nonce should have the property
that it concatenates together with the block header into a string whose cryptographic
hash is smaller than some predefined constant TARGET . This task is assumed to
be solvable only by brute force, hence requires considerable computational power.
Ordinary machines perform countless hashes per second, and the probability that the
next guess of a nonce would be valid follows a memoryless distribution. Accordingly,
the block creation process is well-approximated by a Poisson distribution. We denote
by λ the rate of block creation in the system, when all nodes in the network participate.

In addition to d, ChkRobustAccept requires that the user specify α – the fraction
of computational power controlled by the attacker. Formally, d should be the time it
takes messages to propagate to honest nodes that control at least a fraction 1− α of
the total hashrate.11 The implication of the user’s beliefs regarding d and α is that
the guarantees provided by our algorithms hold only if the parameters it provides as
inputs are indeed upper bounds on their actual (unknown) values.12

We stress, again, that the miners operate irrespective of any assumption on the
network’s propagation delay, its total hashrate, or the hashrate of dishonest nodes.

11The remaining hash rate by more distant honest nodes is attributed to the attacker in this
manner as a form of worst-case assumption.

12In fact, it is sufficient that the recent value of D ·λ is upper bounded by the user’s belief regarding
this product. This parameter captures the average number of blocks created per unit of delay.

16

Desired properties of a distributed ledger. The GetAccepted procedure takes
as input a block DAG G and returns a consistent subset of the transactions contained
within it.

The ChkRobustAccept procedure, is used to determine if a transaction in this
set is likely to remain there. ChkRobustAccept takes as input a block DAG G, a
transaction tx ∈ GetAccepted(G), and an ϵ, and returns ACCEPT or WAIT. When
G = Gvt and ChkRobustAccept returned ACCEPT, we say that v has ϵ-accepted tx
at time t. The following properties are desirable:

Property 1 (Consistency). The accepted set is consistent. For any DAG G,

1. if tx ∈ GetAccepted(G) and tx2 ∈ inputs (tx) then tx2 ∈ GetAccepted(G).

2. if tx ∈ GetAccepted(G) and tx2 ∈ conflict (tx) then tx2 /∈ GetAccepted(G).

Property 2 (Safety). If some node ϵ−accepts, then all other honest nodes will do so
(w.p. 1 − ϵ): For any v ∈ honest, if ChkRobustAccept (tx, ϵ,Gvt) = ACCEPT then,
with probability of at least (1 − ϵ), there exists a τ of finite expectation such that
∀u ∈ honest,∀s ≥ τ : ChkRobustAccept (tx, ϵ,Gus) = ACCEPT .

Property 3 (Progress). Transactions become more robust as time passes:
For any v ∈ honest, if ChkRobustAccept (tx, ϵ,Gvt) = ACCEPT then, with
probability of (1 − ϵ) at least, for any ϵ′ there exists a ϕ of finite expectation such
that ∀s ≥ ϕ : ChkRobustAccept (tx, ϵ,Gus) = ACCEPT .

Property 4 (Weak Liveness). Transactions are ϵ−accepted in finite time (provided
that their inputs are ϵ−accepted, and there are no conflicts visible): Let t be the

current time, and assume that tx ∈ x ∈ Gpubt . Let ψ be the first time at which an

honest node ϵ-accepts tx. Then, conditioned on the event where conflict (tx)∩Gpubψ =
∅ and on the event where for all tx2 ∈ inputs (tx), tx2 remains ϵ-accepted forever (by
some honest node), the expectation of ψ is finite.

5 The SPECTRE Protocol (formal)

We turn to describe the formal procedures of SPECTRE. In Section 2 we described
informally the way SPECTRE pairwise orders blocks, and how this order is used to
construct the subset of accepted transactions. We describe this construction formally
in the first subsection below, thereby implementing the GetAccepted procedure. In
the second subsection we implement the ChkRobustAccept procedure, which measures
how robustly is a given transaction accepted.

5.1 Implementation of GetAccepted

The accepted set of transactions. We begin with a precise implementation of the
pairwise ordering of blocks, described informally in Section 2.

In the algorithm, s̃gn (n) = −1 for n < 0, s̃gn (n) = +1 for n > 0, and s̃gn (0) = 0.
To see that the recursion calls from line 4 halt observe that they take as inputs DAGs

17

Algorithm 1 CalcVotes

Input: G – a block DAG
Output: vote (virtual (G)) – a pairwise ordering of blocks in G
1: if G = ∅ then
2: return an empty function

3: for all z ∈ G do
4: vote (z, past (z))← CalcV otes (past (z)) and break ties arbitrarily

5: for all z ∈ G in some topological order (from leaves to root) do
6: for all x, y ∈ G (x ̸= y) do
7: if

(
x ∈ past (z) ∧ y ∈ antipast (z)

)
∨ (x ∈ past (z) , y = z) then

8: votex,y (z,G)← −1
9: else if

(
y ∈ past (z) ∧ x ∈ antipast (z)

)
∨ (y ∈ past (z) , x = z) then

10: votex,y (z,G)← +1
11: else if x, y ∈ past (z) then
12: votex,y (z,G)← votex,y (z, past (z))
13: else if x, y ∈ antipast (z) then

14: votex,y (z,G)← s̃gn
(∑

z′∈future(z,G) votex,y (z
′, G)

)
15: vote (virtual (G) , G)← s̃gn

(∑
z∈G vote (z,G)

)
16: return vote (virtual (G) , G)

strictly smaller than G (because past (z) (G), and hence eventually all arrive at the
base case G = ∅ and return.

The accepted set of transactions. Algorithm 2 outputs a set of accepted
transactions. It operates recursively, and should be initially called with
GetAccepted(G,G) (we later denote this simply by GetAccepted(G)). In the
algorithm, the notation ZG(tx) stands for all blocks in G that contain tx. Some
complexity arises due to possible multiple copies of the same transactions, which
requires dealing with equivalence classes of transactions (see Section 4).

5.2 Implementation of ChkRobustAccept

We now turn to analyze how robustly a given transaction can be considered accepted.
Identifying the robustly-accepted-transaction set is done similarly to the construction
of the accepted-transaction set, as outlined in Subsection 2.3: First, we analyze the
robustness of the block ordering; then, we use this to verify that a given transaction
is robustly accepted.

Robustness of the block pairwise ordering. Algorithm 3 outputs an upper
bound on the probability that an attacker will be able to reverse the relation
x ≺ y. When the argument y is unspecified, the interpretation of the algorithm’s
output is x’s robustness against an unseen block (withheld by an attacker or
yet to be created). In the algorithm, gap (b,G) denotes the size of the set
{z ∈ anticone (b,G) : votez,b (virtual (G)) ≥ 0}. The notation ⟨G, z,K⟩ will be
explained in the paragraphs that follow.

Explanations about the operation of Algorithm 3. In line 13 the algorithms

18

Algorithm 2 GetAccepted

Input: G – a block DAG, subG – a subDAG of G which is the past of a (possibly
virtual) block

Output: TX – a hyper-set of valid transactions in G
1: TX ← ∅
2: for all z1 ∈ G ∩ subG

(in a leaves-to-root topological order) do
3: for all tx ∈ z1 do
4: for all tx2 ∈ G ∩ conflict (tx) do
5: for all z2 ∈ ZG(tx2) ∩ anticone (z1, G) do
6: if votez1,z2 (virtual (G)) ≥ 0 then
7: break (to line 3 and pick next tx)

8: if [tx2] ∩GetAccepted(G, past (z1)) ̸= ∅ then
9: break (to line 3 and pick next tx)

10: for all [tx3] ∈ inputs (tx) do
11: if [tx3] ∩GetAccepted (G, past (z1)) = ∅ then
12: break (to line 3 and pick next tx)

13: add tx to TX
14: return TX

Algorithm 3 Risk (offline)

Input: G – a block DAG, x – a block in G, y (optional) – a block in anticone (x,G)
Output: risk – an upper bound on the probability of block x not defeating y at any

point in the future
1: if time now < publication(x) + 2 · d then
2: return 1
3: K ← ⌈

√
|future (x,G)|⌉

4: if NULL = y then
5: g ←

∣∣future (x,G)∣∣
6: M ← 0
7: else
8: g ←

∑
z′∈future(x,G) votey,x (z

′, G)

9: M ←
∣∣∣{z ∈ future (x,G) : votex,y (z,G) = +1 ∧ gap (z, ⟨G, z,K⟩) = 0

}∣∣∣
10: nx ←

∣∣future (x,G)∣∣−M
11: j ← gap (x,G) +K
12: l← K
13: risk ← fpre mine(l) + fpre pub(K) + fpost pub (M) + fpost mine (nx, g, j, l,M)
14: return risk

uses some functions whose precise definitions we defer to later sections. An explicit
formula for fpre pub is given in (54), for fpost pub is given in (50) and (52), and for
fpost mine is given in (2). Preceding Lemma 23, we provide a method to calculate

19

fpre mine numerically.
Intuitively, the function fpre mine upper bounds the probability that the attacker

has gained an advantage larger than l during the pre-mining phase (i.e., up until
the creation of x). The function fpost mine upper bounds the probability that the
attacker will ever be able to create enough blocks so as to reverse the relation x ≺ y.
In essence, fpost mine is an adaptation of a formula from [17]. According to our version
of the formula, if during the interval [time(x), t] (where t represents the current time)
honest nodes created n blocks, then

(
n−1+m

m

)
· αm · (1 − α)n is the probability that

the attacker has created during this interval m blocks. If g aggregates all the votes of
blocks in future (x,G), then the probability that the attacker will be able to reverse

the majority’s vote is roughly
(

α
1−α

)max{g−m,0}
. The combined expressions produce

an upper bound on the success-probability of an attack.13

The main challenge here is to correctly measure n. This is a difficult task, as
Algorithm 3 uses only structural information,14 and does not rely on measurements
of blocks’ timings. Näıvely one would use n ≈ |future (x,G)| to upper bound blocks
created after publication(x). However, there are two main difficulties:

• The block x might have been created by a dishonest node and withheld by
it. In this case, there might have passed a long time between its creation and
its publication, which implies that |future (x,G)| alone may be well below n.
To avoid underestimating n, we upper bound the number of honest blocks in
anticone (x,G), by the variable j, and add it to our count (the addition is done
inside fpost mine (nx, g, j, l,M)).

The function fpre pub upper bounds the probability that we have underestimated
j.

• By publishing his attack blocks, the attacker can increase the size of
future (x,G) and cause us to overestimate n. This in turn result in an upper
bound on the success-probability of an attack that is not tight enough, which
would allow an attacker with a large value of α to delay acceptance indefinitely.
Risk overcomes this problem, by recognizing attacker blocks and excluding them
from the count of n. This is done as follows.

Let G be a block DAG, b a block in G, and K a whole number. The DAG
⟨G, b,K⟩ is obtained by creating a new chain z1, ..., zK of K hypothetical blocks,
connecting an edge from z1 to b and replacing every edge (z, b) ∈ G with
(z, zK) ∈ G. Essentially, this adds to the DAG K artificial voters which vote
strongly x ≺ y, against any y ∈ antipast (x,G). In line 9, the algorithm checks
whether gap (z, ⟨G, z,K⟩) = 0, i.e., whether there exists a block in anticone (z)

13The calculations we use are quite more involved, as will be detailed later on. In particular, the
reason why we aggregate in g votes from future (x,G) alone – rather than votes from the entire DAG
– will become clearer in Sections 8 and 10. For now, observe that counting all votes – including weak
votes – is not meaningful, as weak voters might reverse their vote as future events unfold. Rather,
it is useful to measure how robustly weak voters support x ≺ y, which is captured by our following
procedure.

14With the exception of making sure that x has been published for at least 2 · d seconds.

20

that precedes z in the modified DAG ⟨G, z,K⟩. In the case of a negative answer,
z is counted into n (in line 10).

Indeed, SPECTRE admits the following property: If we add k voters in favour
of an honest block, for some small k, then no other block will precede it in the
pairwise ordering (apart from its past set). This property is stated formally and
proven in Lemma 28.

The function fpost pub upper bounds the probability that we have
underestimated the number of honest blocks in future (x,G).

We refer the reader to Section 8 for further understanding of the operation of
Risk.

Robustness of transaction acceptance. The next step is to translate robustness
of blocks (calculated by Risk) to robustness of transactions. This transition is
implemented similarly to the transition from the (non-robust) ordering of blocks
(Algorithm 1) to the (non-robust) accepted set of transactions (Algorithm 2).

The main procedure in this layer is RiskTxAccept. It takes as input G and tx
(and an additional argument) and returns an upper bound on the probability that
some honest node will not ϵ-accept tx.

We now describe the main procedure of the second layer, RiskTxAccept, which
utilizes and translates the robustness of blocks into robustness of transactions. The
main task of RiskTxAccept is to properly account and aggregate the error bounds
that Risk induces. As can be easily recognized, RiskTxAccept and RiskTxReject
are mirror images of each other. While RiskTxAccept upper bounds the probability
that a given transaction will ever be removed from the accepted transaction subset,
RiskTxReject upper bounds the probability that a given transaction will ever be
included in this subset. This is particularly vital for the case where two conflicting
transactions are related topologically, i.e., tx2 ∈ y and tx1 ∈ x ∈ future (y), but tx2
is not in the accepted set (due to some previous conflict). In this case, although the
block containing tx2 precedes that containing tx1, we accept tx1. It can be further
ϵ-accepted if the rejection-status of tx2 is robust, as calculated by RiskTxReject.

21

Algorithm 4 RiskTxAccept

Input: G – a block DAG, subG – a subDAG of G which is the past of a (possibly
virtual) block, tx – a copy of the transaction to defend

Output: risk – an upper bound on the probability that some honest node in some
future point in time would not accept any no transaction in [tx] ∩ subG.

1: minrisk ← 1
2: for all z1 ∈ ZG([tx]) ∩ subG do
3: risk ← Risk (G, z1, ∅)
4: for all tx2 ∈ G ∩ conflict (tx) do
5: for all z2 ∈ ZG(tx2) ∩ anticone (z1, G) do
6: risk ← risk +Risk (G, z1, z2)

7: risk ← risk +RiskTxReject (G, [tx2], past (z1))

8: for all [tx3] ∈ inputs (tx) ∩ past (z1) do
9: risk ← risk +RiskTxAccept (G, [tx3], past (z1))

10: minrisk ← min {minrisk, risk}
11: risk ← minrisk
12: return risk

Algorithm 5 RiskTxReject

Input: G – a block DAG, subG – a subDAG of G which is the past of a (possibly
virtual) block, tx – a copy of the transaction to defend

Output: risk – an upper bound on the probability that some honest node in some
future point in time would accept a transaction in [tx] ∩ subG.

1: risk ← 0
2: for all z1 ∈ ZG([tx]) ∩ subG do
3: minrisk ← 1
4: for all tx2 ∈ G ∩ conflict (tx) do
5: for all z2 ∈ ZG(tx2) ∩ anticone (z,G) do
6: minrisk ← min {minrisk,Risk (G, z2, z1)}
7: minrisk ← min {minrisk,RiskTxAccept (G, [tx2], past (z1))}
8: for all [tx3] ∈ inputs (tx) do
9: minrisk ← min {minrisk,RiskTxReject (G, [tx3], past (z1))}

10: risk ← risk +minrisk

11: return risk

Building on these procedures, we now present the ϵ-accpetance policy of
SPECTRE. The user should provide as input the entire DAG that it currently
observes.

22

Algorithm 6 ChkRobustAccept

Input: G – a block DAG representing the current DAG observed by the node running
the policy, tx – the transaction to defend, ϵ – the maximum risk the user is willing
to tolerate, α – maximal size of attacker, d – maximal delay diameter of network,
λ – the block creation rate

Output: ACCEPT– if the probability that (after some point in time) some honest
node will not ϵ-accept tx is smaller than ϵ; WAIT– otherwise

1: if RiskTxAccept (G, [tx] ∩G) < ϵ then
2: return ACCEPT
3: else
4: return WAIT

5.3 Formal claim

Having described SPECTRE’s structure and main procedures we are ready to restate
the main theorem given in Section 1:

Theorem 1. For any α < 0.5 and for any d · λ, SPECTRE’s Algorithm 2 and 6
satisfy Properties 1-4.

Moreover, the expected values of τ, ϕ, ψ are in O
(

ln(1/ϵ)
λ(1−2α) +

d
1−2α

)
. The proof

can be found in Section 10.

5.4 Online policy

We now present an alternative implementation of Risk, which requires that the user
be online at the time when his block gains confirmations. This assumption is highly
reasonable for many practical scenarios, e.g., a cashier serving a continuous line of
customers. The main benefit of the online version is that it relies on a tighter analysis,
and therefore accepts transactions slightly faster. We now confine ourselves to the
case where there is no visible double-spend (i.e., y = NULL).

The fact that the user is online can be utilized in two ways: First, any block that
the user receives after receivedv(b) + 2 · d and does not belong to future (x) can be
marked by him as an attacker block. Second, the user can estimate the number of
hidden attacker blocks by measuring the time that passed since the creation of x.

Below we describe the online version of Risk. The algorithm takes as input node
v’s DAG and the block x to defend, and returns an upper bound on the probability
that some block y ∈ Gpub∞ \Gpubt will ever precede it.

23

Algorithm 7 Risk (online)

Input: Gvt – the block DAG that v obesrves at time t, x – a block in Gvt
Output: risk – an upper bound on the probability of block x not defeating y at any

point in the future, for some y ∈ Gpub∞ \Gpubt

1: if time now < publication(x) + d then
2: return 1
3: T ← time now − receivedv(x)
4: Gx ← Gvreceivedv(x)+2·d ∪ future (x,Gx)
5: g ← minx′∈anticone(x,Gx)

|future (x′, Gx)|
6: risk ← risk hidden(T, g)
7: if risk < ϵ then
8: return ACCEPT
9: else

10: return WAIT

The definition of risk hidden appears in (45)-(46). In practice, as node v may

have a partial view of Gpub∞ \ Gpubt , in order to use Algorithm 7 the user must wait
additional d seconds and verify that conflict (tx) ∩ Gvt+d = ∅, i.e., that the attacker
did not publish a double-spend in the interval [t− d, t]. The correctness of the online
policy modification is proven in Corollary 26.

6 Simulation results

We implemented the SPECTRE protocol in Python along with an event-driven
simulator of network dynamics. For each experiment we generated an Erdős-Rényi
random network topology with 20 nodes. Each node forms 5 outgoing links, in
expectation. The delay on each link was unifromly distributed and later scaled linearly
so that the diameter of the graph is d (for the given d). Every point represents the
average outcome over at least 500 experiments.

The main benefit of SPECTRE is fast transaction confirmation. In order to
measure the waiting times in SPECTRE, we utilized the online acceptance policy
derived by Algorithm 7. Accordingly, we stress that the merchant needs to wait
additional d seconds in order to verify that no double-spend has been released in the
past d seconds, as explained at the end of Section 5.

How does the delay diameter affect acceptance times? Given that block
creation rate is high, most of the waiting time for acceptance is dominated by the block
propagation delay. Fig. 5 depicts the transaction acceptance times of SPECTRE, for
various values of the delay diameter d, and for different security thresholds ϵ. Note
that, unlike the Nakamoto consensus, d affects the acceptance time of transactions
but not their security.

24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

delay diameter (sec)

0

2

4

6

8

10

12

14

w
ai

tin
g

tim
e

(s
ec

)

ǫ=0.01
ǫ=0.001
ǫ=0.0001

Figure 5: The average time for ChkRobustAccept to return ACCEPT, assuming
there’s no visible double-spending, for λ = 10 blocks per second and α = 0.25.

How does the block creation rate affect acceptance times? Fig. 6 depicts
the acceptance times for various values of the block creation rate λ, under a constant
delay d = 5 seconds. The graph reaffirms the role of λ in our asymptotic bound:
accelerating the block creation process allows for faster acceptance times. For
comparison, Bitcoin’s block creation rate of 1/600 implies waiting times that are
orders of magnitudes higher (not plotted).

25

0 1 2 3 4 5 6 7 8 9 10

λ (blocks per sec)

0

10

20

30

40

50

60

70

w
ai

tin
g

tim
e

(s
ec

)

ǫ=0.0001
ǫ=0.001
ǫ=0.01

Figure 6: The average time for ChkRobustAccept to return ACCEPT, assuming
there’s no visible double-spending, for d = 5 seconds and α = 0.25.

Can an attacker delay acceptance? We now turn to demonstrate the effect
of censorship attacks in which some dishonest nodes publish blocks that do not
reference other miners’ blocks. Recall that the Weak Liveness property of SPECTRE
(Proposition 5) guarantees fast acceptance of transactions that are not visibly
double-spent–even in the presence of a censorship attack. However, such an attack
still causes some delay in transaction acceptance, but this delay is minor for small
attackers. In Fig. 7 we quantify this effect, by comparing the acceptance times in
“peace days” to those under an active censorship attack. The parameters here are
d = 5 seconds, λ = 10 blocks per second, and ϵ = 0.01. The results display a modest
effect of the attack, and they show that in order to delay transaction acceptance
by more than 5 to 10 seconds an attacker must possess a significant share of the
computational power in the network.

26

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

α (fraction of hashrate)

0

5

10

15

20

ac
ce

pt
an

ce
 ti

m
e

(s
ec

)

under no attack
under active attack

Figure 7: The average time for ChkRobustAccept to return ACCEPT, assuming
there’s no visible double-spending, for d = 5 seconds, λ = 10 blocks per second, and
ϵ = 0.01, in the presence and in the absence of a censorship attack.

How does ϵ decrease for various sizes of the attacker? Once an honest
node ϵ-accepts a transaction, there’s still a small risk (ϵ) that it would eventually
be rejected. We show that the probability of this event vanishes quickly, even for an
extremely capable attacker (e.g., with α = 0.4 of the hashrate). This is illustrated in
Fig. 8, assuming d = 5 seconds and λ = 10 blocks per second (notice that the y-axis
is in log scale).

How tight is our security analysis? The analysis on which Algorithm 3 relies
makes several worst-case assumptions in order to bound the probability of a successful
attack, e.g., that the attacker can broadcast blocks to and receive blocks from all nodes
without any delay (see Section 10, mainly Lemmas 12 and 19). Accordingly, the
analysis is not tight, and in reality attacks are in fact less likely to succeed. In Fig. 9,
we depict the comparison between the analytical bound and two different empirical
simulations. In these simulations we explicitly generate blocks for the attacker and
simulate the optimal double-spending attack. We repeat the experiment 10,000 times
for each point in the graph, and measure the empirical success rate. The simulations
assume two types of attackers: a worst-case attacker that is able to transmit and
receive blocks with no delays, and a more realistic attacker that is connected to other
nodes with typical delays. We compared the fraction of successful attacks under these
setups to the analytical risk calculated by SPECTRE’s policy (Algorithm 7).

The results show that the risk considered by SPECTRE’s ChkRobustAccept
indeed upper bounds the actual risk, and that transactions are even safer than we
guarantee formally.

27

0 5 10 15 20 25 30

waiting time (sec)

10-60

10-40

10-20

100

ǫ

α=0.1
α=0.25
α=0.4

Figure 8: The probability of a successful double-spending attack, as a function of the
waiting time before acceptance, under d = 5 seconds and λ = 10 blocks per second, for
α = 0.1, 0.25, and 0.4. The probability here is the result of the calculation performed
by Algorithm 3.

0 5 10 15 20

waiting time (sec)

0

0.2

0.4

0.6

0.8

1

ǫ

analytical bound
empirical (worst case)
empirical (with delay)

Figure 9: The analytical vs. empirical probabilities of a successful double-spending
attack, as a function of the waiting time before acceptance, under d = 5 seconds,
λ = 10, and α = 0.25.

7 Implementation Details

Minting. In SPECTRE, any block whose target meets the required value TARGET
– as will be defined below – receives the same minting reward. If its target is higher

28

than TARGET (i.e., it is solved with an easier difficulty) by a factor of (1 + δ) at
most, then its reward is reduced by the same factor. The parameter δ represents the
protocol’s tolerance to blocks mined with an outdated difficulty. Thus, if for instance
δ is chosen to equal 2, then blocks with a target value of 2 ·TARGET or 3 ·TARGET
are valid, and their minting rewards are reduced by a factor of 2 or 3, respectively;
blocks with a target higher than 3 · TARGET are invalid and discarded. We now
explain how TARGET is defined and readjusted.

Retargeting. Similarly to Bitcoin and other PoW-based systems, the difficulty of
block creation, represented by TARGET (Section 4), must be occasionally adapted.
Varying network conditions, and changes in the amount of computational resources
invested in the system, require we limit the number of blocks created per second, to
avoid network congestion. In Bitcoin this is done as follows: Every 2016 blocks, the
next block – which we call the reference block – is mined according to an adjusted
difficulty. The new difficulty is obtained by taking the time that elapsed since the
previous reference block (using the timestamps written inside each block) and plugging
it into the retargeting formula. The output of this formula is the new value of
TARGET that the new reference block should be mined with.

We adapt this scheme to SPECTRE: Let xn−1 be the previous reference block.
Every new block xn that has the property that

∣∣past (xn) ∩ future (xn−1)
∣∣ = 2016, is

a candidate to become the new reference block. In case additional candidates exist, we
choose the one with the minimal dist gap with some arbitrary tie-breaking (recall that
dist gap(b,G) is the minimal k such that adding k votes in favour of b makes its gap
equal zero, i.e., gap (b, ⟨G, b, k⟩) = 0). Thus, for xn satisfying the above property, one
and only block from anticone (xn) would be chosen as the reference block succeeding
xn−1. In particular, as explained in Section 3, an attacker block that was withheld
for a while will have a large dist gap and will not be eligible as a reference block.
Furthermore, an attacker block that was mined before xn−1 will not affect the next
retargeting, as it cannot belong to future (xn−1).

The new difficulty, with which the new reference block should be mined, is given
again through the formula that uses the time that elapsed between xn−1 and xn to
update TARGET . The formula should aim for a predefined λ for which nodes
are believed to have sufficient bandwidth, e.g., 1 MB per second. This difficulty
dictates the difficulty for every block in antipast (xn) \ anticone (xn+1), where xn+1

is the next reference block. Every block in this set should be mined according to the
same difficulty as xn.

If block b ∈ antipast (xn) \ anticone (xn+1) was solved with an easier difficulty
than that dictated by the reference block xn, then b is still considered valid, provided
that its outdated target is at most (1+δ) of the target of xn (i.e., a difficulty easier by
at most (1 + δ)). The parameter δ is the protocol’s tolerance threshold. The minting
reward of b is reduced by the corresponding factor, as explained above. Blocks whose
target exceeds the required one by a factor higher of (1+δ) are ignored and discarded.

Block headers. In order to incorporate all blocks into the DAG, every block embeds
in its header pointers to the hash of previous blocks. No redundancies are permitted,
hence only leaf-blocks of past (b) should be pointed at by the header of b. The
implication of this is that a block’s header is of size ≈ 50 + d · λ · 32 Byte. Therefore,

29

there is a limit to the extent at which block size could be reduced and block creation
rates increased – at extremely high rates, the overhead of the block header becomes
significant relative to the number of included transactions. We note, additionally,
that in case the current observable DAG has too many leaves (whether by a rare
burst in block creations or by an attacker releasing many outdated blocks), the next
block creator can cap the number of leaf-blocks it points at. Blocks left out by this
block will later integrate into the DAG, as future blocks will have available space in
their headers and will be able to point at these blocks and include them.

Efficient implementation. Our current implementation of SPECTRE uses näıve
calculations which are usually inefficient, specifically, cascading the votes all the way
to the genesis block. Several efficient implementations are possible. Designing such
an efficient implementation requires attention to CPU attacks, in which the attacker
exposes peculiar structures of outdated blocks in order to cause other nodes to perform
extensive computation. It can be shown that these attacks are highly costly to the
attacker. We leave the specification of an efficient implementation, and a proof of the
cost of CPU attacks, to future work.

Transaction fees. The body of a transaction specifies the amount transferred from
the payer to the payee. The transaction-fee specifies the payment from the payer
to the miner whose block contains the transaction. We regard these two parts as
separate transactions, in the following sense. Assume that tx ∈ x, and denote by
fee(tx, x) the transaction representing the fee-payment of tx to the creator of block
x. Assume now that two copies of tx appear in two different blocks x, y. Then the
body is considered simply as a copy of the same transaction (recall the notation [tx]
from Section 4), whereas the transactions fee(tx, x) and fee(tx, y) are considered a
conflict, i.e., a double-spend. Accordingly, as in the ordinary scheme of SPECTRE,
the fee is granted to (the creator of) block x iff tx ∈ GetAccepted(G) and x defeats
all other blocks that contain tx as well.

This rule can potentially harm miners, in the special case when the relation
between x and y does not become robust (SPECTRE does not guarantee robustness
if these blocks were published in time proximity). We address this problem
by introducing settlement transactions. A settlement transaction is a voluntary
transaction which both the creators of x and y sign after they observe that their
blocks conflict. We denote it settlement(x, y). The interpretation of settlement(x, y)
is that the fees from all of (or part of, if the parties involved so choose) the transactions
in x∩y should be divided evenly between blocks x and y. settlement(x, y) essentially
overrides fee(tx, x) and fee(tx, y). When settlement(x, y) appears in some block
z in the DAG G, it is considered accepted (i.e., a member of GetAccepted(G))
iff x, y ∈ past (z) and z precedes every block that contains a transaction spending
fee(tx, x) or fee(tx, y). Therefore, once one party has spent its fee before it belonged
to it robustly, it won’t be able to settle later (w.h.p.). Miners are therefore advised
to wait for their transaction-fee rewards to become robust, or to initiate a settlement,
before spending these rewards.

Note that this scheme can be used to settle conflicts between blocks of multiple
parties simultaneously. Furthermore, the settlement scheme need not be confined to
conflicts regarding fees, and can be applied to any double-spending.

30

8 Outline of the Proof

The proof of SPECTRE’s correctness is involved and occasionally technical. In this
section we outline the structure of the proof and state the propositions and lemmas
we use. These are proved formally in Section 10.

8.1 Additional notation

• Êus (x, y) := the event where votey,x (virtual (G
u
s)) = +1.

• Eus (x, y, ϵ) := the event where Risk (Gus , x, y) < ϵ.

• Âus (tx) := the event where tx ∈ GetAccepted(Gus).

• Aut (tx, ϵ) := the event where ChkRobustAccept(Gut , tx, ϵ) = ACCEPT .

• Eallt→∞(x, y, ϵ) := the event ∩u∈honest ∩s∈(t,∞) Eus (x, y, ϵ), and similarly for

Êallt→∞(x, y), Aallt→∞(tx, ϵ), and Âallt→∞(tx).

• pasth (z,G) := past (z,G) ∩ honest, and similarly for the future and anticone
sets.

• Vx≺y(G) := {z ∈ G|z is a strong voter w.r.t. (x, y) and votex,y (z) = −1}.

• Poiss(δ, j) := e−δ · δ
j

j! .

8.2 Formal claims

We now take apart Theorem 1 and write a separate proposition for each of the security
properties Safety, Progress, and Weak Liveness, and for Consistency. By definition,
proving Theorem 1 entails proving the following propositions:

Proposition 2 (Consistency). For any DAG G,

1. if tx ∈ GetAccepted(G) and tx2 ∈ inputs (tx) then tx2 ∈ GetAccepted(G).

2. if tx ∈ GetAccepted(G) and tx2 ∈ conflict (tx) then tx2 /∈ GetAccepted(G).

Proposition 3 (Safety). For any v ∈ honest, if ChkRobustAccept (tx, ϵ,Gvt) =
ACCEPT then, with probability of (1−ϵ) at least, there exists a τ of finite expectation
such that ∀u ∈ honest,∀s ≥ τ : ChkRobustAccept (tx, ϵ,Gus) = ACCEPT .

Proposition 4 (Progress). For any v ∈ honest, if ChkRobustAccept (tx, ϵ,Gvt) =
ACCEPT then, with probability of (1− ϵ) at least, for any ϵ′ < ϵ there exists a ϕ of
finite expectation such that ∀s ≥ ϕ : ChkRobustAccept (tx, ϵ,Gus) = ACCEPT .

Proposition 5 (Weak Liveness). Let t be the current time, and assume that tx ∈
x ∈ Gpubt . Let ψ be the first time at which an honest node ϵ-accepts tx. Then,

conditioned on the event where conflict (tx) ∩ Gpubψ = ∅ and on the event where
for all tx2 ∈ inputs (tx), tx2 remains ϵ-accepted forever (by some honest node), the
expectation of ψ is finite.

31

These proposition assume an arbitrary behaviour of the attacker. To each of the
last three propositions we write a matching one which regards robustness of blocks
(rather than that of transactions).

Proposition 6 (Safety (blocks)). For any v ∈ honest, if Risk (x, y,Gvt) < ϵ then,
with probability of (1 − ϵ) at least, there exists a τ of finite expectation such that
∀u ∈ honest,∀s ≥ τ : Risk (x, y,Gus) < ϵ.

Proposition 7 (Progress (blocks)). For any v ∈ honest, if Risk (x, y,Gvt) < ϵ then,
with probability of (1− ϵ) at least, for any ϵ′ < ϵ there exists a ϕ of finite expectation
such that ∀s ≥ ϕ : Risk (x, y,Gus) < ϵ.

Proposition 8 (Weak Liveness (blocks)). Let t be the current time, and assume that

x ∈ Gpubt . Let ψ be the first time s at which for some honest node v: Risk (x, y,Gvs) <

ϵ. Then, conditioned on the event where y /∈ Gpubψ , the expectation of ψ is finite.

8.3 Basic properties

The two following lemmas are immediate from lines 7-14 of Algorithm 1.

Lemma 9. Topological relations are unanimously agreed: If G = (C,E) is a block
DAG, and (y, x) ∈ E, then ∀z ∈ G : votex,y (z,G) = −1.

Lemma 10. A block’s vote regarding block(s) in its past depends only on its past,
hence remains fixed forever: Let G1 and G2 be two block DAGs, and assume x, y, z ∈
G1 ∩G2. If {x, y} ∩ past (z) ̸= ∅ then votex,y (z,G1) = votex,y (z,G2).

Accordingly, as mentioned in Section 2, we say that z is a strong voter w.r.t the
pair (x, y) if z ∈ future (x) ∪ future (y), and otherwise it is a weak voter.

The following Lemma shows that the vote of the genesis coincides with the vote
of the virtual block. Intuitively, the genesis votes according to the majority vote
in the DAG excluding itself, and amplifies this majority, which in turn dictates the
virtual block’s vote.

Lemma 11. genesis’s vote is the final vote: vote (virtual (G)) = vote (genesis,G).

8.4 Proof of Safety of blocks (Proposition 6)

We turn to the proof of Proposition 6, namely, the claim that all nodes will forever
agree on the (robustness of) the order x ≺ y, provided that it was sufficiently robust
in the DAG observed by some honest node. This is the main (and most involved)
part of the proof. The rest of the propositions follow from it, and their proofs are
rather self explanatory.

In order to simplify the analysis, we need to make some worst case assumptions
regarding the behaviour of the attacker. Lemma 19 proves that these are indeed worst
case assumptions, namely, that they indeed represent the optimal attack. The vote
of each block under our modification is denoted p vote (), a notion which we describe
formally in Subsection 10.3.

32

In the next central lemma we show that, provided that the aggregate vote in
future (x) is sufficiently biased in favour of x ≺ y, the genesis block – hence the
virtual block (by Lemma 11) – will vote x ≺ y. This proves that, roughly speaking,
the vote of recent weak voters cascades through the DAG and convinces older weak
blocks, forming thus the genesis’s vote. The way we prove this is by choosing a
specific weak voter zlate(in case x is an honest block, zlate = x), and making sure
that its vote is sufficiently robust so as to guarantee that (i) it will not be reversed,
and (ii) it will cascade all the way to the genesis. Consequently, a successful attack
(namely, a reversal of x ≺ y in the DAG observed by some honest node) requires that
the attacker add more blocks to future (zlate) than the honest network adds (up to
some additive term), in some time interval.

The following lemma formalizes these observations. It uses some parameters (h,
j, etc.) that only an oracle can have full knowledge of. We will later show how in
reality a node can infer the robustness of block relations without having access to
these parameters.

Lemma 12. Let t ≥ publication(x) + 2 · d. Let zlate be the latest block in pasth (x).
Denote:

• h :=
∣∣anticoneh (zlate, Goraclet

)∣∣
• j :=

∣∣futureh (zlate, Goraclet

)
\ futureh (x,Gvt)

∣∣
• m :=

∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣
• k1 :=

∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣

• l := maxz∈Goracle
t ∩honest

{∣∣∣futurea (z,Gutime(zlate)

)∣∣∣−∣∣∣futureh (z,Gutime(zlate)

)∣∣∣}
• g :=

∑
z∈future(x,Gv

t)
votey,x (z,G

v
t)

Then,

Êallt→∞(x, y){ ⊆
{
∃s ≥ t, ∃u ∈ honest s.t.

∣∣∣Gu[t,s] ∩ attacker∣∣∣
≥
∣∣∣Gu[t,s] ∩ honest∣∣∣+ g − 2 · h− j − k1 − l −m

}
.

Given the result of the previous lemma, we can upper bound the probability that
the order of x ≺ y will be reversed. This result resembles the conventional analysis
of Bitcoin’s security: The greater number of blocks currently pointing at x (and in
SPECTRE: voting for x ≺ y), the less likely it is that the attacker will be able to win
the block-count race and reverse the decision.

33

Lemma 13. Given the parameters of Lemma 12,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h′=0

Poiss(d · (1− α) · λ, h′)·

(
α

1− α

)(g−2·h−j−k1−l−m−h′)
+

.

An ordinary node does not typically know for sure the values of the parameters
assumed in Lemma 12. The next corollary shows that the result of that lemma (and
the one that follows) applies when replacing these parameters with proper bounds
thereof. We will later discuss how a node can obtain such bounds.

Corollary 14. If

• j ≥
∣∣anticoneh (x,Goraclet

)∣∣
• l ≥ maxz∈Goracle

t ∩honest

{∣∣∣futurea (z,Gutime(zlate)

)∣∣∣−∣∣∣futureh (z,Gutime(zlate)

)∣∣∣}
• nx ≥ futureh

(
x,Goraclet

)
• g ≤

∑
z∈future(x,Gv

t)
votey,x (z,G

v
t).

Then

Pr
(
Êallt→∞(x, y)

)
≤ (1)

∞∑
k=0

Poiss((2− α) · d · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)·

∞∑
m=0

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm·

(
α

1− α

)(g−2·h−k−j−l−m)+

We adjust the above results to the case where some blocks in future (x,G) are
known to belong to the attacker. Here we assume that this knowledge is granted to
us by a hypothetical oracle. Later on, we will see how attacker blocks are recognized
by Algorithm 3, w.h.p.

Corollary 15. If in addition to the assumptions of Corollary 14 we assume that

34

M ≤ |futurea (x,Gvt)|, then

Pr
(
Êallt→∞(x, y) | |futurea (x,Gvt)| ≥M

)
≤

∞∑
k=0

Poiss((2− α) · d · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)· (2)

(∞∑
m′=M

(
nx + j + h+m′ − 1

m′

)
· (1− α)nx+j+h · αm

′

)−1

·

∞∑
m=M

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm·

(
α

1− α

)(g−2·h−k−j−l−(m−M))+

.

We denote the RHS of this inequality by fpost mine (nx, g, j, l,M).
So far, our analysis assumed that we are given some proper bounds over the

parameters from Lemma 12. Lemmas 23, 28, and 30 show how to appropriately bound
these parameters. For each of these parameters, a separate error function is defined,
which upper bounds the probability that it does not serve as a correct bound. These
error functions deteriorate exponentially fast, by Lemmas 24, 29, and 31. Algorithm 3
aggregates these error functions into the total risk that it outputs.

The parameters are:

• l – the pre-mining lead that the attacker obtained before the publication of x,
with error function fpre mine(l(G

v
t)), calculated numerically in Subsection 10.3.1

• nx – the number of honest blocks in future (x,Gvt), with error function
fpost pub (|future (x,Gvt)|), defined in Corollary 28 (Inequality (52)), and

• j – the number of honest blocks created after time(x), with error function
fpre pub (nj(G

v
t)), defined in Lemma 30 (Inequality (54)).

While we have previously shown that nx properly counts all honest blocks, we
now show that it does successfully exclude almost all attack blocks. Without such a
guarantee, weaker attackers would have been able to publish their blocks and delay
acceptance indefinitely.

Lemma 16. Conditioned on the event Êallt→∞(x, y), there exists a time τ ∈ [t,∞) such

that ∀s ≥ τ : M(oracleu, s) ≥
∣∣∣futurea (x,Goracleus

)
∩Goracle[t,s] \ Vx≺y(Goracle

u

s)
∣∣∣−m∗,

for some m∗ that remains fixed after τ (and with E[m∗] determined by the events up
to time t).

The above analysis (particularly Lemma 12) has upper bounded the probability
that the attacker would be able to reverse the relation x ≺ y. We now show that,
conditioned on the order remaining x ≺ y, the error function fpost mine (which upper
bounds the probability of this order ever reversing) vanishes as well, which in turn
implies that their order would be considered robust by all honest nodes.

35

Lemma 17. There exists a ψ ∈ [t,∞) such that Pr
(
Eallt→∞(x, y, ϵ){ | Evt (x, y, ϵ)

)
< ϵ.

Moreover, E [ψ] < ϵ.

We have thus shown that if the output of Algorithm 3, as run by some honest node,
was smaller than ϵ then with probability of at least 1 − ϵ, any honest node running
Algorithm 3 (after some time) will get a result smaller than ϵ.15 This completes the
proof of Safety w.r.t. blocks.

The same technique used in the proof of Lemma 17 is used to prove the Progress
property (Proposition 7); indeed, in the proof we see that the term that aggregates all
the error functions vanishes as time develops, w.h.p., in the perspective of all honest
nodes. In particular, for v (the node that originally ϵ-accepted the transaction), it
becomes smaller than ϵ′ w.h.p. A similar usage of this argument is used to prove
Weak Liveness (Proposition 8); indeed, in the latter we only need to regard the case
where y = NULL. In this case, all published blocks are strong voters in favour of x,
and so we can guarantee the convergence of the error functions without going through
Lemma 12 and the analysis that follows.

The proofs of the Safety, Weak Liveness, and Progress w.r.t. transactions rely
directly on their block-variants. We refer the reader to Section 10 to fill in these gaps.

9 Conclusions

In this work we presented SPECTRE, a new protocol for fast and scalable distributed
ledgers. We have shown SPECTRE’s ability to process a high rate of block creation,
as well as to handle large blocks securely. Our results demonstrate that SPECTRE
can achieve incredibly low confirmation times, especially compared to the Nakamoto
consensus. Further work to improve and tighten the acceptance policy we derived can
lower confirmation times further.

SPECTRE thus shows the feasibility of creating open, permissionless distributed
ledgers that will work successfully at large scale. SPECTRE achieves these properties
due to the fact that it is willing to delay double-spent transactions (possibly forever).
This fact also makes SPECTRE less suitable for systems like Ethereum, where a total
order over transactions is required (still, SPECTRE will work, but will provide a lower
throughput for transactions that must be ordered).

Additional analysis on the protocol is required from the perspective of incentives.
While we suggested to reward all miners of blocks with block reward, which implies
selfish miners would not be able to reduce the block rewards of others, it still remains
to be seen how well SPECTRE performs when miners try to selfishly maximize
transaction rewards, even at the expense of others (some work in this direction was
done in [13]).

15ϵ here simply represents a value greater than fpre mine + fpre pub + fpost pub + fpost mine.

36

References

[1] Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. Handbook of Social
Choice & Welfare, volume 2. Elsevier, 2010.

[2] Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong
consistency. In Proceedings of the 17th International Conference on Distributed
Computing and Networking, page 13. ACM, 2016.

[3] Christian Decker and Roger Wattenhofer. Information propagation in the bitcoin
network. In 13th IEEE International Conference on Peer-to-Peer Computing
(P2P), Trento, Italy, September 2013.

[4] John R Douceur. The sybil attack. In International Workshop on Peer-to-Peer
Systems, pages 251–260. Springer, 2002.

[5] Cynthia Dwork and Moni Naor. Pricing via processing or combatting junk mail.
In Annual International Cryptology Conference, pages 139–147. Springer, 1992.

[6] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse.
Bitcoin-ng: A scalable blockchain protocol. In 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16), pages 45–59, 2016.

[7] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 281–310. Springer,
2015.

[8] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and Srdjan Capkun.
Tampering with the delivery of blocks and transactions in bitcoin. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 692–705. ACM, 2015.

[9] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse
attacks on bitcoins peer-to-peer network. In 24th USENIX Security Symposium
(USENIX Security 15), pages 129–144, 2015.

[10] Ari Juels and John G Brainard. Client puzzles: A cryptographic countermeasure
against connection depletion attacks. In NDSS, volume 99, pages 151–165, 1999.

[11] Aggelos Kiayias and Giorgos Panagiotakos. On trees, chains and fast transactions
in the blockchain. Cryptology ePrint Archive, Report 2016/545, 2016.

[12] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi,
Linus Gasser, and Bryan Ford. Enhancing bitcoin security and performance with
strong consistency via collective signing. In 25th USENIX Security Symposium,
USENIX Security 16, Austin, TX, USA, August 10-12, 2016., pages 279–296,
2016.

37

[13] Yoad Lewenberg, Yonatan Sompolinsky, and Aviv Zohar. Inclusive block chain
protocols. In International Conference on Financial Cryptography and Data
Security, pages 528–547. Springer, 2015.

[14] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[15] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol
in asynchronous networks. IACR Cryptology ePrint Archive, 2016:454, 2016.

[16] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the
permissionless model. Cryptology ePrint Archive, Report 2016/917, 2016.

[17] Meni Rosenfeld. Analysis of hashrate-based double spending. arXiv preprint
arXiv:1402.2009, 2014.

[18] Fred B Schneider. Implementing fault-tolerant services using the state machine
approach: A tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[19] Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing
in bitcoin. In International Conference on Financial Cryptography and Data
Security, pages 507–527. Springer, 2015.

10 Appendix: The Complete Proof

10.1 Basic properties

Lemma 18. The genesis’s vote is the final vote: vote (virtual (G)) =
vote (genesis,G).

Proof. Suffice it show that if votex,y (genesis,G) ≥ 0 then votex,y (virtual (G)) ≥ 0.
If (x, y) are related topologically then by Lemma 9 all votes agree unanimously on
their ordering, and in particular votex,y (virtual (G)) = votex,y (genesis,G) ≥ 0.
Otherwise, it cannot be the case that x or y are the genesis block, hence the genesis
is a weak voter, and by line 14 we obtain

votex,y (virtual (G)) = s̃gn

(∑
z∈G

votex,y (z,G)

)
= (3)

s̃gn

votex,y (genesis,G) + ∑
z∈future(genesis,G)

votex,y (z,G)

 ≥ (4)

s̃gn

 ∑
z∈future(genesis,G)

votex,y (z,G)

 = votex,y (genesis,G) ≥ 0, (5)

hence votex,y (virtual (G)) ≥ 0.

38

10.2 Proof of Consistency

Proof. Part I: We first prove that for any DAG G, and for any tx1, tx2 ∈ T : if
tx2 ∈ inputs (tx1) and [tx1] ∩GetAccepted(G) ̸= ∅ then [tx2] ∩GetAccepted(G) ̸= ∅.

Assume tx2 ∈ inputs (tx1) and [tx1] ∩ GetAccepted(G,G) ̸= ∅ and let tx1 ∈
[tx1] ∩ GetAccepted(G,G). Consider the iteration of the second loop (line 3) over
tx = tx1. As tx ∈ GetAccepted(G,G) it must be the case that during this iteration
the algorithm has reached line 13. This means that for any [tx3] ∈ inputs (tx1)
it hasn’t visited line 12; in particular for [tx3] = [tx2], the condition [tx2]∩
GetAccepted (G, past (z1)) = ∅ has failed, i.e., [tx2] ∩GetAccepted (G, past (z1)) ̸= ∅.
To see that GetAccepted (G, past (z1)) ⊆ GetAccepted (G,G) observe that (i) during
the run of the algorithm no transaction is ever removed from TX, and that (ii)
for any z1 ∈ G ∩ subG, the operations (in lines 3-13) of GetAccepted (G, subG)
and GetAccepted (G,G) are identical; thus any addition of a transaction in line 13
in GetAccepted (G, subG) occurs in GetAccepted (G,G) as well. In particular,
[tx2] ∩GetAccepted (G,G) ̸= ∅.

Part II: We now prove that for any DAG G, and for any tx1, tx2 ∈ T : if tx2 ∈
conflict (tx1) and [tx1] ∩GetAccepted(G,G) ̸= ∅ then [tx2] ∩GetAccepted(G) = ∅.

Assume that tx2 ∈ conflict (tx1) and [tx1] ∩ GetAccepted(G,G) ̸= ∅ and let
tx1 be an element in the latter intersection. Assume by way of negation that there
exists a tx2 ∈ [tx2] ∩ GetAccepted(G,G). Then during the iteration of the first
loop (line 2) over some instantiation z11 of z1 such that tx1 ∈ z11 , and of the second
loop (line 3) over tx1, the algorithm has reached line 13. In particular, it did not
reach line 9, hence z21 /∈ past

(
z11
)
. For the symmetrical argument, z11 /∈ past

(
z21
)
,

which implies that z21 ∈ anticone
(
z11 , G

)
(and z21 ∈ anticone

(
z11 , G

)
). Now, either

votez11 ,z21 (virtual (G)) ≥ 0 or votez21 ,z11 (virtual (G)) ≥ 0. Either way, line 7 was
reached by either the run on tx1 or the run on tx2, which contradicts the assumption
that both runs reached line 13.

10.3 Proof of Safety (blocks)

In order to simplify the analysis, we need to make some worst case assumptions
regarding the behaviour of the attacker, namely, that it publishes all of its blocks
immediately after time t (which represents the time at which some honest node
accepted the transaction), and that before time(x) its blocks point at all available
blocks. These assumptions essentially modify the DAG (in case the attacker does
not carry out the optimal attack scheme). We need to prove that these modifications
indeed represent the worst case. To this end we use the notion of a pseudo-vote.
A pseudo-vote begins by first explicitly defining and fixing the pseudo-vote of some
blocks, which we call the initial pseudo-voters. Then we define the pseudo-vote of
the rest of the blocks as in Algorithm 1. In more detail, we replace in Algorithm 1
the vote () notation by the p vote () notation, and whenever the algorithm references
p vote (c) of an initial pseudo-voter c, we refer to its fixed predetermined value. Thus,
the pseudo-vote of an initial pseudo-voter might change the pseudo-vote of other
blocks.

39

Lemma 19. Let x, y ∈ G = (C,E) such that Gvt ⊆ G. Let G′ = (C,E′) be the DAG
resulting from adding the following edges to E:

1. ∀z1 ∈ G ∩ before(time(x)) ∩ attacker, ∀z2 ∈ G ∩ before(time(z1)) \ {z1}: add
(z1, z2) to E.

2. ∀z1 ∈ G ∩ attacker \Gvt , ∀z2 ∈ Goracle[publication(z1),∞) ∩ honest: add (z2, z1) to E.

Let p vote () be defined by specifying the following initial pseudo-voters (and their
votes):

3. ∀z ∈ (G ∩ attacker \Gvt) ∪ G ∩ before(time(x)) ∩ attacker: p votex,y (z,G) =
+1.

Then votex,y (virtual (G) , G) ≤
p votex,y (virtual (G

′) , G′).16

Importantly, we assume here that blocks in G ∩ attacker break ties in favour of
y ≺ x.

Proof. Part I: Assume by way of negation that votex,y (virtual (G) , G) = +1 yet
nonetheless p votex,y (virtual (G) , G

′) = −1 (observe that this is the only case in
which the claim can fail, by definition, as a virtual vote cannot take the value of 0).

Let b be a block in future (x,G)∪ {virtual (G)} such that p votex,y (b,G
′) = −1.

b cannot belong to G \ Gvt or to G ∩ before(time(x)) ∩ attacker, because blocks
in these sets have a pseudo-vote of +1. Let z be a block in past (b,G). Since b /∈
(G \Gvt)∪(G ∩ before(time(x)) ∩ attacker), there exists in G′ a path from b to z that
passes through an edge (z2, z1) satisfying the conditions of the second modification to
G, and through an edge (z′1, z

′
2) satisfying those of the first modification. In particular,

time(z2) ≥ publication(z1) ≥ t− d, and time(x) ≥ time(z′2) ≥ time(z′1). As b and z
are the end-vertices of this path, time(b) ≥ time(z2) ≥ t− d ≥ publication(x) + d ≥
time(x) + d ≥ time(z′1) + d ≥ time(z) + d. Since z2 is honest, z ∈ past (z2, G), hence
z ∈ past (b,G). Combined with E ⊂ E′ we obtain: past (b,G′) = past (b,G).

Part II: Let b be the earliest block in future (x,G) ∪ {virtual (G)} for which
votex,y (b,G) = +1 but p votex,y (b,G

′) = −1, and let z be the latest block in
antifuture (x,G′) for which votex,y (z, past (b,G)) > p votex,y (z, past (b,G

′)). If
such a z exists then, similarly to the previous part, we know that past (z,G′) =
past (z,G); this proves that z is a weak voter both in G and in G′, hence that its
pseudo-vote is the sign of the sum of pseudo-votes in its future.17

To see that such a z indeed exists, observe that the genesis satisfies these
conditions: By Lemma 11 votex,y (b,G) = votex,y (virtual (past (b,G))) = +1
implies votex,y (genesis, past (b,G)) ≥ 0, and in a similar way p votex,y (b,G

′) =

16Note that virtual (G) = virtual (G′), as they share the same vertex-set.
17It cannot be the case that y ∈ past (z,G′), because we know that z is not an initial pseudo-voter

(as its pseudo-vote is −1), and therefore the pseudo-vote procedure would have assigned its
pseudo-vote to be +1, because y is in its past but x is not in it past, in the same way the ordinary
procedure does.

40

p votex,y (virtual (past (b,G
′))) = −1 implies that p votex,y (genesis, past (b,G

′))
= −1.18

Part III: By the choice of z, if z′ ∈ future (z, past (b,G′)) is weak with respect
to (x, y) then votex,y (z

′, past (b,G)) ≤ p votex,y (z
′, past (b,G′)). Moreover, by the

choice of b, if z′ ∈ past (b,G′) is strong w.r.t. (x, y) and votex,y (z
′, past (b,G)) =

+1 then p votex,y (z
′, past (b,G′)) = +1. All in all, we have that for all

z′ ∈ future (z, past (b,G′)), votex,y (z
′, past (b,G)) ≤ p votex,y (z

′, past (b,G′)).
Therefore: ∑

z′∈future(z,past(b,G))

votex,y (z
′, past (b,G)) ≤ (6)

∑
z′∈future(z,past(b,G))

p votex,y (z
′, past (b,G′)) ≤ (7)

∑
z′∈future(z,past(b,G))

p votex,y (z
′, past (b,G′))+

∑
z′∈future(z,past(b,G′)\past(b,G))

p votex,y (z
′, past (b,G′)) = (8)

∑
z′∈future(z,past(b,G′))

p votex,y (z
′, past (b,G′)) . (9)

The last equality follows from future (z, past (b,G)) ⊆ future (z, past (b,G′)), which
holds because E ⊆ E′. The inequality in (7) holds because if some z′ has been added
(by transforming G into G′) to the future of some honest block, then z′ must belong
to the attacker, hence p votex,y (z

′, past (b,G′)) = +1 > 0.
Part IV: Consequently, since z is a weak voter with respect to (x, y), (6)-(9)

imply that votex,y (z, past (b,G)) ≤ p votex,y (z, past (b,G
′)), which contradicts the

choice of z.

Lemma 12. Let t ≥ publication(x) + 2 · d. Let zlate be the latest block in pasth (x).
Denote:

• h :=
∣∣anticoneh (zlate, Goraclet

)∣∣
• j :=

∣∣futureh (zlate, Goraclet

)
\ futureh (x,Gvt)

∣∣
• m :=

∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣
• k1 :=

∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣

• l := maxz∈Goracle
t ∩honest

{∣∣∣futurea (z,Gutime(zlate)

)∣∣∣−∣∣∣futureh (z,Gutime(zlate)

)∣∣∣}
• g :=

∑
z∈future(x,Gv

t)
votey,x (z,G

v
t)

18The equality p votex,y (b,G′) = p votex,y (virtual (past (b,G′))) holds because b is either a strong
voter w.r.t. (x, y) or the virtual voter.

41

Then,

Êallt→∞(x, y){ ⊆
{
∃s ≥ t, ∃u ∈ honest s.t.

∣∣∣Gu[t,s] ∩ attacker∣∣∣ (10)

≥
∣∣∣Gu[t,s] ∩ honest∣∣∣+ g − 2 · h− j − k1 − l −m

}
.

Proof. Part I: In the proof below we make the following assumption: Any
attacker-block z created before time(x) always votes in favour of y ≺ x (even if
it is supposed to vote otherwise according to Algorithm 1). We further assume
that any such z satisfies past (z) = Goracletime(z), i.e., it points at all blocks available
at the time of its creation. Finally, we assume that the attacker releases all of his
blocks to all nodes in honest \ {v} precisely at time t and onward. The previous
lemma implies that these are indeed worst case assumptions: Take G to be any
Gus . Then, what the lemma shows is that as long as p votex,y (virtual (G

u
s)) = −1,

also votex,y (virtual (G
u
s)) = −1 (under the worst case assumption that ties are

always broken in favour of y).19 The analysis below applies, formally, to p vote ()
as formalized in the prevoius lemma (specifically in (3)). Nevertheless, now that the
argument has been formally made, we omit this notation henceforth.

Part II: Let us look at the following chain of implications:

votex,y (virtual (G
u
s)) ≥ 0⇒ votex,y (genesis,G

u
s) ≥ 0⇒∑

z′∈future(genesis,Gu
s)

votex,y (z
′, Gus) ≥ 0 (11)

The first implication follows from Lemma 11. The second one follows from the
definition of genesis’s vote.20 Thus,

Êallt→∞(x, y){ = ∪u∈honest,s∈[t,∞)Êus (x, y){ =

{∃u ∈ honest, ∃s ≥ t : votex,y (virtual (Gus)) ≥ 0}

However, if there exists such an s as the latter event requires, then we can look at
the first such s. With respect to it, between t and s all honest votes were in favour
of x ≺ y; this is because for any honest block z′ with time(z′) ∈ [t, s), past (z′) =

G
node(z′)
time(z′), hence vote (z

′) = vote
(
virtual

(
G
node(z′)
time(z′)

))
, and by the choice of s as the

earliest time for which an honest node’s DAG’s virtual block votes in favour of y ≼ x,
we know that votex,y (z

′, Gus) = −1.
Part III: Below, the notation Gu[t1,t2] stands for Gus ∩ before (t2) \ before (t1).

19In fact, we use the lemma with a slight modification: The second modification does not apply
to all such (z2, z1) satisfying the specified conditions, rather to a subset thereof, since blocks created
by node v between t and t + d need not point at all attacker blocks in G \ Gv

s . It is easy to see,
however, that the proof of the lemma remains intact (and it remains so when applying the second

modification to any subset of (G ∩ attacker \Gv
t)×

(
Goracle

[publication(z1),∞)
∩ honest

)
).

20Here we implicitly assume that x and y are not related topologically, which rules out the option
that x = genesis or y = genesis, hence genesis is weak w.r.t. (x, y). If they are related topologically,
the result is trivial, for all votes are then forever unanimous in the same direction (Lemma 9).

42

We claim that for all z ∈ pasth (x):

votex,y (z,G
u
s) ≤ s̃gn

(∣∣∣Gu[t,s] ∩ attacker∣∣∣− ∣∣∣Gu[t,s] ∩ honest∣∣∣
+2 · h+ l + k1 + j +m− g) .

We prove the claim by a complete induction on D(z) :=
∣∣future (z,pasth (x))∣∣.

Assume we have proved the claim for any z with D(z) < D. We now prove it
for z with D(z) = D. If z = x then votex,y (z,G

u
s) = −1 hence the above inequality

is satisfied trivially. Otherwise, z is a weak voter, and votex,y (z,G
u
s) is given by

the sign of the sum of votes in its future. We decompose these voters into three

subsets: members of future
(
z,Gutime(zlate)

)
, members of future

(
z,Gu[time(zlate),t]

)
,

and members of future
(
z,Gu[t,s]

)
.

1. Members of future
(
z,Gutime(zlate)

)
: By the induction hypothesis we know

that all blocks in futureh
(
z,pasth (zlate)

)
vote in favour of x ≺ y, and

by the choice of zlate we have that futureh

(
z,Gutime(zlate)

)
\ past (zlate) =

anticoneh

(
z,Gutime(zlate)

)
. Thus,

∑
z′∈futureh

(
z,Gu

time(zlate)

) votex,y (z′, Gus) ≤ 2 ·∣∣∣anticoneh (zlate, Gutime(zlate)

)∣∣∣− ∣∣∣futureh (z,Gutime(zlate)

)∣∣∣. We obtain:∑
z′∈future

(
z,Gu

time(zlate)

) votex,y (z′, Gus) ≤

2 ·
∣∣∣anticoneh (zlate, Gutime(zlate)

)∣∣∣
−
∣∣∣futureh (z,Gutime(zlate)

)∣∣∣+ ∣∣∣futurea (z,Gutime(zlate)

)∣∣∣ .
2. Members of future

(
z,Gu[time(zlate),t]

)
:

(a) Honest blocks: By Part I we have that futurea

(
z,Gu[time(zlate),t]

)
\

futurea

(
zlate, G

u
[time(zlate),t]

)
= ∅. This implies that

anticoneh

(
zlate, G

u
[time(zlate),time(zlate)+d]

)
⊇ future

(
z,Gu[time(zlate),t]

)
\

43

future (zlate, G
u
t). We obtain:∑
z′∈futureh

(
z,Gu

[time(zlate),t]

) votex,y (z′, Gus) ≤∑
z′∈futureh(zlate,Gu

t)

votex,y (z
′, Gus)+∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣ ≤∑
z′∈futureh(zlate,Gv

t)

votex,y (z
′, Gus)+∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣ ≤∑

z′∈futureh(x,Gv
t)

votex,y (z
′, Gus)+∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣+

|futureh (zlate, Gvt) \ futureh (x,Gvt)| .

(b) Attacker blocks: We utilize our worst case assumptions described in Part I
to obtain: ∑

z′∈futurea
(
z,Gu

[time(zlate),t]

) votex,y (z′, Gus) =∑
z′∈futurea

(
zlate,Gu

[time(zlate),t]

) votex,y (z′, Gus) ≤∑
z′∈futurea(x,Gv

t)

votex,y (z
′, Gus)+

|futurea (zlate, Gut) \ futurea (x,Gvt)| .

(c) All blocks: We combine the honest and attacker blocks in

44

future
(
z,Gu[time(zlate),t]

)
to obtain:∑

z′∈future
(
z,Gu

[time(zlate),t]

) votex,y (z′, Gus) ≤∑
z′∈futureh(x,Gv

t)

votex,y (z
′, Gus)+∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣+ |futureh (zlate, Gvt) \ futureh (x,Gvt)|

+
∑

z′∈futurea(x,Gv
t)

votex,y (z
′, Gus)+

|futurea (zlate, Gut) \ futurea (x,Gvt)| = (12)

g +
∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+ (13)∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣+ |futureh (zlate, Gvt) \ futureh (x,Gvt)|

+ |futurea (zlate, Gut) \ futurea (x,Gvt)| .

3. Members of future
(
z,Gu[t,s]

)
: Finally, by the choice of s, all honest blocks created

between t and s vote in favour of x ≺ y, hence∑
z′∈future

(
z,Gu

[t,s]

) votex,y (z′, Gus) ≤

−
∣∣∣futureh (z,Gu[t,s])∣∣∣+ ∣∣∣futurea (z,Gu[t,s])∣∣∣ ≤
−
∣∣∣Gu[t,s] ∩ honest∣∣∣+ ∣∣∣Gu[t,s] ∩ attacker∣∣∣ ,

where we used again the fact that t ≥ publication(x) + d ≥ publication(z) + d.

45

4. Combining all the above results we obtain:∑
z′∈future(z,Gu

s)

votex,y (z
′, Gus) ≤ (14)

2 ·
∣∣∣anticoneh (zlate, Gutime(zlate)

)∣∣∣
−
∣∣∣futureh (z,Gutime(zlate)

)∣∣∣+ ∣∣∣futurea (z,Gutime(zlate)

)∣∣∣ (15)

+ g +
∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣+∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣+

|futureh (zlate, Gvt) \ futureh (x,Gvt)|+
|futurea (zlate, Gut) \ futurea (x,Gvt)|+ (16)

−
∣∣∣Gu[t,s] ∩ honest∣∣∣+ ∣∣∣Gu[t,s] ∩ attacker∣∣∣ ≤ (17)

(18)

2 · h+ l + k1 − g +
∣∣∣Gu[t,s] ∩ attacker∣∣∣− ∣∣∣Gu[t,s] ∩ honest∣∣∣

+ |futureh (zlate, Gvt) \ futureh (x,Gvt)|+
|futurea (zlate, Gut) \ futurea (x,Gvt)| ≤

2 · h+ l + k1 − g +
∣∣∣Gu[t,s] ∩ attacker∣∣∣− ∣∣∣Gu[t,s] ∩ honest∣∣∣

+
∣∣futureh (zlate, Goraclet

)
\ futureh (x,Gvt)

∣∣+ (19)∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣ = (20)

2 · h+ l + k1 − g + j +m+
∣∣∣Gu[t,s] ∩ attacker∣∣∣ (21)

−
∣∣∣Gu[t,s] ∩ honest∣∣∣ .

As z is a weak voter, we conclude that votex,y (z,G
u
s) ≤ s̃gn

(∣∣∣Gu[t,s] ∩ attacker∣∣∣−∣∣∣Gu[t,s] ∩ honest∣∣∣ +2 · h+ l + k1 + g + j +m).

Part IV: In particular, for z = genesis, the event votex,y (genesis,G
u
s) ≥ 0 is

contained in the event where
∣∣∣Gu[t,s] ∩ attacker∣∣∣ ≥ ∣∣∣Gu[t,s] ∩ honest∣∣∣ − 2 · h − l − k1 −

g − j −m. By (11), this event contains also Êsu(x, y){, for all u ∈ honest and s ≥ t,

hence it contains also their union Êallt→∞(x, y){.

46

Lemma 13. Given the parameters of Lemma 12,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h′=0

Poiss(d · α · λ, h′)· (22)

(
α

1− α

)(g−2·h−j−k1−l−m−h′)
+

.

Proof. Since all nodes u ∈ honest receive honest blocks with a delay of d seconds at

most, we have that
∣∣∣Gu[t,s] ∩ attacker∣∣∣−∣∣∣Gu[t,s] ∩ honest∣∣∣ ≤ ∣∣∣futurea (zlate, Goracle[t,s]

)∣∣∣−∣∣∣futureh (zlate, Goracle[t,max{s−d,t}]

)∣∣∣. We further upper bound
∣∣∣futurea (x,Goracle[s′,s]

)∣∣∣ by∣∣∣futurea (x,Goracle[s−d,s]

)∣∣∣, and observe that the latter follows a Poisson distribution

with parameter α · d · λ; we denote this variable by h′. For any given value of h′,
the variable

∣∣futurea (x,Goracles′ \Goraclet

)∣∣− ∣∣futureh (x,Goracles′ \Goraclet

)∣∣+h′ can
be modeled as a random walk Xi (where the ith step is the creation-time of the ith
block after time t), with X0 = h′, and with a drift of α towards positive infinity.
The probability that Xi would ever reach the interval [−h − j − k1 − h′ − l −m +

g,+∞) is
(

α
1−α

)g−2·h−j−k1−l−m−h′

, if g > h+ j + k1 + l +m+ h′, and 1 otherwise

(see [19, 17]).

Corollary 14. If

• j ≥
∣∣anticoneh (x,Goraclet

)∣∣
• l ≥ maxz∈Goracle

t ∩honest

{
Aztime(x) −H

z
time(x)

}
• nx ≥ futureh

(
x,Goraclet

)
• g ≤

∑
z∈future(x,Gv

t)
votey,x (z,G

v
t).

Then

Pr
(
Êallt→∞(x, y)

)
≤ (23)

∞∑
k=0

Poiss((2− α) · d · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)·

∞∑
m=0

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm·

(
α

1− α

)(g−2·h−k−j−l−m)+

47

Proof. We build on the results of previous lemmas. The proof of Lemma 12, which
is deterministic, remains intact when the corresponding parameters serve as bounds;
see (14)-(21).

The variables k1,
∣∣∣anticoneh (zlate, Gu[time(zlate),time(zlate)+d]

)∣∣∣, and h′ are the sum
of independent Poisson processes; the parameter of the first two is d·(1−α)·λ, and the
parameter of h′ is d ·α ·λ. Thus, their sum is a new Poisson variable k with parameter

(2 · (1 − α) + α) · d · λ = (2 − α) · d · λ. The variable
∣∣∣anticoneh (zlate, Gutime(zlate)

)∣∣∣
is an additional Poisson variable with parameter d · (1 − α) · λ. We denote it by h
(thereby overriding its original meaning in Lemma 12).

Lemma 12 uses the variablem =
∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣ which
is upper bounded by

∣∣futurea (zlate, Goraclet

)∣∣. Provided that the honest network
has created precisely n blocks since the creation of zlate, the number of blocks
created by the attacker at the same time follows a negative binomial distribution
(see [17]), i.e., it takes the value m with probability

(
n+m−1

m

)
· (1 − α)n · αm. In

the worst case, all of these blocks belong to future
(
zlate, G

oracle
t

)
. Here, again,

it is sufficient to upper bound n, since increasing the parameter n results in a
distribution over m that stochastically dominates (in first order) the original one.
The number of honest blocks created after time(zlate) (up to time t) is upper
bounded by antipasth

(
zlate, G

oracle
t

)
, since blocks in pasth (zlate). We thus have: n ≤

|anticoneh (zlate, Gvt)| + |futureh (zlate, Gvt) \ futureh (x,Gvt)| + |futureh (x,Gvt)| ≤
h+ j + nx.

Finally, as l and j are upper bounds and g is a lower bound to the corresponding
variables from Lemma 12, one could simply turn all equalities in its proof (and in the
proof of Lemma 13) into “≤” inequalities and the proof remains intact.

Below we revisit previous results, regarding the case where x is known to be an
honest block, and to the case where one needs to defend a group of blocks rather than
an individual block.

Lemma 20. Assume that node(x) ∈ honest and that publication(y) ≥
publication(x) + d. Let zlate be the latest block in anticoneh (x,G

v
t) and let zearly

be the earliest block in anticoneh (x,G
v
t). Furthermore, assume:

• l := maxz∈Goracle
t ∩honest

{∣∣∣futurea (z,Gutime(zearly)

)∣∣∣−∣∣∣futureh (z,Gutime(zearly)

)∣∣∣}
• nx ≥ maxx′∈anticoneh(x)

{∣∣futureh (x′, Goraclet

)∣∣}
• g ≤ maxx′∈anticoneh(x,Gv

t)

{
z ∈ future (x′, Gvt) : votey,x (z,Gvt) = −1

}
−

minx′∈anticoneh(x,Gv
t)

{
z ∈ future (x′, Gvt) : votey,x (z,Gvt) = +1

}
.

48

Then,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h=0

Poiss(d · λ, h)· (24)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (25)

(
α

1− α

)(g−h−l−m)+

.

Proof. Let k1 ≥
∣∣∣Goracle[t−d,t] ∩ honest

∣∣∣, and let m :=
∣∣futurea (zearly, Goraclet

)
\

futurea (zlate, G
v
t)|. We adjust the analysis from the proof of Lemma 12. We claim

that for all z ∈ anticoneh (x,Gvt):

votex,y (z,G
u
s) ≤ s̃gn

(∣∣∣Gu[t,s] ∩ attacker∣∣∣− ∣∣∣Gu[t,s] ∩ honest∣∣∣
l + k1 +m− g) .

We prove the claim by a complete induction on D(z) :=∣∣future (z,anticoneh (x))∣∣. Assume we have proved the claim for any z with
D(z) < D. We now prove it for z with D(z) = D. If z = x then votex,y (z,G

u
s) = −1

hence the above inequality is satisfied trivially. Otherwise, z is a weak voter, as
y /∈ past (z) by the assumption on publication(y), therefore votex,y (z,G

u
s) is given

by the sign of the sum of votes in its future. We decompose these voters into three

subsets: members of future
(
z,Gutime(zlate)

)
, members of future

(
z,Gu[time(zlate),t]

)
,

and members of future
(
z,Gu[t,s]

)
.

1. Members of future
(
z,Gutime(zlate)

)
: By the induction hypothesis we know that all

blocks in futureh
(
z,anticoneh (zlate)

)
vote in favour of x ≺ y, hence We obtain:∑

z′∈future
(
z,Gu

time(zlate)

) votex,y (z′, Gus) ≤

−
∣∣∣futureh (z,Gutime(zlate)

)∣∣∣+ ∣∣∣futurea (z,Gutime(zlate)

)∣∣∣ .
2. Members of future

(
z,Gu[time(zlate),t]

)
: Every z′ in this set belongs to future (x′)

49

for some x′ ∈ anticoneh (x,Gvt), therefore, by the definition of g:∑
z′∈future

(
z,Gu

[time(zlate),t]

) votex,y (z′, Gus) ≤

− g +
∣∣futurea (zearly, Goraclet

)
\ futurea (zlate, Gvt)

∣∣+
|futureh (z,Gut) \ futureh (z,Gvt)| ≤ (26)

− g +
∣∣futurea (zearly, Goraclet

)
\ futurea (zlate, Gvt)

∣∣+ ∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣ =

− g +m+ k1.

3. Members of future
(
z,Gu[t,s]

)
: By the choice of s, all honest blocks created between

t and s vote in favour of x ≺ y, hence∑
z′∈future

(
z,Gu

[t,s]

) votex,y (z′, Gus) ≤

−
∣∣∣futureh (z,Gu[t,s])∣∣∣+ ∣∣∣futurea (z,Gu[t,s])∣∣∣ ≤
−
∣∣∣Gu[t,s] ∩ honest∣∣∣+ ∣∣∣Gu[t,s] ∩ attacker∣∣∣ ,

where we used the fact that t ≥ publication(x) + d ≥ publication(z) + d.

4. All in all, ∑
z′∈future(z,Gu

s)

votex,y (z
′, Gus) ≤ (27)

l + k1 +m− g −
∣∣∣Gu[t,s] ∩ honest∣∣∣+ ∣∣∣Gu[t,s] ∩ attacker∣∣∣ ≤ (28)

l + k1 +m− g −
∣∣∣futureh (zlate, Goracle[t,max{s−d,t}]

)∣∣∣+∣∣∣futurea (zlate, Goracle[t,s]

)∣∣∣ (29)

Therefore, the event where for some s and some u, votex,y (virtual (G
u
s)) ≥ 0 is

contained in the event where (29) is non-negative. As in the proof of Lemma 13, the

probability of the latter event is upper bounded by
(

α
1−α

)(l+k1+h′+m−g)
+

, where h′

equals
∣∣∣futurea (x,Goracle[s′,s]

)∣∣∣. We then combine k1 and h′ into one Poisson variable

50

h with parameter α · d · λ+ (1− α) · d · λ = d · λ, to obtain:

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h=0

Poiss(d · λ, h)· (30)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (31)

(
α

1− α

)(g−h−l−m)+

.

Corollary 21. If in addition to Lemma 20’s assumptions we know that
publication(y) ≥ t, then

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h=0

Poiss(d · α · λ, h)· (32)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (33)

(
α

1− α

)(g−h−l−m)+

.

Proof. Given that y wasn’t published until time t, we know that all honest blocks in

future
(
x,Goracle[t−d,t]

)
vote in favour of x, hence the reduction of k1 =

∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣

in (26) is superfluous, and we thus only need to reduce h′, the Poisson variable with
parameter d · α · λ from Lemma 13.

Corollary 22. Let X ⊆ Gvt ∩ honest and Y ⊆ Goraclet \ Gvt . Assume further that
elements in X do not relate topologically to one another (i.e., ∀x1, x2 ∈ X,x1 ∈
anticone (x2, G

v
t)). Let zlate be the latest block in X, let zearly be the earliest block in

X.
Then,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h=0

Poiss((3− 2 · α) · d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−h−l−m)+

.

Proof. We adjust the result of Lemma 20. The main modification
is that now g must relate to all pairs (x, y). Define:
g := maxx1,x2∈X

{
z ∈ future (x1, Gvt) : votey,x2 (z,G

v
t) = −1

}
−

minx1,x2∈X
{
z ∈ future (x1, Gvt) : votey,x2 (z,G

v
t) = +1

}
. Observe that in the

interval [time(zearly) + 2 · d, t] all honest blocks belong to ∩x∈Xfuture (x,Gvt).

51

In particular, if we denote h′ := nx − g we have that h′ is upper bounded
by a Poisson variable with parameter 2 · d · λ. We then apply the analysis
done in the proof of Lemma 20, with s being the first time at which for some
(x, y) ∈ X × Y , votex,y (virtual (G

u
s)) ≥ 0. Combining the result of that lemma with

the probability distribution over h′ we conclude that the probability of the event
∪(x,y)∈X×Y Êallt→∞(x, y) is at most

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
h′=0

Poiss(2 · d · (1− α) · λ, h′) ·
∞∑
h=0

Poiss(d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−h′−h−l−m)
+

=

∞∑
h=0

Poiss((3− 2 · α) · d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−h−l−m)+

.

Corollary 15. If in addition to the assumptions of Corollary 14 we assume that
M ≤ |futurea (x,Gvt)|, then

Pr
(
Êallt→∞(x, y) | |futurea (x,Gvt)| ≥M

)
≤ (34)

∞∑
k=0

Poiss((2− α) · d · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)· (35)

(∞∑
m′=M

(
nx + j + h+m′ − 1

m′

)
· (1− α)nx+j+h · αm

′

)−1

·

∞∑
m=M

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm·

(
α

1− α

)(g−2·h−k−j−l−(m−M))+

We denote the RHS of this inequality by fpost mine (nx, g, j, l,M). We note that
from Lemmas 24, 31, and 29 it follows that, in order to compute fpost mine, one can
truncate these sums and suffer an exponentially low error.

Proof. Under the assumption onM we have
∣∣futurea (zlate, Goraclet

)
\ futurea (x,Gvt)

∣∣
=
∣∣futurea (zlate, Goraclet

)∣∣− |futurea (x,Gvt)| ≥ ∣∣futurea (zlate, Goraclet

)∣∣−M .
We then adjust the result of Corollary 14 and adjust (1) to account for the above

updated definition ofm. Thus, in the exponent, we substitutem−M form and write:(
α

1−α

)(g−2·h−j−k−l−(m−M))+

. Next, the updated probability distribution overm−M

52

can be obtained by conditioning the negative binomial distribution (described in the
proof of Corollary 14) on its being larger than or equal to M ; indeed, the M blocks
of futurea (x,G

v
t) were created after zlate (and before time t), and futurea (x,G

v
t) ⊆

futurea
(
zlate, G

oracle
t

)
. Consequently, the probability distribution over m − M is

given by

Pr (m−M) =

(∞∑
m′=M

(
nx + j + h+m′ − 1

m′

)
· (1− α)nx+j+h · αm

′

)−1

·(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm,

and we arrive at the desired term. The rest of the arguments in the proof of
Corollary 14 remain unaffected.

10.3.1 Numerical method to calculate fpre mine

• Put δ := α ·λ ·d. Pick some N ≫ 1,21 and define a matrix T ∈ RN×N as follows.
For all 1 ≤ l < N−1, Tl−1,l = 1−α, Tl+1,l = α, and for l = N−1: Tl−1,l = 1−α,
Tl,l = α. The first column of the matrix is defined by: T0,0 := (1 − α) · e−δ,
T1,0 = e−δ · α + e−δ · δ, for 1 < l < N − 1: Tl,0 = e−δ · δ

l

l! , and for l = N − 1:

Tl,0 = 1−
∑N−2
l=0 e−δ · δ

l

l! .

• Find the eigenvector of T corresponding to the eigenvalue 1, and denote it π.
Define Π(l) :=

∑l
l′=0 π(l

′), and, finally, define fpre mine(l) := 1−Π((l − 1)+).

The matrix T is the transition probability matrix of a special reflecting random walk
(Xk) over the nonnegative integers: Ti,j := Pr (Xk+1 = i | Xk = j). At every position
(apart from the edges 0 and N − 1) the walk takes a step towards negative infinity
w.p.(1 − α) and towards positive infinity w.p.α. Whenever it reaches the origin,
it jumps to its next position in {0, 1, ..., N − 1} according to a (modified) Poisson
distribution. It is easy to see that this random walk induces an ergodic Markov
chain, hence it has a unique stationary distribution, which we denoted π; Π is the
cumulative probability function of π.

Lemma 23. For all r̂ ≥ r and for all For all l ∈ N:

Pr

(
max

z∈Goracle
r̂ ∩honest

{∣∣futurea (z,Goracler

)∣∣−∣∣futureh (z,Goracler

)∣∣} > l
)
≤

fpre mine(l). (36)

21By Lemma 24, to achieve an error of at most ϵ̂ it suffices to choose N such that
(

α
1−α

)N−1
< ϵ̂/2

and e−d·α·λ · (d·α·λ)N
N !

< ϵ̂/2. In particular, N is logarithmic in ϵ̂.

53

Proof. Part I: We prove the result assuming the maximum is taken
over all z ∈ Goracler ∩ honest; taking then the maximum over all
z ∈ Goracler̂ ∩ honest does not change the result, because the variable{∣∣futurea (z,Goracler

)∣∣− ∣∣futureh (z,Goracler

)∣∣} is nonnegative (as will be shown
below), and its value for z ∈ Goracler̂ \Goracler i is zero.

We show that the variable maxz∈Goracle
s ∩honest

{∣∣futurea (z,Goracles

)∣∣−∣∣futureh (z,Goracles

)∣∣} can be modeled as a reflecting random walk (with some
special behaviour when the walk visits the origin, due to the honest network’s inner
delay d).

Intuitively, observe that whenever a new honest block b is created,

futureh

(
z,Goracletime(b)

)
increases by 1 for all z’s in its past. For b itself, the value

of this variable is 0. Thus, the value of maxz∈Goracle
s ∩honest

{
futurea

(
z,Goracles

)
−

futureh
(
z,Goracles

)}
is lower bounded by 0. On the other hand, whenever a new

attack block is created, the value of futurea
(
z,Goracles

)
increases by 1 for all honest

blocks available to it at the time (following the worst case assumptions specified
in Lemma 12, Part I). Therefore, the attacker’s maximal advance over the honest
network can be modeled as a reflecting random walk. Note that, since the creation
of an honest block b increases futureh

(
z,Goracles

)
only for blocks in pasth (b), which

might be a proper subset of before (time(b)) (when d > 0), there are certain situations
where honest blocks do not “work against” attack blocks to decrease the value of
max

{∣∣futurea (z,Goracles

)∣∣− ∣∣futureh (z,Goracles

)∣∣}. We take this into account by
skewing the behviour of the walk whenever the origin is visited (and proving that in
all other states the honest network’s inner delay has no effect).

In the following analysis, we assume the worst case scenario, namely, that if z1
and z2 are honest blocks such that |time(z1)− time(z2)| < d then z1 ∈ anticone (z2).
That this is a worst case follows simply from the fact that omitting some edges
between honest blocks can only decrease futureh

(
z,Goracles

)
hence increase the value

of
∣∣futurea (z,Goracles

)∣∣− ∣∣futureh (z,Goracles

)∣∣.
If the attacker is creating blocks in secret, it needs to decide upon a strategy

regarding which blocks should its new block point at, for every new block it creates.
Consider the following strategy: The attacker’s new block b, created at time(b),
points at Goracletime(b) (except itself, of course). While we have already argued why this is

a worst case assumption (Lemma 12, Part I), it is here easy to see that this strategy
maximizes maxz∈Goracle

s ∩honest
{∣∣futurea (z,Goracles

)∣∣
−
∣∣futureh (z,Goracles

)∣∣}.
Part II: Denote by ti the creation time of the ith block in Goracler . Denote by zs

the variable argmaxz∈Goracle
s ∩honest

{∣∣futurea (z,Goracles

)∣∣− ∣∣futureh (z,Goracles

)∣∣}.
Define further Azs :=

∣∣futurea (z,Goracles

)∣∣, and Hz
s :=

∣∣futureh (z,Goracles

)∣∣.
Abbreviate As :=

∣∣futurea (zs, Goracles

)∣∣, and Hs :=
∣∣futureh (zs, Goracles

)∣∣.
We define a subseries (sk) ⊆ (ti) recursively: s0 = 0, and for all k > 0: sk+1 =

mini {ti : ti ≥ time (zsk) + d}. We claim that (Ask −Hsk) has the same probability
distribution as Xk. Assume this claim holds true, and let sk be the earliest sk with

54

sk ≥ r. Then (Ar −Hr) ≤ 1 + (Ask −Hsk).
22 Consequently,

Pr

(
max

z∈Gu
r∩honest

{|futurea (z,Gur)| −

|futureh (z,Gur)|} > l) =

Pr (Ar −Hr > l) ≤ Pr (Ask −Hsk > l − 1) =

Pr (Xk > l − 1) = 1−Π((l − 1)+).

Part III: To complete the proof we prove our claim, by induction on k. For k = 0,
s0 = 0. At time 0, following the creation of the genesis block, the value of (A0 −H0)
is 0, as future (genesis) ∩ Goracle0 = ∅, and likewise X0 = 0. Assume we have
proved this for k, and we now prove it for k + 1. Assume first that (Ask −Hsk) > 0.
Assume by way of negation that sk < time (zsk) + d. Then, by the construction
of (sk), sk = time (zsk). This implies that the honest network created zsk in time
sk. Thus (Ask −Hsk) = 0, because zsk was created at time sk. As zsk is supposed
to be in argmaxz∈Goracle

r ∩honest {Ask −Hsk}, this contradicts our assumption that

Ask −Hsk > 0. Thus,
(
Azsk −H

z
sk

)
> 0 implies sk ≥ time (zsk) + d.

Consequently, if (Ask −Hsk) > 0, we are guaranteed that the entire honest
network has learnt about the block zsk . Thence, the honest network adds blocks
to future (zsk) at a rate of (1 − α · λ), while the attacker adds them at a rate of
α. Every block of the honest network then contributes 1 to

∣∣futureh (z,Goracles

)∣∣,
whereas an attacker block contributes 1 to

∣∣futurea (z,Goracles

)∣∣. Thus, (Ask −Hsk)
increases by 1 by the addition of an attacker’s block, that is, w.p.α, and decreases by
1 w.p.(1−α). Indeed, conditioned on Xk > 0, Xk+1’s distribution behaves the same:
Pr (Xk+1 = Xk + 1 | Xk > 0) = 1− Pr (Xk+1 = Xk − 1 | Xk > 0) = α.

Assume now that (Ask −Hsk) = 0. It cannot be the case that the block that was
created in time sk belongs to the attacker, since that would imply that the attacker has
an advantage of at least 1 over the last block that was created by the honest network
(up to time sk). Therefore, it belongs to the honest network. By the definition of
zsk , it is precisely the block that was created in time sk. Consequently, in the interval
(sk, sk + d), the honest network does not add blocks to future (zsk) (recall we are
assuming that the worst case scenario is realized, i.e., a propagation time of d seconds
per honest block). During this interval, the attacker creates blocks at following a

Poisson process with parameter α·λ. Thus,
(
A
zsk
sk+d

−Hzsk
sk+d

)
= i w.p. Poiss(α·λ·d, i).

Upon which, the next block in the system, created after sk + d, is the attacker’s

w.p.α, in case which the total gap increases by j + 1, i.e.,
(
A
zsk+1
sk+1 −H

zsk+1
sk+1

)
=(

A
zsk
sk+d

−Hzsk
sk+d

)
+1; alternatively, the next block after sk+d is the honest network’s,

w.p.(1−α), in case which
(
A
zsk+1
sk+1 −H

zsk+1
sk+1

)
= max

{(
A
zsk
sk+d

−Hzsk
sk+d

)
− 1, 0

}
. By

comparing this to Pr (Xk+1 | Xk = 0), we see that also in this case the variable Xk+1

22Indeed, if r = sk then this holds trivially. Otherwise, in the interval (r, sk) the honest network
could have contributed at most one block to future

(
zsk−1

)
, because (Xi) can decrease by at most 1

at every step, according to its transition matrix, thus in the interval (r, sk) ⊆ (sk−1, sk) the honest
network created at most 1 block.

55

behaves the same as
(
A
zsk+1
sk+1 −H

zsk+1
sk+1

)
.

Lemma 24. fpre mine(l) ≤ Cl · e−Bl·futurea(x,Gv
t) for some positive constants Bl, Cl.

To get the intuition of this result, notice that when d = 0 the stationary

distribution of the reflecting random walk is known to be proportionate to
(

α
1−α

)l
,

and if d > 0, this relation still holds for l≫ d · λ.

Proof. For n > 1, the stationary distribution π satisfies the relation π(n) = (1− α) ·
π(n+ 1) + α · π(n− 1) + e−δ · δ

n

n! · π(0). Let us write π(n) = Cn ·
(

α
1−α

)n
for n ≥ 0.

We have:

Cn ·
(

α

1− α

)n
= (1− α) · Cn+1 ·

(
α

1− α

)n+1

+ (37)

α · Cn−1 ·
(

α

1− α

)n−1

+ e−δ · δ
n

n!
· π(0) =⇒ (38)

Cn = Cn+1 · α+ Cn−1 · (1− α)−1 + e−δ ·

(
δ · (1−α)α

)n
n!

· π(0). (39)

For large enough n’s, the last summand in the above expression is negligible. Thus,
when we write ∀n : Cn ≈ C, the above relation will be satisfied for large n’s (up to the

negligible error of the last summand). Thus, for some constant C, π(n) ≤ C ·
(

α
1−α

)n
,

hence 1−Π((n− 1)+) =
∑∞
k=n π(k) ≤ Bl · e−Cl·n, for some large enough n, and some

constants Bl, Cl > 0.

The following Corollary is immediate from Lemma 23.

Corollary 25. In Lemma 20, if l is not known, then

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
l=0

π(l) ·
∞∑
h=0

Poiss(d · λ, h)· (40)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (41)

(
α

1− α

)(g−h−l−m)+

.

Similarly, in Corollary 21,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
l=0

π(l) ·
∞∑
h=0

Poiss(d · αλ, h)· (42)

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (43)

(
α

1− α

)(g−h−l−m)+

. (44)

56

Finally, in Corollary 22,

Pr
(
Êallt→∞(x, y){

)
≤

∞∑
l=0

π(l) ·
∞∑
h=0

Poiss((3− 2 · α) · d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−h−l−m)+

.

Using this corollary we can prove the bound that is used by the online policy
described in Algorithm 7. Denote:

risk hidden(T, g) :=

∞∑
l=0

π(l) ·
∞∑
m=0

Poiss((T + 2 · d) · α · λ)· (45)

(
α

1− α

)(g−l−m)+

(46)

Corollary 26. If Algorithm 7 returns a value less than ϵ then

Pr
(
∪y∈Gpub

∞ \Gpub
t
Êallt→∞(x, y){

)
< ϵ.

Proof. First, observe that the variable g used in Corollary 21 could be replaced (here
and in that corollary) with minx′∈anticoneh(x,Gv

t)
|future (x′, Gvt)|, because all blocks

in future (x,Gvt) vote in favour of x, by the assumption on y. The value assigned to
g, in line 5 of Algorithm 7, is upper bounded by minx′∈anticone(x,Gx)

|future (x′, Gx)|,
because Gx includes all honest blocks in Gvt . Next, T is assigned the value time now−
receivedv(x) = t−receivedv(x), in line 3. Observe that m is distributed according to
Poiss(m, (t− time(x)) · α · λ).23 As time(x) ≥ receivedv(x) + d, we can upper bound
this by a Poisson variable with parameter (T + d) ·α ·λ. We then adjust the result of
the second term in Corollary 25; we combine the distrbituions over h and m (where
h is taken from (42), to conclude that

Pr
(
∪y∈Gpub

∞ \Gpub
t
Êallt→∞(x, y){

)
≤ (47)

∞∑
l=0

π(l) ·
∞∑
m=0

Poiss((T + 2 · d) · α · λ) ·
(

α

1− α

)(g−l−m)+

= (48)

risk hidden(T, g). (49)

Note that we do not need to apply here a union bound over the different y’s in
Gpub∞ \ Gpubt , because our analysis assumes that in the worst case all of the attacker
blocks vote strongly in favour of y ≺ x, for all y in this set, and, additionally, all honest
blocks in Gvt will always vote strongly in favour of x ≺ y, for all y’s in this set (as they
do not see y in their past). Thus, under our worst case analysis, the event where for

some y in Gpub∞ \Gpubt the attacker manages to reverse the relation x ≺ y is equivalent
to the event where it manages to do so for a given y. In conclusion, if Algorithm 7

returned a value less than ϵ, we know that Pr
(
∪y∈Gpub

∞ \Gpub
t
Êallt→∞(x, y){

)
< ϵ.

23Our previous analysis measured m using nx, as it was structure-based and had no access to T .

57

Denote by dist gap(b,G) the minimal k for which gap (b, ⟨G, b,K⟩) = 0.

Lemma 27. Let b be an honest block. Then,

Pr
(
∪u∈honest,s∈[time(b),∞)dist gap (b,G

u
s) > K

)
≤ (50)

∞∑
l=0

π(l) ·
∞∑
h=0

Poiss(d · λ, h)·

∞∑
m=0

(
nx +m− 1

m

)
· (1− α)nx · αm· (51)

(
α

1− α

)(K−h−l−m)+

.

We denote the RHS of (50) by fdistgap(K).

Proof. By its definition, the event where dist gap (b,Gus) > K is equivalent to the

event where some block in anticone
(
b,G

node(b)
time(b)

)
∪
(
Gus \G

node(b)
time(b)

)
precedes b (or

achieves a tie with it) according to vote (virtual (⟨Gus , b,K⟩)). In ⟨Gus , b,K⟩, b has
additional K blocks b1, ..., bK that vote in favour of it against any other y /∈ past (b);
indeed, for any y /∈ past (b), y /∈ past (bi). Consequently, at G

node(b)
time(b), K blocks in

future (b) vote in its favour against any block in its anticone. We can thus apply the
first part of Corollary 25 with nx = K, X = {b}, and Y = Goracle∞ \past (b) to conclude
that (50) is an upper bound on the probability that a block in anticone

(
b,G

node(b)
time(b)

)
will ever precede b (or obtain a tie with it) in the pairwise order of ⟨Gus , b, k⟩ for any
s ≥ time(b) in the future.

Lemma 28. For all nx ∈ N,

Pr (|futureh (x,Gvt)| > nx) ≤ (52)

|future (x,Gvt)| · fdistgap
(√
|future (x,Gvt)|

)
. (53)

The RHS of the last inequality is denoted fpost pub (|future (x,Gvt)|).

Proof. If y = NULL there is nothing to prove, since then nx = future (x,Gvt) ≥
futureh (x,G

v
t). Assume y ̸= NULL.

Denote K :=
√
|future (x,Gvt)|. nx is obtained in Algorithm 3 by subtracting M ,

the number of blocks with dist gap > K, from future (x,Gvt). Let b be an honest
block in future (x,G). By Lemma 27, the probability that dist gap (b,Gvt) will be
larger than K is at most fdistgap (K). By the union bound, the probability that
for some b in futureh (x,G

v
t), dist gap (b,G

v
t) > K, is at most |futureh (x,Gvt)| ·

fdistgap (K) ≤ |future (x,Gvt)| · fdistgap (K) = fpost pub (|future (x,Gvt)|).

The RHS of Inequality (50) implies:

Lemma 29. fpost pub (|future (x,Gvt)|) ≤ Cc · e−Bc·futurea(x,Gv
t) for some positive

constants Bc, Cc.

58

Lemma 30. For nj ∈ N put j := gap (x,G) + nj.

Pr
({∣∣anticoneh (x,Goraclet

)∣∣ > j
})
≤ (54)

fpre mine
(√
nj
)
+

∞∑
h′=0

Poiss((1− α) · λ · d, h′)· (55)

fpost mine
(
nj , nj − h′ + 1,

√
nj
)

(56)

We denote the RHS of this inequality by fpre pub(nj). To understand the intuition
behind this resul recall that w.h.p. a block defeats only blocks that were published
close to its publication or after it.

Proof. Part I: Let tx := publication(x). Define Ln := {z ∈ anticoneh (x,Gvt) :
futureh

(
z, anticoneh

(
x,Gvtx

))
≥ n

}
. (Note the use of tx in this definition). Denote

by An the event {∃z ∈ Ln : z ∈ Xwin (x,G
v
t)}. Finally, let ze be the earliest block

in L{
n′ ∩ anticoneh

(
x,Goraclet

)
and put n′ := nj −

∣∣anticoneh (ze, Goraclet

)∣∣ + 1 for

nj :=
√
|future (x,Gvt)|. Denote by Xwin (x,G) the set of blocks that x precedes (or

obtains a tie with) in the pairwise order of G’s virtual vote, and by Xlose (x,G) the
rest of blocks. Then:{∣∣anticoneh (x,Goraclet

)∣∣ > gap (x,G) + nj
}
={∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣+∣∣∣Xlose

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣ > gap (x,G) + nj

}
={∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣+ gap (x,Gvt) > gap (x,G) + nj

}
={∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣ > nj

}
=({∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣ > nj

}
∩An′

)
∪({∣∣∣Xwin

(
x,Gpubt

)
∩ anticoneh

(
x,Goraclet

)∣∣∣ > nj

}
∩A{

n′

)
⊆

An′ ∪
{∣∣∣L{

n′ ∩ anticoneh
(
x,Goraclet

)∣∣∣ > nj

}
=

An′ ∪
{∣∣∣L{

n′ ∩ anticoneh
(
x,Goraclet

)
∩ anticoneh

(
ze, G

oracle
t

)∣∣∣+∣∣∣L{
n′ ∩ anticoneh

(
x,Goraclet

)
∩ futureh

(
ze, G

oracle
t

)∣∣∣ > nj

}
=

An′ ∪
{∣∣∣L{

n′ ∩ anticoneh
(
x,Goraclet

)
∩ futureh

(
ze, G

oracle
t

)∣∣∣ >
nj −

∣∣∣L{
n′ ∩ anticoneh

(
x,Goraclet

)
∩ anticoneh

(
ze, G

oracle
t

)∣∣∣} ⊆
An′ ∪

{∣∣anticoneh (x,Goraclet

)
∩ futureh

(
ze, G

oracle
t

)∣∣ >
nj −

∣∣anticoneh (ze, Goraclet

)∣∣} .
As ze ∈ Ln′ , and by the definition of n′, it cannot be the
case that anticoneh

(
x,Goraclet

)
∩ futureh

(
ze, G

oracle
t

)
contains

59

more than nj −
∣∣anticoneh (ze, Goraclet

)∣∣ blocks. Thus, the event{∣∣anticoneh (x,Goraclet

)
∩ futureh

(
ze, G

oracle
t

)∣∣ > nj −
∣∣anticoneh (ze, Goraclet

)∣∣}
occurs w.p. 0, and we obtain: Pr

({∣∣anticoneh (x,Goraclet

)∣∣ > gap (x,G) + nj
})
≤

Pr (An′).
Observe that all blocks in future

(
z, anticoneh

(
x,Gvtx

))
vote strongly in favour

of z against x, for any z ∈ Ln′ , and that by definition there are at least n′ such
votes at time tx. Consequently, we can apply the result of Corollary 22 with
respect to the following parameters: v = pub, t = tx, X = the leaf-blocks of Ln′ ,
Y = {x}, g := n′, nx := nj , and l′ = maxz∈Goracle

tx
∩honest

{∣∣futurea (z,Goracletx

)∣∣
−
∣∣futureh (z,Goracletx

)∣∣}, to obtain:

Pr (An′) = Pr (∃z ∈ Ln′ : z ∈ Xwin (x,G
v
t)) ≤

Pr (∃s > tx, ∃z ∈ Ln′ : z ∈ Xwin (x,G
v
s)) ≤

fpost mine (nj , n
′, l′) .

As the value of l′ is unknown to us, we use Lemma 23 to conclude that with probability
≥ 1 − fpre mine(l) its value is at most l. Fix l =

√
nj . Similarly, the value of n′ is

unknown to us. However, blocks in anticoneh
(
ze, G

oracle
t

)
are created in the time

interval [time(ze), time(ze) + d] (by its choice), hence
∣∣anticoneh (ze, Goraclet

)∣∣ is a
Poisson variable with parameter (1− α) · λ · d. We thus conclude that:

Pr
({∣∣anticoneh (x,Goraclet

)∣∣ > gap (x,G) + nj
})
≤

fpre mine
(√
nj
)
+

∞∑
h′=0

Poiss((1− α) · λ · d, h′)·

fpost mine
(
nj , nj − h′ + 1,

√
nj
)
=

fpre pub(nj).

It is easy to verify that fpost mine
(
nj , nj − h′ + 1,

√
nj
)
decreases exponentially

(we do this in fact in subsequent lemmas). Therefore:

Lemma 31. fpre pub(nj) ≤ Cj · e−Bj ·nj for some positive constants Bj , Cj.

In the lemma below, oracleu is a (hypothetical) node such that Goraclejs := Gus ∪(
Goracles ∩ attacker

)
.

Lemma 16. Conditioned on the event Êallt→∞(x, y), there exists a time τ ∈ [t,∞) such

that ∀s ≥ τ : M(oracleu, s) ≥
∣∣∣futurea (x,Goracleus

)
∩Goracle[t,s] \ Vx≺y(Goracle

u

s)
∣∣∣−m∗,

for some m∗ that remains fixed after τ (and with E[m∗] determined by the events up
to time t).

Proof. Part I: If y /∈ Goracle
u

s then M(oracleu, s) = 0 (line 6), Vx≺y(G
oracleu

s) =
future

(
x,Goracle

u

s

)
, and the required inequality follows trivially. Assume y ∈

Goracle
u

s .

60

Let G be any block DAG that equals the past-set of some (possibly

virtual) block. Observe that conditioned on Êallt→∞(x, y), for some constant Ct

determined at time t, if
∣∣G[t,s] ∩ attacker

∣∣ − ∣∣∣Goracleu[t,s] ∩ honest
∣∣∣ < −Ct then

votex,y (virtual (G)) = −1.24 This follows from the proof of Lemma 12: We take the
LHS of (17), replace g by

∑
z′∈future(x,Gt)

votex,y (z
′, G), and observe that the value

of the remaining term 2·
∣∣∣anticoneh (zlate, Goracleutime(zlate)

)∣∣∣−∣∣∣futureh (z,Goracleutime(zlate)

)∣∣∣+∣∣∣futurea (z,Goracleutime(zlate)

)∣∣∣ +
∣∣∣anticoneh (zlate, Goracleu[time(zlate),time(zlate)+d]

)∣∣∣ +∣∣∣Goracle[t−d,t] ∩ honest
∣∣∣ + |futureh (zlate, Gvt) \ futureh (x,Gvt)| +∣∣futurea (zlate, Goracleut

)
\ futurea (x,Gvt)

∣∣ is determined by time t, hence we
can denote it Ct.

Let z ∈ future
(
x,Goraclet,s

)
. By the conditioning on Êallt→∞(x, y), z ∈

attacker. Fix the DAG Gz := past (z). The above argument holds in

particular for Gz: If
∣∣∣Gz[t,s] ∩ attacker∣∣∣ − ∣∣∣Gz[t,s] ∩ honest∣∣∣ < −Ct then votex,y (z) =

votex,y (virtual (past (z))) = −1 (since z is a strong voter we do not need to
specify the context of its vote). Consequently, if z ∈ Goraclet,s \ Vx≺y

(
Goracles

)
then∣∣∣Gz[t,time(z)] ∩ attacker∣∣∣− ∣∣∣Gz[t,time(z)] ∩ honest∣∣∣ ≥ −Ct.25

We arrive at the following important implication: If z ∈ future
(
x,Goracle

u

s

)
\

Vx≺y
(
Goracle

u

s

)
then:∣∣anticone (z,Gpubs

)∣∣ ≥ ∣∣∣anticone(z,Gpubtime(z)

)∣∣∣ ≥ (57)∣∣∣anticone(z,Gpubtime(z)

)
\Goraclet

∣∣∣ = (58)∣∣∣Gpubtime(z) \G
oracle
t

∣∣∣− ∣∣past (z) \Goraclet

∣∣ ≥ (59)∣∣∣Gpubtime(z) ∩ honest \G
oracle
t

∣∣∣−Gz[t,time(z)] ∩ honest ≥ (60)∣∣∣Gpub[t,time(z)] ∩ honest
∣∣∣−Gz[t,time(z)] ∩ attacker − Ct. (61)

Part II: Let z1, z2, ... the order of creation of blocks in
futurea

(
x,Goracle

u

s \Goraclet

)
\ Vx≺y

(
Goracle

u

s

)
. Fix zm, and let bm be the earliest

block in anticoneh
(
zm, future

(
x,Goracle

u

s

))
. With probability Poiss(d·(1−α)·λ, h′),

24We write here Gz
[t,s]

for Gz ∩ before(s) \ before(t).
25Note that Gz contains only blocks created up to time(z).

61

∣∣anticoneh (bm, Gpub∞
)∣∣ = h′. By the choice of bm together with (57) we obtain:∣∣∣futureh (bm, Gpubtime(zm)

)∣∣∣ =∣∣∣anticoneh (zm, Gpubtime(zm)

)
\ anticoneh

(
bm, G

pub
time(zm)

)∣∣∣ ≥∣∣∣anticoneh (zm, Gpubtime(zm)

)∣∣∣− ∣∣∣anticoneh (bm, Gpubtime(zm)

)∣∣∣ ≥∣∣∣Gpub[t,time(zm)] ∩ honest
∣∣∣− ∣∣∣Gzm[t,time(zm)] ∩ attacker

∣∣∣− Ct − h′ =∣∣∣Gpub[t,time(zm)] ∩ honest
∣∣∣−m− Ct − h′, (62)

where we used the fact that past (bm)∩ anticoneh (zm) = ∅, by the choice of bm, and

that anticoneh

(
zm, G

pub
time(zm)

)
= antipasth

(
zm, G

pub
time(zm)

)
.

Part III: Given m,
∣∣∣Gpub[t,time(zm)] ∩ honest

∣∣∣ is distributed according to a negative

binomial distribution: Pr
(∣∣∣Gpub[t,time(zm)] ∩ honest

∣∣∣ = n
)

=
(
n+m−1

n

)
· (1 − α)n · αm.

We claim that the probability that the honest block bm will ever be preceded by zm
in the order of virtual

(
⟨Goracleus , zm,K⟩

)
is at most

∞∑
l=0

π(l) ·
∞∑
k=0

Poiss(5 · d · (1− α) · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)·

∞∑
n=0

(
n+m− 1

m

)
· (1− α)n · αm ·

(
α

1− α

)(n−m−K−2·h−Ct−k−l)+

. (63)

This follows from a similar analysis to that made in the proof of Lemma 12 and of
Corollary ??. Indeed, at time(zm) there were at least n − m − h′ − Ct blocks in

future (bm) \ future (zm), by the above lower bound on
∣∣∣futureh (bm, Gpubtime(zm)

)∣∣∣;
and while futurea

(
bm, G

pub
time(zm)

)
= ∅, as bm /∈ past (zm), there are additional K

hypothetical blocks that vote y ≺ x, by the construction of ⟨Goracleus , zm,K⟩. Instead
of reducing h′ in the exponent (as in the bound given in Corollary ??), we added
2 · d · (1 − α) · λ to the variable k, as the sum of Poisson variables is a Poisson
variable. Finally, we use the result of Lemma 23 to ensure that π(l) upper bounds
the distribution over l,26

As dist gap(Goracle
u

s , zm) ≤ K requires zm to precede bm in the order of
virtual

(
⟨Goracleus , zm,K⟩

)
, (63) serves as an upper bound also to the probability

that dist gap(Goracle
u

s , zm) ≤ K.
Part IV: Using Lemma 24 it is easy to verify the existence of constants a, b, and

W such that Pr (k + l + 2 · h > W) ≤ e−a·W+b.
Put K(oracleu, s) =

√
|future (x,Goracleus)|. The block zm is counted

into M(oracleu, s) in line 9 of Algorithm 3 whenever dist gap(Goracle
u

s , zm) >

26l here represents maxz∈Goracle
time(bm)

∩honest

{∣∣∣futurea (
z,Goracleu

time(bm)

)∣∣∣− ∣∣∣futureh (
z,Goracleu

time(bm)

)∣∣∣}.

62

K(oracleu, s). From (63) we conclude that the probability that zm does not increment
by 1 the value of M(oracleu, s) is upper bounded by

Pr
(
dist gap(Goracle

u

s , zm) ≤ K(oracleu, s)
)
≤ (64)

∞∑
n=0

(
n+m− 1

m

)
· (1− α)n · αm ·

(
α

1− α

)(n−m−K(oracleu,s)−W−Ct)
+

<

(
α

1− α

)−W−Ct−K(oracleu,s)

·
∞∑
n=0

(
n+m− 1

n

)
· (1− α)n · αm ·

(
α

1− α

)(n−m)+

=

(65)(
α

1− α

)−W−Ct−K(oracleu,s)

·
(

Pr
n∼Z(m,1−α)

(n > m) + Pr
n∼Z(m,α)

(n ≤ m)

)
, (66)

where Z(n, p) denotes a negative binomial random variable.
We now aim at showing that the last term is upper bounded by some e−D·m. The

proof is very similar to that given in Lemma 17 below.
Part V: For large enough m’s, a variable distributed according to Z(1 − α,m)

converges to a normal variable with mean m · α
1−α and variance m · α

(1−α)2 .
27 The

second multiplicand in (66) thus converges, as m grows, to

Pr
z∼N (0,1)

z ≤ m− 1−α
α ·m√

1−α
α2 ·m

+ Pr
z∼N (0,1)

z ≥ m− α
1−α ·m√
α

(1−α)2 ·m

 = (67)

Pr
z∼N (0,1)

z ≥ 1−α
α ·m−m√

1−α
α2 ·m

+ Pr
z∼N (0,1)

z ≥ m− α
1−α ·m√
α

(1−α)2 ·m

 . (68)

The following inequality is due to Komatu (1955). Let x ≥ 0 and let z ∼ N (0, 1).

Then: Pr (z > x) ≤ 1√
2·π ·

2·e−x2/2

x+
√
2+x2

. Put x1 :=
1−2·α

α ·m√
1−α

α2 ·m
and x2 :=

1−2·α
1−α ·m√

α
(1−α)2

·m
. We

obtain an upper bound on (68):

1√
2 · π

· 2 · e−x2
1/2

x1 +
√
2 + x21

+
1√
2 · π

· 2 · e−x2
2/2

x2 +
√
2 + x22

≤ (69)

C1 · e−x
2
1/2 + C2 · e−x

2
2/2 = C1 · e−D1·m + C2 · e−D2·m ≤ C3 · e−D3·m (70)

for some positive constants Ci, Di that depend on α (a property which applies to the
constants below as well).

27We rely here on the assumption specified in the proof of Lemma 12 according to which, in the
worst case, after time t the attacker publishes all his blocks to all nodes immediately after their
creation.

63

When this term is multiplied by
(

α
1−α

)−W−Ct−K(oracleu,s)

we obtain

(
α

1− α

)−W−Ct−K(oracleu,s)

· C3 · e−D3·m ≤ (71)

C4 · e−D3·m+D4·K(oracleu,s) = C4 · e−D3·m+D4·
√

|future(x,Goracleu
s)|. (72)

There exists therefore an M1 such that if m >
∣∣future (x,Goracleus

)∣∣ > M1 then the
last expression is upper bounded by C5 · e−D5·m for some C5, D5.

Part VI: After some ψ (with expected value M1/λ), the condition∣∣future (x,Goracleus

)∣∣ ≥M1 is satisfied. Put sm := time(zm) and assume sm ≥ ψ.
As

∑∞
m=

√
|future(x,Goracleu

sm)|+1
C5 · e−D5·m < ∞, Fatou’s lemma implies that

there exists (a.s.) an m∗ >
√∣∣future (x,Goracleusm

)∣∣ such that for all m ≥ m∗,

dist gap(zm) > K(oracleu, sm). The expected waiting time for zm∗ is finite.28

Define τ = max {ψ, time(zm∗)}. Then, for any s ≥ τ : M(oracleu, s) ≥∣∣∣futurea (x,Goracleus

)
∩Goracle[t,s] \ Vx≺y(Goracle

u

s)
∣∣∣−m∗.29

Lemma 17. There exists a ψ ∈ [t,∞) such that Pr
(
Eallt→∞(x, y, ϵ){ | Evt (x, y, ϵ)

)
< ϵ.

Moreover, E [ψ] < ϵ.

Proof. Part I: We show that if all honest blocks vote in favour of x
then all error functions converge to zero. Indeed, the event Evt (x, y, ϵ)
implies that fpre mine(l (G

v
t)) + fpre pub (nj (G

v
t)) + fpost pub (|future (x,Gvt)|) +

fpost mine (nx (G
v
t) , g (G

v
t) , l (G

v
t)) < ϵ. By the union bound, and by Lemmas 23,

28, and 30 respectively, the following relations hold with probability ≥ 1− ϵ:

• maxz∈Goracle
t ∩honest

{∣∣∣futurea (z,Goracletime(x)

)∣∣∣− ∣∣∣futureh (z,Goracletime(x)

)∣∣∣} ≤
l (Gvt)

28We have Pr(m∗ ≥ r) ≤
∑r−1

m=
√
|future(x,Goracleu

s)|+1
C5 · e−D5·m. Therefore,

E [m∗] ≤
∞∑

r=

√∣∣∣future(x,Goracleu
sm

)∣∣∣+1

r−1∑
m=

√∣∣∣future(x,Goracleu
sm

)∣∣∣+1

C5 · e−D5·m =

∞∑
m=

√∣∣∣future(x,Goracleu
sm

)∣∣∣+1

∞∑
r=m+1

C5 · e−D5·m =
∞∑

m=

√∣∣∣future(x,Goracleu
sm

)∣∣∣+1

C6 · e−D6·m ≤

C7 · e
−D7·

√∣∣∣future(x,Goracleu
sm

)∣∣∣
.

The expected waiting time for zm∗ is the last term divided by α · λ.
29Note that E[m∗] is determined by the events up to time t: take the expected value of the

expression in the previous proof, where the distribution over the values of
∣∣∣future(x,Goracleu

sm

)∣∣∣ (and
of the sm’s themselves) is conditioned on

∣∣∣future(x,Goracleu

t

)∣∣∣ (for the oracleu which maximizes

the expected value).

64

• |futureh (x,Gvt)| ≤ nx

•
∣∣anticoneh (x,Goraclet

)∣∣ ≤ gap (x,G) + nj =: j

Conditioned on these relations, by Corollary 15 the event Êallt→∞(x, y) occurs w.p.
≥ 1 − fpost mine (nx (Gvt) , g (Gvt) , l (Gvt)). All in all, conditioned on Evt (x, y, ϵ), the
event Êallt→∞(x, y) occurs w.p. ≥ 1− ϵ.

Part II: We proceed to show that, conditioned on Êallt→∞(x, y) and on the above
relations, the value of Risk (Gus , x, y) goes (almost surely) to 0 as time develops, for
all u ∈ honest.30

That fpre mine(l (G
u
s)) + fpre pub (nj (G

u
s)) + fpost pub (|future (x,Gus)|) goes to 0

as s grows follows immediately from Lemmas 24, 31, and 29. Let ϵ0 > 0. We now
prove that after some τ of finite expectation, fpost mine (nx (G

u
s) , g (G

u
s) , l (G

u
s)) < ϵ0.

We claim that

M(oracleu, s) + g(oracleu, s)− nx(oracleu, s) ≥ −2 ·
∣∣∣Goracle[time(x),t]

∣∣∣−m∗ (73)

where m∗ is the variable described in Lemma 16. Assume first that attacker ∩
Goracles ⊆ Goracleus . Let us decompose future

(
x,Goracle

u

s

)
as follows:

• Blocks in Goracle[time(x),t]. Clearly, the number of blocks in this set does not grow

with s. Their contribution is lower bounded by −2 ·
∣∣∣Goracle[time(x),t]

∣∣∣.
• Blocks in Vx≺y(G

oracleu

s)\Goraclet : Every z in this set adds (+1) to g(oracleu, s).
As z cannot decrement the value ofM(oracleu, s)−nx(oracleu, s) by more than
1, the contribution of this set is at least 0. 31

• Blocks in Goracle
u

s \
(
Vx≺y(G

oracleu

s) ∪Goraclet

)
: Lemma 16 guarantees that,

conditioned on the event Êallt→∞(x, y), at least
∣∣∣futurea (x,Goracleus

)
∩Goracle[t,s]

∣∣∣−
m∗ of the blocks that are published after some τ and that do not belong
to Vx≺y(G

oracleu

s) – hence that add (−1) to g(oracleu, s)32 – add (+1) to
the value of M(oracleu, s). In other words, at most m∗ blocks from the set
futurea

(
x,Goracle

u

s

)
∩ Goracle[t,s] \ Vx≺y(Goracle

u

s) add (−1) to g(oracleu, s) and

are not canceled out by a (+1) increment to the value of M(oracleu, s). The
contribution of this set is therefore lower bounded by −m∗.

Part III: We now claim that

M (Gus) + g (Gus)− nx (Gus) ≥ −2 ·
∣∣∣Goracle[time(x),t]

∣∣∣−m∗ (74)

30In fact, we need to show that max {Risk (Gu
s , x, y)} goes to 0. However, since our analysis below

takes the worst case regarding u, namely, that messages from it and to it arrive at a delay of precisely
d, these events are equivalent in the worst case, and thus we will relate to u as a fixed honest node.

31In fact, by the conditioning on the relation |futureh (x,Gv
t)| ≤ nx, we know that all honest

blocks belong to this category, hence we can arrive at a tighter bound: M(oracleu, s)+g(oracleu, s)−
nx(oracleu, s) ≥ −

∣∣∣Goracle
[time(x),t]

∩ attacker
∣∣∣−m∗.

32They cannot add 0 since only strong voters are counted into these variables.

65

Indeed, let C(z) be the contribution of z to (73) and let c(z) be its contribution
to (74). First, C(z) ≥ −2, hence the contribution of all z ∈ Goracle[time(x),t] is at least

−2 ·
∣∣∣Goracle[time(x),t]

∣∣∣, as previously.
Assume that z ∈ Goracle

u

s \ Goraclet and that it votes x ≺ y. Then z is not
counted into M(oracleu, s), hence its contribution to M(oracleu, s) + g(oracleu, s)−
nx(oracle

u, s) is 0 + 1− 1 = 0, i.e., c(z) = 0. And for the same argument C(z) = 0.
Assume that z ∈ Goracleus \ Goraclet and that it votes y ≺ x. Then z ∈ attacker

(by the conditioning on Êallt→∞(x, y)). In the analysis of Lemma 16 we assumed
the following worst case: that for any three blocks v, z, w ∈ Goracle

u

s , such that
v, z ∈ attacker and w ∈ honest, v votes strongly for z ≺ w.33 Under this
worst case assumption regarding the votes of attacker blocks, dist gap(z,Goracle

u

s) ≤
dist gap(z,Gus), as G

oracleu

s \Gus contains only attacker blocks. Thus, if z was counted
in M(oracleu, s) then it is counted also in M (Gus); in particular, C(z) ≥ c(z).

Consequently, using the analysis from Lemma 16,

−m∗ ≤
∑

z∈Goracleu
s \Goracle

t

c(z) ≤

∑
z∈Goracleu

s \(Goracle
t ∪Vx≺y(Goracleu

s))

c(z) =

∑
z∈Gu

s \(Goracle
t ∪Vx≺y(Goracleu

s))

c(z) +
∑

z∈Goracleu
s \(Gu

s∪Vx≺y(Goracleu
s))

c(z) ≤

∑
z∈Gu

s \(Goracle
t ∪Vx≺y(Goracleu

s))

c(z) ≤
∑

z∈Gu
s \(Goracle

t ∪Vx≺y(Goracleu
s))

C(z).

All in all, M (Gus) + g (Gus)− nx (Gus) ≥ −2 ·
∣∣∣Goracle[time(x),t]

∣∣∣−m∗.

Part IV: In the remainder of the proof we occasionally abbreviate nx (G
u
s)

and write simply nx, and similarly for the rest of the variables, for convenience.
Lemmas 24 and 31 imply further that there exist constants a, b, and W such that
Pr (k + l + 2 · h+ j > W) ≤ e−a·W+b (as in the proof of the previous lemma, but not
necessarily with the same constants). Take W such that e−a·W+b < ϵ0/4. Thus, with

33Indeed, therein we only counted honest voters in favour of honest blocks. This could be formalized
using pseudo-votes, as in Lemma 19.

66

probability ≥ 1− ϵ0/4:

fpost mine (nx (G
u
s) , g (G

u
s) , l (G

u
s)) =

∞∑
k=0

Poiss(3 · d · (1− α) · λ, k) ·
∞∑
h=0

Poiss(d · (1− α) · λ, h)· (75)

(∞∑
m′=M

(
nx + j + h+m′ − 1

m′

)
· (1− α)nx+j+h · αm

′

)−1

· (76)

∞∑
m=M

(
nx + j + h+m− 1

m

)
· (1− α)nx+j+h · αm ·

(
α

1− α

)(g−2·h−k−j−l−(m−M))+

.

(77)

For large enough nx’s, this term is at most ϵ0/4 away from

(
α

1− α

)g+M−nx−W

·

(∞∑
m′=M

(
nx +m′ − 1

m′

)
· (1− α)nx · αm

′

)−1

· (78)

∞∑
m=M

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−m)+

. (79)

Part V: As for the first multiplicand of (78), by Part II of this proof, after some

τ of finite expectation: M (Gus) + g (Gus) − nx (G
u
s) ≥ −

∣∣∣Goracle[time(x),t]

∣∣∣ − m∗ =: D2

(a constant determined by time τ). Assume s ≥ τ . We conclude that the term(
α

1−α

)g+M−nx−W
is upper bounded by eD3·D4 (with D3 = ln

(
1−α
α

)
). Thus, in order

to show that (78) vanishes suffice it to show that(∞∑
m′=M

(
nx +m′ − 1

m′

)
· (1− α)nx · αm

′

)−1

· (80)

∞∑
m=M

(
nx +m− 1

m

)
· (1− α)nx · αm ·

(
α

1− α

)(nx−m)+

(81)

vanishes.
The last term equals(

Pr
m∼Z(1−α,nx)

(m ≥M)

)−1

·
(

Pr
m∼Z(α,nx)

(m ≤ nx) + Pr
m∼Z(1−α,nx)

(m ≥ nx)
)
. (82)

For large enough nx’s, a variable distributed according to Z(1−α, nx) converges to a
normal variable with mean nx · α

1−α and variance n · α
(1−α)2 . The last term is therefore

67

at most ϵ0/4 away from Pr
z∼N (0,1)

z ≥ M − α
1−α · nx√
α

(1−α)2 · nx

−1

· (83)

 Pr
z∼N (0,1)

z ≤ nx − 1−α
α · nx√

1−α
α2 · nx

+ Pr
z∼N (0,1)

z ≥ nx − α
1−α · nx√
α

(1−α)2 · nx

 = (84)

 Pr
z∼N (0,1)

z ≥ M − α
1−α · nx√
α

(1−α)2 · nx

−1

· (85)

 Pr
z∼N (0,1)

z ≥ 1−α
α · nx − nx√

1−α
α2 · nx

+ Pr
z∼N (0,1)

z ≥ nx − α
1−α · nx√
α

(1−α)2 · nx

 . (86)

We use the following inequalities due to Komatu (1955), for x ≥ 0, and a standard

normal variable z ∼ N (0, 1): 1√
2·π ·

2·e−x2/2

x+
√
4+x2

≤ Pr (z > x) ≤ 1√
2·π ·

2·e−x2/2

x+
√
2+x2

.

Put x1 :=
M− α

1−α ·nx√
α

(1−α)2
·nx

, x2 :=
1−α
α ·nx−nx√

1−α

α2 ·nx

, and x3 :=
nx− α

1−α ·nx√
α

(1−α)2
·nx

.

We obtain an upper bound on (86):

√
π/2 ·

(
x1 +

√
4 + x12

)
· ex1

2/2 ·

(
1√
π/2
· e

−x2
2/2

x2
+

1√
π/2
· e

−x2
3/2

x3

)
= (87)

(
x1 +

√
4 + x12

)
· ex1

2/2 ·

(
e−x

2
2/2

x2
+
e−x

2
3/2

x3

)
(88)

We further observe that, for large nx’s: x2 ≥ C2 ·
√
nx and x3 ≥ C3 ·

√
nx, for

some positive constants Ci (this applies to all constants below as well). Therefore,
(x1+

√
4+x1

2)
min{x2,x3} ≤ C1/max {C2, C3} =: D1. The above term is therefore upper bounded,

up to a multiplicative factor of D1, by

ex
2
1/2−x

2
2/2 + ex

2
1/2−x

2
3/2 =

e
0.5·

(M− α
1−α

·nx√
α

(1−α)2
·nx

)2

−

 1−α
α

·nx−nx√
1−α

α2 ·nx

2
+ e

0.5·
((

M− α
1−α

·nx√
α

(1−α)2
·nx

)2

−
(

nx− α
1−α

·nx√
α

(1−α)2
·nx

)2)
≤

e
0.5·

(
(1−α)2

α·nx
·(M− α

1−α ·nx)
2− (1−2·α)2

1−α ·nx

)
+ e

0.5·
(

(1−α)2

α·nx
·(M− α

1−α ·nx)
2− (1−2·α)2

α ·n
)
. (89)

Conditioned on the relation
∣∣futureh (x,Goraclet

)∣∣ ≤ nx, M ≤ futurea (x,G
u
s),

hence its expected value is at most α
1−α · nx. For any δ > 0, by the Strong Law of

Large Numbers, after some τ (of finite expectation), ∀s ≥ τ : M ≤ (1 + δ) · E [M] ≤
(1 + δ) · α

1−α · nx.

68

Consequently, (89) is upper bounded by

e0.5·
(1−α)2

α·nx
·(M− α

1−α ·nx)
2−0.5· (1−2·α)2

1−α ·nx + e0.5·
(1−α)2

α·nx
·(M− α

1−α ·nx)
2−0.5· (1−2·α)2

α ·nx ≤
(90)

e0.5·
(1−α)2

α·nx
·(δ· α

1−α ·nx)
2−0.5· (1−2·α)2

1−α ·nx + e0.5·
(1−α)2

α·nx
·(δ· α

1−α ·nx)
2−0.5· (1−2·α)2

α ·nx ≤ (91)

eR1/nx−R2·nx + eR
3/nx−R4·nx ≤ e−R5·nx , (92)

for some positive constants Ri, where the last inequality holds for large enough nx’s,
and the preceding inequality holds for small enough δ’s (δ < 1/nx).

Taking nx to be greater than nx > ln (4 ·D1/ϵ0) /R5 we conclude that for some
large enough nx:

fpost mine (nx (G
u
s) , g (G

u
s) , l (G

u
s)) < 4 · ϵ0/4 = ϵ0. (93)

(Note that the expected waiting time for the first τ such that ∀j ∈ honest :

nx(u, ψ) is at least some n0 is at most n0 · ((1− α) · λ)−1
+ d: it is 1/((1− α) · λ) for

the creation of every honest block, and d for the last one to arrive at all nodes.)

10.4 Proof of Weak Liveness (blocks)

We’ve seen that the error functions fpre mine(l (G
u
s)), fpre pub (nj (G

u
s)), and

fpost pub (|future (x,Gus)|) go to 0 as s grows. For any s < ψ, y /∈ Gpubs , hence by line 5
of Algorithm 3, g (Gvs) = |future (x,G)| = nx (G

u
s), and M (Gvs) = 0. In particular,

the relation (73) is satisfied trivially, and the analysis in the proof of Lemma 17
applies, proving that the term fpost mine vanishes as time grows. In particular, since
these functions decrease exponentially, it becomes smaller than ϵ after a number of
honest blocks in the order of O(ln(1/ϵ)) are created, and the expected waiting time
for this is obtained by dividing this number by (1−α) ·λ (and adding d for all honest
blocks to receive these blocks).

10.5 Proof of Progress (blocks)

This follows immediately from the proof of Lemma 17, in which it was shown
that, conditioned on the event Êall→∞t(x, y), fpre mine(l (G

v
s)) + fpre pub (nj (G

u
s)) +

fpost pub (|future (x,Gut)|) + fpost mine (nx (G
u
s) , g (G

u
s) , l (G

u
s)) vanishes as s grows

indefinitely. In Lemma 12 it was shown that, up to a probability of ϵ, the event
Evt (x, y, ϵ) is contained in Êall→∞t(x, y) (i.e., when the former is intersected with an
event of probability ≥ 1− ϵ).

10.6 Proof of Safety

Part I: Denote by riskacc(G
u
s , tx, subG) (riskrej) the output of Algorithm 4

(respectively, Algorithm 5) when given the inputs Gus (for some honest u), tx,
and subG (such that subG is the past of some (possibly virtual) block). For any
z ∈ [tx] ∩ subG, denote by riskzacc(G

u
s , tx, subG) the value of the risk variable as

69

the loop in line 2 of RiskTxAccept terminates its run over z. Denote similarly
minriskzrej(G

u
s , tx, subG) w.r.t. the variable minrisk in RiskTxReject.

We claim that, with probability > 1− riskacc(Gvt , tx, subG), there exists a τacc of
finite expectation such that for all s ≥ τacc, for all u ∈ honest, and for all subG′ ⊇
subG:

riskacc(G
v
t , tx, subG) ≥ riskacc(Gus , tx, subG′) (94)

Similarly, we claim that, with probability > 1− riskrej(Gvt , tx, subG), there exists
a τrej of finite expectation such that for all s ≥ τrej , for all u ∈ honest:

riskrej(G
v
t , tx, subG) ≥ riskrej(Gus , tx, subG). (95)

Assume we have proved this for all subG of size < k. We now prove this for subGk
of size k.

By the definition of riskacc, there exists a ztx ∈ subGk ∩ [tx] such that
riskacc(G

v
t , tx, subG

′) = riskztxacc(G
v
t , tx, subG

′).
Part II: Denote by Z2 the set of instantiations of the third-loop-variable z2,

inside the iteration of the first-loop with z1 = ztx. By Propositions 6 and 7, ∀z2 ∈ Z2,
with probability ≥ 1 − Risk

(
Gvt , (vote (z

′))z′∈C , z1, z2
)
, for any ϵ′, after some τ

(of finite expectation), ∀z′2 ∈ (Gus \Gvt) ∪ {z2} : Risk
(
Gus , (vote (z))z∈C , ztx, z

′
2

)
≤

ϵ′. Moreover, in the proof of Proposition 17 it was shown that the minimal ϵ′

for which this property holds at time s decreases exponentially with n (which
grows linearly with s). Thus, for all s greater than some τ ,

∑
z′2∈(Gu

s \Gv
t)∪Z2

:

Risk
(
Gus , (vote (z))z∈C , ztx, z

′
2

)
≤
∑
z′2∈Z2

Risk
(
Gvt , (vote (z))z∈C , ztx, z

′
2

)
.

Part III: Similarly, by Proposition 6, with probability of at least
Risk

(
Gvt , (vote (z))z∈C , ztx, ∅

)
, after some τ (of finite expectation),

Risk
(
Gus , (vote (z))z∈C , ztx, ∅

)
≤ Risk

(
Gvt , (vote (z))z∈C , ztx, ∅

)
.

Part IV: Let ϵi(G
u
s , tx, subG) be the series of values returned by the call to

RiskTxAccept in line 7 of RiskTxAccept (when given the inputs (Gus , tx, subG)) and
to RiskTxReject in line 9 of RiskTxAccept (with these inputs). By the induction
hypothesis, with probability ≥ 1 − ϵi, after some time τ , ϵi(G

u
s , tx, past (ztx)) ≤

ϵi(G
v
t , tx, past (ztx)).

34

Part V: The above arguments show that, with probability ≥ 1 −
riskztxacc(G

v
t , tx, subG), the sum of increments to the value of riskztxacc(G

u
s , tx, subG

′)
is upper bounded by the the sum of increments to the value of riskztxacc(G

v
t , tx, subG),

for all s ≥ τ , where τ is of finite expectation. As riskacc(G
u
s , tx, subG

′) ≤
riskztxacc(G

u
s , tx, subG

′), and as riskacc(G
v
t , tx, subG) = riskztxacc(G

v
t , tx, subG),

this proves that, with probability ≥ 1 − riskztxacc(G
v
t , tx, subG) the inequality

riskacc(G
u
s , tx, subG

′) ≤ riskacc(Gvt , tx, subG) holds.
34Technically, the indexes i on both hand-sides of this inequality should be described more carefully.

To save cumbersome notation, we rely on the understanding of the reader. Informally, every
instantiation of the loop-variables inside RiskTxAccept (when given the inputs (Gv

t , tx, subG)) is
also realized by future calls of RiskTxAccept (when given the inputs (Gu

s , tx, subG
′)). We thus

compare the results of the increments in the former to those in the latter. This is also true vice versa
(for z1 = ztx): Inside the first-loop’s iteration over z1 = ztx, the exact same calls to RiskTxAccept
and RiskTxReject are made, because past (ztx) does not evolve with time.

70

Part VI: Similar arguments prove the induction step w.r.t. RiskTxReject. The
difference in the proof is that, since riskz1rej is not a sum, rather a minimum, hence we
can ignore the fact that anticone (z1, G

u
s) may grow in time and add loop-iterations

that might further reduce the value of riskz1rej . Note further that the induction claim,
w.r.t. RiskTxReject, is restricted to the case subG′ = subG. Hence, the fact that the
set ZG([tx]) possibly grows with time is of no consequence, since the first loop-variable
is chosen from ZG([tx]) ∩ subG. We thus conclude that, with probability ≥ 1 −
riskrej(G

u
s , tx, subGk), there exists a τ of finite expectation such that for all s ≥ τ

and all u ∈ honest: riskrej(Gus , tx, subGk) ≤ riskrej(Gvt , tx, subGk).
This completes the proof of the induction claim.
Part VII: Algorithm 6 returns ACCEPT if and only if RiskTxAccept returned

a value smaller than ϵ. The above claim implies that, if riskacc(G
v
t , tx,G

v
t) < ϵ,

with probability ≥ 1 − ϵ, for all s ≥ τ , for some τ of finite expectation, for all
u ∈ honest: riskacc(Gus , tx,Gus) < ϵ. In other words, conditioned on Avt (tx, ϵ), the
event ∩u∈honest,s∈(τ(t),∞)Aus (tx, ϵ) occurs with probability ≥ 1− ϵ.

10.7 Proof of Liveness

Fix some z1 ∈ ZG([tx]) for G = Gvt . The condition that until ψ(t):
conflict (tx) ∩ Gpubs = ∅, implies that lines 6 and 7 of RiskTxAccept
do not contribute to the value of riskacc(G

u
s , tx, subG). The assumption∑

[txi]∈inputs(tx)RiskTxAccept
(
Gvt , (vote (z))z∈C , [txi], G

v
t

)
< ϵ/2 implies that, with

probability ≥ 1 − ϵ/2, the overall contribution of the fourth loop to the value of
riskz1acc(G

u
s , [tx], G

u
s) is at most ϵ/2 (after some τ). Finally, by Proposition 8, the

contribution of line 3 to riskz1acc is less than ϵ/2, after some τ of finite expectation.
We conclude that after some τ of finite expectation, the value of riskz1acc(G

u
s , [tx], G

u
s)

is smaller than ϵ/2+ ϵ/2 = ϵ, for all s ≥ τ and u ≥ s, hence riskacc(Gus , [tx], Gus) < ϵ,
which implies the event ∩u∈honest,s∈(τ(t),∞)Aus (tx, ϵ).

10.8 Proof of Progress

The proof of this proposition is similar in structure to that of Proposition 3. Therein
we have already argued that the contributions to the value of riskztxacc (and similarly
for riskztxrej) of lines 3 and of 6 go to 0; and the increments of lines 7 and 9 go to 0 by
the induction hypothesis. Thus, riskacc(G

v
s , tx,G

v
s) goes to 0 as time develops, with

probability ≥ 1 − riskacc(Gvt , tx,Gvt). As ϵ > riskacc(G
v
t , tx,G

v
t), we conclude that,

with probability ≥ 1 − ϵ Algorithm 6 returns ACCEPT for all Gus with s ≥ τ and
u ∈ honest.

71

