
Replay Attacks and Defenses Against Cross-shard Consensus in Sharded
Distributed Ledgers

Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, George Danezis
University College London & chainspace.io

Abstract—We present a family of replay attacks against
sharded distributed ledgers targeting cross-shard consensus
protocols, such as the recently proposed Chainspace and
Omniledger. They allow an attacker, with network access
only, to double-spend or lock resources with minimal efforts.
The attacker can act independently without colluding with
any nodes, and succeed even if all nodes are honest; most of
the attacks can also exhibit themselves as faults under peri-
ods of asynchrony. These attacks are effective against both
shard-led and client-led cross-shard consensus approaches.
We present Byzcuit—a new cross-shard consensus protocol
that is immune to those attacks. We implement a prototype
of Byzcuit and evaluate it on a real cloud-based testbed,
showing that our defenses impact performance minimally,
and overall performance surpasses previous works.

Index Terms—Distributed Ledgers, Sharding, Attacks

1. Introduction

Sharding is one of the key approaches to address
blockchain scalability issues [2], and a growing number
of systems are implementing sharded blockchains [1], [2],
[6], [8], [9], [12]. The key idea is to create groups (or
shards) of nodes that handle only a subset of all trans-
actions and system state, relying on classical Byzantine
Fault Tolerance (BFT) protocols for reaching intra-shard
consensus. These systems achieve optimal performance
and scalability because: (i) non-conflicting transactions
can be processed in parallel by multiple shards; and (ii) the
system can scale up by adding new shards. This separation
of transaction handling across shards is not perfectly
‘clean’—a transaction might rely on data managed by
multiple shards, requiring an additional step of cross-shard
consensus across the concerned shards. An atomic commit
protocol (such as the two-phase commit protocol [7])
typically runs across all the concerned shards to ensure
the transaction is accepted by all or none of those shards.

We present the first replay attacks on cross-shard
consensus in sharded blockchains. An attacker can launch
these attacks with minimal effort, without subverting
any nodes, and assuming a weakly synchronous network
(and in some cases, without relying on any network
assumption)—even when the byzantine safety assump-
tions are satisfied. These attacks compromise key sys-
tem properties of safety and liveness, effectively enabling
the attacker to double-spend coins (or any other objects
managed by the blockchain) and create coins out of thin
air. Our attacks apply to the two main approaches to
achieve cross-shard consensus [2]: (i) shard-led protocols
that only involve the concerned shards, and require no

external entity for coordination (Section 4); and (ii) client-
led protocols that are coordinated by the client (Section 5).

We concretely sketch the replay attacks in the context
of two representative systems: Chainspace [1] as an ex-
ample of shard-led protocols; and Omniledger [8] as an
example of client-led protocols. Not only those systems
were recently presented at top security conferences, but
they form the basis of numerous start-ups and open-source
projects such as chainspace.io1 and Harmony2. For each
of the two cross-shard consensus approaches, Appendix A
describes how an attacker can actively stage the attack
by eliciting from the system the messages to replay (in
contrast to passively observing the network traffic, and
waiting to detect and record the target messages). We
also discuss the feasibility of these attacks and their real-
world impact; and we responsibly disclosed them to the
concerned companies. We implement and open-source3

a demo of the replay attacks described in this paper
(Section 3).

The replay attacks we present are generic and apply
to other systems that are based on similar models, like
RapidChain [12]. Ethereum’s cross-shard “yanking” pro-
posal [4] also faces similar challenges; Section 9 describes
their cross-shard consensus protocol and compares their
current proposal to mitigate cross-shard replay attacks
with this work. We note that account-based blockchains
like Ethereum defend against transactions replay using ac-
count sequence numbers, in an entirely different context;
i.e. each account holds a monotonically increasing counter
to prevent attackers from re-submitting old transactions
to the network. On the other hand, this work focuses on
attacks due to replaying messages in cross-shard atomic
commit protocols. Based on our detailed analysis of replay
attacks, we develop a defense strategy (Section 6).

Drawing insights from our analysis of performance
trade-offs and replay attack vulnerabilities in existing
shard-led and client-led cross-shard consensus protocols,
we present a hybrid system, Byzcuit (Section 7). It com-
bines useful features from both these design approaches
to achieve high performance and scalability, and leverages
our proposed defense to achieve resilience against replay
attacks. Byzcuit employs a Transaction Manager to co-
ordinate cross-shard communication, reducing its cost to
O(n) communication, between n shards, in the absence
of faults. We implement a prototype of Byzcuit in Java
as a fork of the Chainspace code [1], and release it as

1. https://chainspace.io
2. https://harmony.one
3. https://github.com/sheharbano/byzcuit/tree/replay-attacks

ar
X

iv
:1

90
1.

11
21

8v
4

 [
cs

.C
R

]
 1

 S
ep

 2
02

0

https://github.com/sheharbano/byzcuit/tree/replay-attacks

an open-source project4. We evaluate Byzcuit on a real
cloud-based testbed under varying transaction loads and
show that Byzcuit has a client-perceived latency of less
than a second, even for a system load of 1000 transac-
tions per second (tps). Byzcuit’s transaction throughput
scales linearly with the number of shards by 250–300 tps
for each shard added, handling up to 1550 tps with 10
shards—which is about 8 times higher than Chainspace
with a similar setup. We quantify the overhead of our
replay defenses and find that as expected those reduce the
throughput by 20–250 tps.
Contributions. We make the following key contributions:
we (i) develop the first replay attacks against shard-led and
client-led cross-shard consensus protocols, and illustrate
their impact on important academic and implemented
designs; and (ii) present defenses; (iii) design a hybrid,
new system Byzcuit with improved performance trade-
offs, and which integrates our proposed defense to achieve
resilience against the replay attacks; and (iv), we imple-
ment a prototype of Byzcuit and evaluate its performance
and scalability on a real distributed set of nodes and under
varying transaction loads, and illustrate how it is superior
to previous proposals.

2. Background and Related Work

We present background and related work on cross-
shard consensus protocols.
Sharded blockchains. Earlier systems like Bitcoin [11]
probabilistically elect a single node which can extend the
blockchain. However, such systems assume synchrony,
have no finality (i.e., forks can exist and be eventually
accepted) and low performance (i.e., high latency and
low throughput). Consequently, there has been a shift
to committee-based designs [2] where a group of nodes
collectively extends the blockchain typically via classi-
cal byzantine fault tolerance (BFT) consensus protocols
such as PBFT [5]. While these systems offer better per-
formance, single-committee consensus is not scalable—
as every node handles every transaction, adding more
nodes to the committee decreases throughput due to the
increased communication overhead. This motivated the
design of sharded systems, where multiple committees
handle a subset of all the transactions—allowing parallel
execution of transactions. Every committee has its own
blockchain and set of objects (or unspent transaction out-
puts, UTXO) that they manage. Committees run an intra-
shard consensus protocol (e.g., PBFT) within themselves,
and extend the blockchain in parallel.
Cross-shard consensus. In sharded systems, some trans-
actions may operate on objects handled by different
shards, effectively requiring the relevant shards to addi-
tionally run a cross-shard consensus protocol to enable
agreement across the shards. If any of the shards relevant
to the transaction rejects it, all the other shards should
likewise reject the transaction to ensure atomicity.

The typical choice for implementing cross-shard con-
sensus is the two-phase atomic commit protocol [7]. This
protocol has two phases which are run by a coordinator. In
the first voting phase, the nodes tentatively write changes

4. https://github.com/sheharbano/byzcuit

locally, lock resources, and report their status to the coor-
dinator. If the coordinator does not receive status message
from a node (e.g., because the node crashed or the status
message was lost), it assumes that the node’s local write
failed and sends a rollback message to all the nodes to
ensure any local changes are reversed, and locks released.
If the coordinator receives status messages from all the
nodes, it initiates the second commit phase and sends a
commit message to all the nodes so they can permanently
write the changes and unlock resources. In the context of
sharded blockchains, the atomic commit protocol operates
on shards (which make the local changes associated with
the voting phase via an intra-shard consensus protocol like
PBFT), rather than individual nodes. A further consider-
ation is who assumes the role of the coordinator.
Related Work. Replay attacks in general have seen ex-
tensive study in the security literature. This is the first
paper that presents replay attacks on cross-shard con-
sensus protocols. Traditionally, the most stringent threat
models assumed by consensus protocols involve byzantine
adversaries who are able to control or subvert consen-
sus nodes and cause them to behave arbitrarily. Repur-
posing those protocols to open permissionless networks
(e.g., blockchains) opens up new attack avenues such as
replay attacks as shown in this paper. There are cur-
rently two key approaches to cross-shard consensus [2].
The first approach involves client-led protocols (such as
Omniledger [8] and RSCoin [6]), where the client acts
as a coordinator. These protocols assume that clients
are incentivized to proceed to the unlock phase. While
such incentives may exist in a cryptocurrency application
where an unresponsive client loses its own coins if the
inputs are permanently locked, these do not however hold
for a general-purpose platform where transaction inputs
may have shared ownership. The second approach in-
volves shard-led protocols (such as Chainspace [1], Rapid-
chain [12] and Elastico [9]), where shards collectively
assume the role of a coordinator. All the concerned shards
collaboratively run the protocol between them. This is
achieved by making the entire shard act as a ‘resource
manager’ for the transactions it handles. We describe our
replay attacks in the context of two representative sys-
tems: Chainspace [1] as an example of shard-led protocols
(Section 4); and Omniledger [8] as an example of client-
led protocols (Section 5). We provide a more detailed
description of these systems in the relevant sections.

3. Attack Overview

Sections 4 and 5 discuss replay attacks on both shard-
led and client-led cross-shard consensus protocols, respec-
tively. We present a high-level description of these attacks,
the threat model, demo attack implementation, and the
notation used in this paper.
Replay Attacks on Cross-Shard Consensus. The at-
tacker records a target shard’s responses to the atomic
commit protocol, and replays them during another in-
stance of the protocol. We present (i) attacks against the
first phase (voting), and (ii) attacks against the second
phase (commit) of the atomic commit protocol.

To attack the first phase (voting) of the atomic commit
protocol, the attacker replaces messages generated by

https://github.com/sheharbano/byzcuit

the target shard by replaying pre-recorded messages. In
practice, the attacker does not replace those messages—it
achieves a similar result by making its replayed messages
arrive at the coordinator faster (racing the target shard’s
original message), exploiting the fact that the coordinator
makes progress based on the first message it receives.
Replaying messages in this fashion enables the attacker
to compromise the system safety (by creating inconsistent
state on the shards) and/or liveness (by causing valid
transactions to be rejected).

To attack the second phase (commit) of the atomic
commit protocol, the attacker simply replays prerecorded
messages to target shards, and compromises consistency.
The attacker can replay those messages at any time of its
choice, and does not rely on any racing condition as in
the previous case.
Threat Model. The attacker can successfully launch the
described attacks without colluding with any shard nodes,
and under the BFT honest majority safety assumption for
nodes within shards (i.e., the attacks are effective even
if all nodes are honest). We assume an attacker that can
observe and record messages generated by shards; this can
be achieved by (i) monitoring the network, or (ii) reading
the blockchain (which is more practical). The attacker can
be an external observer that passively collects the target
messages at the level of the network, or it can act as a
client and actively interact with the system to elicit the
target messages. The attacks against the first phase of the
atomic commit protocol (Sections 4.3 and 5.3) assume a
weakly synchronous network in which an attacker may
delay messages and race target shards by replaying pre-
recorded messages. The attacks against the second phase
of the atomic commit protocol (Section 4.4 and 5.4) do not
make any such assumptions on the underlying network.
Attack Implementation. We implemented a demo of the
replay attacks against Chainspace [1], as an example of
systems that implement shard-led cross-shard consensus
protocol, in Java.5 We are open-sourcing the demo of our
attacks6, and a document describing a step-by-step tutorial
to execute the attacks7. The demo shows, in the context
of a simple payment application that supports account
creation and coin transfer, how an attacker can use the
replay attacks described in this paper to create coins out
of thin air. Note that the attacks do not rely on any strict
timing assumptions—the same attacker could control the
accounts of both payer and payee, as well as the client.
Notation. Operations on the blockchain are specified as
transactions. A transaction defines some transformation
on the blockchain state, and has input and output objects
(such as UTXO entries). An object is some data managed
by the blockchain, such as a bank account, a specific coin,
or a hotel room. For example, T (x1, x2) → (y1, y2, y3)
represents a transaction with two inputs, x1 managed by
shard 1 and x2 managed by shard 2; and three outputs,
y1 managed by shard 1, y2 managed by shard 2, and y3
managed by shard 3. We call the shards that manage the
input objects input shards, and the shards that manage

5. Attacks against systems with client-led cross-shard consensus such
as Omniledger [8] can be similarly implemented.

6. https://github.com/sheharbano/byzcuit/tree/replay-attacks
7. https://github.com/sheharbano/byzcuit/blob/master/docs/

Chainspace-Replay-Attack-Demo.pdf

BFT

BFT

BFT

BFT

accept(T)

pre-accept(T)

pre-accept(T)

BFT

client

shard 1

shard 2

shard 3

Figure 1: An example execution of S-BAC for a valid transaction
T (x1, x2) → (y1, y2, y3) with two inputs (x1 and x2, both are active)
and three outputs (y1, y2, y3), where the final decision is accept(T).

the output objects output shards. It is possible for a shard
to be both the input and output shard. Objects can be in
two states: active (on unspent) objects are available for
being processed by a transaction; and inactive (or spent)
objects cannot be processed by any transaction. Addi-
tionally, some systems also associate locked state with
objects that are currently being processed by a transaction
to protect against manipulation by other concurrent trans-
actions involving those objects. The attacks we describe
in this paper generalize to transactions with k inputs and
k′ outputs managed by an arbitrary number of shards.

4. Shard-led Cross-Shard Consensus

In shard-led cross-shard consensus protocols, the
shards collectively take on the role of the coordinator in
the atomic commit protocol. We describe replay attacks
on shard-led cross-shard consensus protocols. To make
the discussion concrete, we illustrate these attacks in the
context of Chainspace [1] (Section 4.1), though we note
that these attacks can be generalized to other similar
systems. We discuss how the attacker can record shard
messages to replay in future attacks (Section 4.2). In
Sections 4.3 and 4.4, we describe replay attacks on the
first and second phase of the cross-shard consensus pro-
tocol, and discuss the real-world impact of these attacks
(Section 4.5).

4.1. Chainspace Overview

Chainspace uses a shard-led cross-shard consensus
protocol called S-BAC. The client submits a transaction
to the input shards. Each shard internally runs a BFT
protocol to tentatively decide whether to accept or abort
the transaction locally, and broadcasts its local decision
(pre-accept(T) or pre-abort(T)) to other relevant shards.
Figure 2 shows the state machine representing the life
cycle of objects in Chainspace. A shard generates pre-
abort(T) if the transaction fails local checks (e.g., if any
of the input objects are ‘inactive’ or ‘locked’). If a shard
generates pre-accept(T), it changes the state of the input
objects to ‘locked’. This is the first step of S-BAC, and
is equivalent to the voting phase in the two-phase atomic
commit protocol (Section 2).

Each shard collects responses from other relevant
shards, and commits the transaction if all shards respond
with pre-accept(T), or aborts the transaction otherwise.
This is the second step of S-BAC, and is equivalent to the
commit phase in the two-phase atomic commit protocol

https://github.com/sheharbano/byzcuit/tree/replay-attacks
https://github.com/sheharbano/byzcuit/blob/master/docs/Chainspace-Replay-Attack-Demo.pdf
https://github.com/sheharbano/byzcuit/blob/master/docs/Chainspace-Replay-Attack-Demo.pdf

none

active

locked
T

inactive
pre-abort(T)

pre-accept(T)

abort(T)

accept(T') accept(T)

pre-accept(T'')
or

pre-abort(T'')

Figure 2: State machine representing the life cycle of Chainspace
objects. An object becomes ‘active’ as a result of a previous successful
transaction. The object state changes to ‘locked’ if a shard locally emits
pre-accept(T) in the first phase of the cross-shard consensus protocol
for a transaction T . A locked object cannot be processed by other
transactions T ′′. If the second phase of the protocol results in accept(T),
the object becomes ‘inactive’; alternatively, if the result is abort(T) the
object becomes ‘active’ again and is available for being processed by
other transactions.

(Section 2). The shards communicate this decision to the
client as well as the output shards by sending them the
accept(T) or abort(T) messages. If the shard’s decision is
accept(T), it changes the input object state to ‘inactive’.
If the shard’s decision is abort(T), it changes the input
object state to ‘active’ (effectively unlocking it). Upon
receiving accept(T), the client concludes that the trans-
action was committed, and the output shards create the
output objects (with the state ‘active’) of the transaction.

Figure 1 shows an example execution of S-BAC for a
valid transaction T (x1, x2)→ (y1, y2, y3) with two inputs
(x1 and x2, both are active) and three outputs (y1, y2, y3),
where the final decision is accept(T). The client submits
T to shard 1 and shard 2. Upon receiving T , both shard
1 and shard 2 confirm that the transaction is to commit,
and emit pre-accept(T) at the end of the first phase of S-
BAC. Each shard receives pre-accept(T) from the other
shard, and emits accept(T) at the end of the second phase
of S-BAC. As a result, the input objects x1 and x2 become
inactive, and the output shards respectively create objects
y1, y2, and y3.

4.2. Message Recording

Prior to the replay attacks, the attacker records re-
sponses generated by shards. The attacker can record shard
responses in the first phase of S-BAC (i.e., pre-accept(T)
or pre-abort(T)), enabling the family of attacks described
in Section 4.3. The attacker can also record shard re-
sponses in the second phase of S-BAC (i.e., accept(T)
or abort(T)), enabling the family of attacks described in
Section 4.4. In the general case, the attacker passively
collects the messages either by sniffing the network on
protocol executions, or by downloading the blockchain
and selecting the messages to replay8. Section A.1 shows
how the attacker can act as client to actively elicit the
messages necessary for the attacks—this empowers the
attacker to actively orchestrate the attacks.

4.3. Attacks on the First Phase of S-BAC

We present replay attacks on the first phase of S-
BAC by taking the example of a transaction T (x1, x2)→
(y1, y2, y3) as described in Section 3. These attacks easily
generalize to transactions with k inputs and k′ outputs

8. Since those messages need to be recorded on chain for verification,
just using transport layer encryption between nodes is not effective.

BFT

BFT

BFT

BFT

accept(T)

pre-abort(T)

pre-accept(T)

BFT

client

shard 1

shard 2

shard 3

attacker
pre-accept(T)

abort(T)

Figure 3: Illustration of the replay attack depicted in row 6 of Table 1.
The attacker replays to shard 2 a prerecorded pre-accept(T) message
(shown as a bold line) from shard 1, which precludes shard 1’s pre-
abort(T) message (shown as a dotted line).

managed by an arbitrary number of shards. The replay
attacks work in two steps; (i) the attacker records pre-
accept(T) or pre-abort(T) messages (as described in
Section 4.2 and Section A.1); and (ii) then replays those
messages during a new instance of the protocol.

Table 1 shows the replay attacks that the attacker can
launch, for all possible combinations of messages emitted
by shard 1 and shard 2 in the first phase of S-BAC. The
caption includes details about how to interpret this table.
All attacks exploit the parallel composition of multiple
S-BAC instances, and insufficient binding of messages to
its S-BAC instance. We describe row 6 of Table 1, to
help readers interpret rest of the table on their own. In the
correct execution (row 5), shard 1 and shard 2 emit pre-
abort(T) (because x1 is not active) and pre-accept(T)
in the first phase, respectively. In the second phase, both
shards emit abort(T) and the protocol terminates. Figure 3
illustrates the replay attack corresponding to row 6 of
Table 1. The attacker races shard 1 by sending to shard
2 the prerecorded pre-accept(T) message from shard 1.
As a result, shard 2 emits accept(T), inactivates object
x2 and creates object y2. This leads to inconsistent state
across the shards. In a correct execution: (i) if T is
accepted all its inputs (x1 and x2) should become inactive,
and all the outputs (y1, y2, y3) should be created; and (ii)
if T is aborted, all its inputs (x1 and x2) should become
active again, and none of the outputs (y1, y2, y3) should be
created. However, here we have an incorrect termination
of S-BAC: at the end of the protocol x1 could be active
and x2 is inactive; y1 is not created, y2 and y3 are created.

Table 1 shows that through careful selection of the
messages to replay from different S-BAC instances, the
attacks can be effective against any shard. All the attacks
(except row 4) compromise consistency; the attacker can
trick the input shards to inactivate arbitrary objects, and
trick the output shards into creating new objects in vio-
lation of the protocol. The attack depicted in row 4 only
affects availability.

4.4. Attacks on the Second Phase of S-BAC

We present replay attacks on the second phase of
S-BAC. The attacker prerecords accept(T) messages as
described in Section 4.2 and Section A.1. Table 2 shows
replay attacks for all possible combinations of messages
emitted by shard 1 and shard 2 in the second phase.
Since the attacks we describe in this section assume that

Phase 1 of S-BAC Phase 2 of S-BAC

(potential victim)
Shard 1

(potential victim)
Shard 2

(potential victim)
Shard 1

(potential victim)
Shard 2

(potential victim)
Shard 3

1 lock x1
pre-accept(T)

lock x2
pre-accept(T)

create y1; inactivate x1
accept(T)

create y2; inactivate x2
accept(T)

create y3
-

2 Bpre-abort(T) create y1; inactivate x1
accept(T)

unlock x2
abort(T)

create y3
-

3 Bpre-abort(T) unlock x1
abort(T)

create y2; inactivate x2
accept(T)

create y3
-

4 Bpre-abort(T) Bpre-abort(T) unlock x1
abort(T)

unlock x2
abort(T) -

5 -
pre-abort(T)

lock x2
pre-accept(T)

-
abort(T)

unlock x2
abort(T) -

6 Bpre-accept(T) -
abort(T)

create y2; inactivate x2
accept(T)

create y3
-

7 lock x1
pre-accept(T)

-
pre-abort(T)

unlock x1
abort(T)

-
abort(T) -

8 B pre-accept(T) create y1; inactivate x1
accept(T)

-
abort(T)

create y3
-

9 -
pre-abort(T)

-
pre-abort(T)

-
abort(T)

-
abort(T) -

TABLE 1: List of replay attacks against the first phase of S-BAC for all possible executions of the transaction T (x1, x2) → (y1, y2, y3) as
described in Section 3. The highlighted rows indicate correct executions of S-BAC (i.e., without the attacker), and the other rows indicate incorrect
executions due to the replay attacks. In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate
local shard actions as a result of emitting those messages. For example, (column 3, row 2) means that shard 1 emits accept(T) (top sub-row), and
creates a new object y1 and inactivates x1 (bottom sub-row). The first two columns indicate the messages emitted by each shard at the end the first
phase of S-BAC. The attacker races shards at the end of the first phase of S-BAC by replaying prerecorded messages, marked with the symbol B
in the first two columns of Table 1. For example Bpre-abort(T) at (column 1, row 2) means that the attacker sends to other relevant shards (in
this case shard 2) a prerecorded pre-abort(T) message impersonating shard 1 that races the original pre-accept(T) (column 1, row 1) emitted by
shard 1. The last three columns indicate the messages emitted at the end of the second phase of S-BAC.

the first phase of S-BAC concluded correctly (i.e., all the
relevant shards unanimously decide to accept or reject a
transaction), both the shards generate abort(T) (row 1)
or accept(T) (row 5). The caption includes details about
how to interpret this table. We describe row 6 of Table 2,
to help readers interpret rest of the table on their own. In
the correct execution (row 5), both shards emit abort(T)
and no output objects are created. In the attack in row 6,
the attacker replays a prerecorded accept(T) from shard
1 to all the relevant shards (in this case shard 3). Upon
receiving this message, shard 3 (incorrectly) creates y3.

The potential victims of replay attacks corresponding
to the second phase of S-BAC are the shards that only
act as output shards (i.e., do not simultaneously act as
input shards). The attacker can replay accept(T) multiple
times tricking shard 3 into creating y3 multiple times.
These attacks are possible because shards do not keep
records of inactive objects (following the UTXO model)
for scalability reasons9, and because shard 3 takes part in
only the second phase of S-BAC. The attacker can double-
spend y3 repeatedly by replaying a single prerecorded
message multiple times, and spending the object (i.e.
purging it from shard 3’s UTXO) before each replay.

Contrarily to the attacks against the first phase of S-
BAC (Section 4.3), these attacks do not rely on any racing
conditions; there is no need to race any honest messages.

9. Requiring shards to remember the full history of inactive objects
would increase their memory requirements monotonically over time,
reaching at some point memory limits preventing further operations.
Thus this is a poor mitigation for the attacks presented.

4.5. Real-world Impact

The real-world impact and attacker incentives to con-
duct these attacks depends on the nature and implemen-
tation of the smart contract handling the target objects.
We discuss the impact of these attacks in the context of
two common smart contract applications, which are also
described in the Chainspace paper [1]. To take a concrete
example, we illustrate the attack depicted in row 3 of
Table 1, but similar results can be obtained with the other
attacks described in Table 1 and Table 2.

One of the most common blockchain application is to
manage cryptocurrency (or coins) and enable payments
for processing transactions, implemented by the CSCoin
smart contract in Chainspace. Lets suppose object x1

(handled by shard 1) represents Alice’s account, and
object x2 (handled by shard 2) represents Bob’s account.
To transfer v coins to Bob, Alice submits a transaction
T (x1, x2) → (y1, y2), where y1 and y2 respectively rep-
resent the new account objects of Alice and Bob, with up-
dated account balances. By executing the attack described
in row 3 of Table 1, an attacker can trick shard 1 to abort
the transaction and unlock x1 (thus reestablishing Alice’s
account balance as it was prior to the coin transfer), and
shard 2 to accept the transaction and create y2 (thus
adding v coins to Bob’s account). This attack effectively
allows any attacker to double-spend coins on the ledger;
and shows how to create v coins out of thin air.

Another common blockchain use case is a platform
for decision making (or electronic petitions), implemented
by the SVote smart contract in Chainspace. Upon ini-

Phase 2 of S-BAC

Shard 1 Shard 2
Shard 3

(potential victim)

1 create y1; inactivate x1
accept(T)

create y2; inactivate x2
accept(T)

create y3
-

2 Baccept(T) create y3
3 Baccept(T) create y3
4 Baccept(T) Baccept(T) create y3

5 (unlock x1)
abort(T)

(unlock x2)
abort(T)

-
-

6 Baccept(T) create y3
7 Baccept(T) create y3
8 Baccept(T) Baccept(T) create y3

TABLE 2: List of replay attacks against the second phase of S-BAC for all possible executions of the transaction T (x1, x2) → (y1, y2, y3) as
described in Section 3. The highlighted rows indicate correct executions of S-BAC (i.e., without the attacker), and the other rows indicate incorrect
executions due to the replay attacks. In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate
local shard actions as a result of emitting those messages. For example, (column 1, row 1) means that shard 1 emits accept(T) (top sub-row), and
creates a new object y1 and inactivates x1 (bottom sub-row). The first two columns indicate the messages emitted by each shard at the end the
second phase of S-BAC, and the last column shows the effect of these messages on the output shard 3. Replayed messages are marked with the
symbol B. For example Baccept(T) at (column 1, row 2) means that the attacker sends to other relevant shards (in this case shard 3) a prerecorded
accept(T) message impersonating shard 1.

tialization, the SVote contract creates two objects: (i) x1

representing the tally’s public key, a list of all voters’
public keys, and the tally’s signature on these; and (ii)
x2 representing a vote object at the initial stage of the
election (all candidates having a score of zero) along
with a zero-knowledge proof asserting the correctness of
the initial stage. To vote, clients submit a transaction
T (x1, x2) → (y1, y2), where y1 and y2 are respectively
the updated voting list (i.e., the voting list without the
client’s public key), and the election stage updated with
the client’s vote. By executing the attack described by row
3 of Table 1, an attacker can trick shard 1 to abort the
transaction and thus not update the voting list, and shard
2 to accept the transaction and thus update the election
stage. This allows clients to vote multiple times during an
election while remaining undetected (due to the privacy-
preserving properties of the SVote smart contract).

5. Client-led Cross-shard Consensus

We describe replay attacks on client-led cross-shard
consensus protocols. We illustrate these attacks in the
context of Omniledger [8] (Section 5.1) to make the
discussion concrete. However, we note that these attacks
can be generalized to other similar systems. We discuss
how the attacker can record shard messages to replay in
future attacks (Section 5.2). We describe replay attacks on
the first (Section 5.3) and second (Section 5.4) phase of
the protocol. Finally, we discuss the real-world impact of
these attacks (Section 5.5).

5.1. Omniledger Overview

Omniledger uses a client-led cross-shard consensus
protocol called Atomix. The client submits the transaction
T to the input shards. Each shard runs a BFT protocol lo-
cally to decide whether to accept or reject the transaction,
and communicates its response (pre-accept(T) or pre-
abort(T)) to the client.10 A shard emits pre-abort(T) if

10. For consistency and clarity, we use the terminology used in
Section 4. In Omniledger, pre-accept(T) is actually a proof-of-accept
and pre-abort(T) is a proof-of-abort [8].

BFT

BFT

BFT

BFT

accept(T)pre-accept(T)

BFT

client

shard 1

shard 2

shard 3

Figure 4: An example execution of Atomix for a valid transaction
T (x1, x2) → (y1, y2, y3) with two inputs (x1 and x2, both are active)
and three outputs (y1, y2, y3), where the final decision is accept(T).

the transaction fails local checks. Alternatively, if a shard
emits pre-accept(T), it inactivates the input objects it
manages. This is the first phase of Atomix, and is similar
to the voting phase in the two-phase atomic commit pro-
tocol (Section 2), but differs in that the protocol proceeds
optimistically. The write changes made by the input shards
in the first phase of Atomix are considered permanent (i.e.,
there is no ‘locked’ object state), unless the client requests
the input shards to revert their changes in the second
phase. After the client has collected pre-accept(T) from
all input shards, it submits accept(T) message (contain-
ing proof of the pre-accept(T) messages) to the output
shards which create the output objects. Alternatively, if
any of the input shards emits pre-abort(T), the client
sends abort(T) (containing proof of pre-abort(T)) to the
relevant input shards which make the input objects active
again. This is the second phase of Atomix, and is similar
to the commit phase in the two-phase atomic commit
protocol (Section 2).

Figure 4 shows the execution of Atomix for a valid
transaction T (x1, x2) → (y1, y2, y3), with two active
inputs (x1 managed by shard 1, and x2 managed by shard
2) and producing three outputs (y1, y2, y3) managed by
shard 1, shard 2 and shard 3, respectively. The client
sends T to the input shards, both of which reply with pre-
accept(T) and make the input objects x1 and x2 inactive.
The client sends accept(T) to the output shards which
respectively create objects y1, y2, and y3.

Phase 1 of Atomix Phase 2 of Atomix

(potential victim)
Shard 1

(potential victim)
Shard 2

(victim)
Client

(potential victim)
Shard 1

(potential victim)
Shard 2

(potential victim)
Shard 3

1 inactivate x1
pre-accept(T)

inactivate x2
pre-accept(T) accept(T) create y1

-
create y2

-
create y3

-

2 B pre-abort(T) abort(T) re-activate x1
-

re-activate x2
- -

3 B pre-abort(T) abort(T) re-activate x1
-

re-activate x2
- -

4 Bpre-abort(T) Bpre-abort(T) abort(T) re-activate x1
-

re-activate x2
- -

5 -
pre-abort(T)

inactivate x2
pre-accept(T) abort(T) -

-
re-activate x2

- -

6 Bpre-accept(T) accept(T) create y1
-

create y2
-

create y3
-

7 inactivate x1
pre-accept(T)

-
pre-abort(T) abort(T) re-activate x1

-
-
- -

8 B pre-accept(T) accept(T) create y1
-

create y2
-

create y3
-

9 -
pre-abort(T)

-
pre-abort(T) abort(T) -

-
-
- -

10 B pre-accept(T) B pre-accept(T) accept(T) create y1
-

create y2
-

create y3
-

TABLE 3: List of replay attacks against the first phase of Atomix for all possible executions of a transaction T (x1, x2) → (y1, y2, y3) as described
in Section 3. The highlighted rows indicate correct executions of Atomix (i.e., without the attacker), and the other rows indicate incorrect executions
due to the replay attacks. In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate local
shard actions as a result of emitting those messages. For example, (column 1, row 1) means that shard 1 emits pre-accept(T) (top sub-row), and
inactivates x1 (bottom sub-row). The first two columns indicate the messages emitted by each shard at the end the first phase of Atomix. Replayed
messages are marked with the symbol B, for example Bpre-abort(T) at (column 1, row 2) means that the attacker sends to the client a prerecorded
pre-abort(T) message impersonating shard 1 that races the original pre-accept(T) (column 1, row 1) emitted by shard 1. The third column indicates
the messages sent by the client to the relevant shards, and the last three columns indicate the local actions performed by shards at the end of Atomix.

5.2. Message Recording

Before launching the attacks, the attacker first records
the target shard responses. The attacker can record shard
responses in the first phase of Atomix (i.e., pre-accept(T)
or pre-abort(T)), enabling the attacks described in Sec-
tion 5.3. The attacker can also record shard responses in
the second phase of Atomix (i.e., accept(T) or abort(T)),
enabling the attacks described in Section 5.4. In the
general case, the attacker passively collects the messages
to replay, for example by protocol executions on the
network, or by downloading the blockchain and selecting
the appropriate messages. Section A.2 shows how the
attacker can act as a client to actively elicit and record
the target messages to later use in the replay attacks.

5.3. Attacks on the First Phase of Atomix

We present replay attacks on the first phase of Atomix
by taking the example of a transaction T (x1, x2) →
(y1, y2, y3) as described in Section 3. These attacks easily
generalize to transactions with k inputs and k′ outputs
managed by an arbitrary number of shards. The replay
attacks work in two steps: (i) the attacker observes the
traffic and records pre-accept(T) or pre-abort(T) mes-
sages as described in Section 5.2; and (ii) then replay
those messages.

Table 3 shows the replay attacks that the attacker
can launch, for all possible combinations of responses
generated by shard 1 and shard 2 in the first phase

of Atomix. The caption includes details about how to
interpret this table. We describe row 6 of Table 3, to help
readers interpret rest of the table on their own. In the
correct execution (row 5), shard 1 emits pre-abort(T),
and shard 2 emits pre-accept(T) and inactivates the input
objects x2. Upon receiving these messages, the client
sends abort(T) to the output shards shard 1, shard 2 and
shard 3, and shard 2 re-activates x2; and the protocol
terminates. In the attack illustrated in row 6 of Table 3,
the attacker races shard 1 by sending to the client the
prerecorded pre-accept(T) message from shard 1. As a
result, the client sends accept(T) message to the output
shards shard 1, shard 2 and shard 3, which respectively
create the output objects y1, y2, and y3. As a result, the
system ends up in an inconsistent state because the output
objects (y1, y2, y3) have been created, while the input
object (x1) was not active—this results in a double-spend
of the input object x1.

Table 3 shows that through careful selection of the
messages to replay, the attacks can be effective against
any shard. The attacks illustrated in row 2, row 3, and
row 4 only affect availability, while the other attacks
compromise consistency (i.e., the attacker can trick the
input shards to reactivate arbitrary objects, and trick the
output shards into creating new objects in violation of the
protocol). The potential victims of these attacks include
the client (e.g., when the attacker replays the shard mes-
sages to it in the first phase of Atomix) and any input or
output shards.

5.4. Attacks on the Second Phase of Atomix

We present replay attacks on the second phase of
Atomix. The attacker prerecords accept(T) and abort(T)
messages as described in Section 5.2 and Section A.2.

Table 4 shows replay attacks corresponding to the
messages emitted by the client in the second phase—
i.e., accept(T) in row 1, or abort(T) in row 3. The
caption includes details about how to interpret this table.
The abort(T) message at (column 1, row 2) means that
the attacker sends a prerecorded abort(T) message to the
input shards (shard 1 and shard 2) impersonating the
client. Upon receiving this message, shard 1 and shard 2
(incorrectly) re-activate x1 and x2, respectively. Further-
more, all output shards create the output objects when the
correct accept(T) message emitted by the client (row 1,
column 1) reaches them. This results in inconsistent state,
as the output objects are created, but the input objects
are not consumed and are reactivated by the abort(T)
message replayed by the adversary. The potential victims
of abort(T) replay attack are the input shards.

Similarly, accept(T) at (row 4, column 1) means that
the attacker sends a prerecorded accept(T) message to the
output shards (shard 1, shard 2 and shard 3) imperson-
ating the client. Upon receiving this message, the output
shards (incorrectly) create y1, y2 and y3. Furthermore, the
input shards (shard 1 and shard 2) reactivate x1 and x2

upon receiving the correct abort(T) message emitted by
the client (row 3, column 1). This creates inconsistent
state: the input objects have not been consumed and have
been reactivated by the abort(T) message emitted by the
client, but the output objects have been created due to the
accept(T) message replayed by the attacker. The potential
victims of accept(T) replay attack are the output shards.

These attacks are possible because output shards create
objects directly upon receiving accept(T); they do not
check if the objects have been previously invalidated
because shards do not keep records of inactive objects (per
the UTXO model) for scalability reasons.11 The attacker
can double-spend the output objects repeatedly from a
single prerecorded message by replaying it multiple times,
and spending the object (and effectively purging it from
the output shards’ UTXO) before each replay.

Similar to the attacks against the second phase of
S-BAC (Section 4.4), these attacks do not exploit any
racing condition and can be mounted by an adversary at
a leisurely pace.

5.5. Real-world Impact

Contrarily to Chainspace, Omniledger does not sup-
port smart contracts and only handles a cryptocurrency.
The attacks described in Sections 5.3 and 5.4 allow an
attacker to: (i) double-spend the coins of any user, by
reactivating spent coins (e.g., the attacker may execute
the attack depicted by row 2 of Table 4 to re-activate
the objects x1 and x2 after the transfer is complete); and
(ii) create coins out of thin air by replaying the message
to create coins (e.g., an attacker may execute the attack

11. Verifying that objects have not been previously invalided implies
either keep a forever-growing list of invalidated objects, or download
and check the shard’s entire blockchain.

depicted by row 4 of Table 4 to create multiple times
object y3, by purging it from the UTXO list of shard 3
prior to each instance of the attack).

If the attacker colludes with the client, it can trig-
ger the prerecorded messages needed for the attacks as
described in Section 5.2. Alternatively, the attacker can
passively observe the network and collect the target mes-
sages to replay. Similar results can be obtained using the
attacks described in Table 3. Note that since transaction
are recorded on the blockchain, these attacks can be de-
tected retrospectively. This can lead to the attacker being
exposed, or the attacker can inculpate innocent users (the
attacker can replay messages of any user).

6. Defenses Against Replay Attacks

We identify two issues that lead to the replay attacks
described in Section 4 and Section 5, and discuss how to
fix those:
• First, the input shards do not have a way to know that

particular protocol messages received correspond to a
specific instance (or session) of the protocol. This gap
in the input shards’ knowledge enables an attacker
to replay, mix and match, old messages leading to
attacks. To address this limitation, we associate a
session identifier with each transaction, which has to
be crafted carefully to not degrade the performance of
the protocols significantly—such as, for example, by
requiring nodes to store state linearly in the number
of past transactions.

• Second, in some cases the output shards are only
involved in the second phase of the protocol, and
therefore have no knowledge of the transaction con-
text (to determine freshness) that is available to the
input shards. This limitation can be addressed by en-
suring that all shards—input and output—witnesses
the entire protocol execution, rather than just a subset
of protocol execution phases.

Note that the two mitigation techniques described
above must be used together, as part of a single defense
strategy against replay attacks.

7. The Byzcuit Protocol

We showed that both S-BAC (Sections 4.3 and 4.4)
and Atomix (Sections 5.3 and 5.4) are vulnerable to replay
attacks that can compromise system liveness and safety.
Atomix is the simpler protocol of the two, and using
the client to coordinate cross-shard communication can
reduce the cost to O(n) in the number of shards (by
aggregating shard messages). However, an unresponsive
or malicious client can permanently lock input objects by
never initiating the second phase of the protocol, requiring
additional design considerations (e.g., a new entity that pe-
riodically unlocks input objects for transactions on which
no progress has been made). On the other hand, S-BAC
runs the protocol among the shards, without relying on
client coordination. But this comes at the cost of increased
cross-shard communication: all input shards communicate
with all other input shards, which leads to communication
complexity of O(n2) in the number of input shards.

Motivated by these insights, we present Byzcuit—a
cross-shard atomic commit protocol (based on S-BAC)

Phase 2 of Atomix
Client (potential victim)

Shard 1
(potential victim)

Shard 2
(potential victim)

Shard 3

1 accept(T) create y1
-

create y2
-

create y3
-

2 Babort(T) re-activate x1
-

re-activate x2
- -

3 abort(T) re-activate x1
-

re-activate x2
- -

4 Baccept(T) create y1
-

create y2
-

create y3
-

TABLE 4: List of replay attacks against the second phase of Atomix for all possible executions of the transaction T (x1, x2) → (y1, y2, y3) as
described in Section 3. The highlighted rows indicate correct executions of Atomix (i.e., without the attacker), and the other rows indicate incorrect
executions due to the replay attacks. In multirows, the top sub-rows show the protocol messages emitted by shards, and the bottom sub-rows indicate
local shard actions. Note that we use the multirow format for consistency reasons; in this table the first column indicates the messages emitted by the
client at the beginning of the second phase of Atomix, and the last two column shows the effect of these messages on the relevant shards. Replayed
messages are marked with the symbol B. For example, Babort(T) at (column 1, row 2) means that the attacker sends a prerecorded abort(T)
message to the input shards impersonating the client.

that integrates design features from Atomix—and offers
better performance and security against replay attacks.
Byzcuit allocates a Transaction Manager (TM) to coordi-
nate cross-shard communication, reducing its cost to O(n)
in the happy case12; alternatively Byzcuit also has a fall-
back mode in case the TM fails, similar to Atomix and
traditional two phase commit protocols.

Byzcuit achieves resilience against the replay attacks
described in Section 4 and Section 5, by leveraging the
defense proposed in Section 6.

7.1. Byzcuit Protocol Design

We describe how Byzcuit integrates the defense pre-
sented in Section 5. To map particular protocol messages
to a specific protocol instance (or session), Byzcuit asso-
ciates a session identifier with each transaction. To ensure
that all the relevant (input and output) shards witness all
phases of the protocol execution, Byzcuit leverages the
notion of dummy objects: each shard creates a fixed num-
ber of dummy objects upon configuration; if a shard only
serves as an output shard for a transaction (and therefore
will only be involved in the second phase of the protocol),
Byzcuit forces it to be involved in the first phase of the
protocol by implicitly including a dummy object managed
by the output shard in the transaction inputs, which will
create a new dummy object upon completion. As a result,
the output shard also becomes an input shard (because
of the inclusion of its dummy object in the transaction
inputs) and witnesses the entire protocol execution, rather
than just the second phase.
Byzcuit Protocol Execution. We illustrate Byzcuit taking
the example of a transaction T (x1, x2)→ (y1, y2, y3) with
two input objects, x1 managed by shard 1 and x2 managed
by shard 2; and three outputs, y1 managed by shard 1, y2
managed by shard 2, and y3 managed by shard 3.

Figure 5 illustrates the Byzcuit protocol; the client
first sends the transaction to all input and output shards.
Note that this is different than other protocols like S-
BAC and Atomix, where the transaction is only sent to
the input shards. As mentioned previously, to achieve

12. The communication complexity can be reduced to O(n) in the
number of shards by aggregating shard messages as described by Om-
niledger.

resilience against replay attacks, Byzcuit forces a shard
that is only involved in creating the output objects to
also become an input shard (and witness the transnational
context by participating in the first phase of the protocol)
by implicitly consuming one of its dummy inputs (which
creates a new dummy object upon completion). Byzcuit
associates a sequence number sxi to each object and
dummy object (when the object is created sxi = 0).
The sequence number is intrinsically linked to the object:
when clients query shards to obtain an object xi, they also
receive the associated sequence number sxi .

When submitting the transaction T , the client also
sends along a transaction sequence number sT =
max{sx1 , sx2 , sd3}, where the transaction sequence num-
ber sT is the maximum of the sequence numbers sxi of
each input object xi and dummy objects di (Ê).

Upon receiving a new pair (T, sT), each shard saves
(T, sT) in a local cache memory—the transaction se-
quence number sT acts as session identifier associated
with the transaction T . Each shard internally verifies that
the transaction passes local checks, and that sT is equal to
(or bigger than) the sequence numbers of the objects they
manage (i.e., shard 1 checks sT ≥ sx1

, shard 2 checks
sT ≥ sx2

, shard 3 checks sT ≥ sd3
). The shards send

their local decision to the TM: pre-accept(T, sT) for local
accept (and the shard locks the objects it manages), or
pre-abort(T, sT) for local abort.

After receiving all the messages corresponding to the
first phase of Byzcuit from the concerned shards, the TM
sends a suitable message to the shards (accept(T, sT)
if all the shards respond with pre-accept(T, sT), or
abort(T, sT) otherwise). Upon receiving accept(T, sT) or
abort(T, sT) from the TM, shards first verify that they
previously cached the pair (T, sT) associated with the
message; otherwise they ignore it (Ë).

The accept(T, sT) or abort(T, sT) messages sent by
the TM provide enough evidence to the shards to verify
whether sT is correctly computed; i.e. shards verify that
sT is at least the maximum of the sequence numbers of
each input and dummy object by inspecting the transaction
T signed by each shard. If accept(T, sT) has a correct sT ,
the shards inactivate the input objects and create the output
objects (y1, y2, y3), and shard 3 creates a new dummy
object d̃3; otherwise, they update the sequence numbers

BFT

BFT

BFT

BFT

accept()pre-accept()

BFT

client

shard 1

shard 2

shard 3 BFT

TM

1 2 3 4
first phase of

atomic commit
second phase of
atomic commit

Figure 5: An example execution of Byzcuit for a valid transaction
T (x1, x2) → (y1, y2, y3) with two input objects (x1 and x2, both
are active), and three outputs (y1, y2, y3), where the final decision is
accept(T, sT).

of each input object (sx1
, sx2

) and dummy object d3 to
(sT + 1), i.e. shards locally update sx1

← (sT + 1) and
sx2
← (sT+1), and sd3

← (sT+1). Shards delete (T, sT)
from their local cache (Ì).

Since we assume that shards are honest—inline with
the threat model of the systems discussed—it suffices if
only one shard notifies the client of the protocol out-
come; we may set any arbitrary rule to decide which
shard notifies the client (e.g., the shard handling the first
input object) (Í). Figure 6 shows the finite state machine
describing the life cycle of Byzcuit objects.
Transaction Manager. The Transaction Manager (TM)
coordinates cross-shard communication in Byzcuit. We
now discuss who might play the role of the TM, and argue
that Byzcuit guarantees liveness even if the TM is faulty
(byzantine) or crashes.

Keeping with the overall design goal of decentraliza-
tion, we envision that a designated shard will act as the
TM. If the shard is honest, the TM is live—and therefore
progress is always made. The input shards contact in turn
each node of the TM shard until they reach one honest
node. The TM shard may have up to f dishonest nodes;
therefore, the client or the input shards need to send
messages to at least f+1 nodes of the TM shard to ensure
that it is received by at least one honest node13. Thus, as
soon as the first honest node receives the message, the
protocol progresses.

If the TM is the client or any centralized party, it
may act arbitrarily—but this does not stall the protocol
because anyone can make the protocol progress by taking
over at any time the role of the TM. This is possible
because the TM does not act on the basis of any secrets,
therefore anyone else can take over and complete the
protocols. This “anyone” may be an honest node in a
shard that wants to finally unlock an object (e.g., upon
a timeout); or other clients that wish to use a locked
object; or it may be an external service that has a job to
periodically close open Byzcuit instances. Byzcuit ensures

13. Clients may take a statistical view of availability. Given that fewer
than 2/3 of nodes in a shard are dishonest, sending the transaction to
ρ nodes will fail to reach an honest node with probability only (1/3)ρ.
Clients may send messages sequentially to nodes, and only continue if
they do not observe progress within some timeout to further reduce costs.

accept()
and

 is fresh

active

locked
()

inactivepre-accept()

abort()

accept()

pre-accept()
or

pre-abort()

update

pre-abort()

start

Figure 6: State machine representing the life cycle of objects in
Byzcuit. Objects are initially ‘active’. Upon receiving a transaction that
passes local checks, a shard changes its input objects’ state to ‘locked’
(objects are locked for a given transaction T and transaction sequence
number sT) and emits pre-accept(T, sT); otherwise it updates the
sequence number of every object it manages and emits abort(T, sT).
Once a shard locks input objects for a given (T, sT), any accept(T, sT)
and abort(T, sT) with malformed transaction sequence numbers are
ignored, and do not cause any transition (not included in the figure).
Any incoming transaction T ′ that requires processing ‘locked’ input
object(s) is aborted. Upon receiving accept(T, sT) with a well formed
sT , a shard makes its input objects ‘inactive’ and creates the output
objects. Alternatively, upon receiving abort(T, sT) shards unlock their
inputs and updates the corresponding sequence numbers.

such parties may attempt to make progress asynchronously
and concurrently safely. As a result, Byzcuit guarantees
liveness as long as there is at least one honest entity in
the system, willing to act as TM and drive the protocol.
Handling Sequence Number Overflow. An attacker can
try to exhaust the possible sequence numbers to make
them overflow. The attacker submits a pair (T, sT) such
that the sequence number sT is just below the system over-
flow value; the sequence numbers associate with the inputs
overflow upon the next updates, and the system would
be again prone to the attacks described in Section 4.314.
To mitigate this issue, shards define a clone procedure
allowing to update any of their objects to an unchanged
version of themselves (i.e. it creates a fresh copy of the
object). This clone procedure effectively creates a new
object with serial number s′x = 0. When shards detect
that the serial number of one of their objects approaches
the overflow value, they execute internally this clone
procedure. The attacker may exploit this mechanism to
DoS the system, forcing shards to constantly update their
objects; as a result, the target objects are not available
to users. DoS countermeasures are out of scope, and are
typically addressed by introducing transaction fees.

7.2. Security against Replay Attacks

We argue that Byzcuit is resilient to replay attacks. We
recall the Honest Shard assumption from Chainspace and
Omniledger under which Byzcuit operates, and assume
that messages are authenticated as in traditional BFT
protocols.

Assumption 1. (Honest Shard [1]) The adversary may
create arbitrary smart contracts, and input arbitrary
transactions into Byzcuit, however they are bound to only
control up to f faulty nodes in any shard. As a result,
and to ensure the correctness and liveness properties of
Byzantine consensus, each shard must have a size of at
least 3f + 1 nodes. (From Chainspace [1].)

14. Note that this overflow vulnerability is common to every system
relying on nonces chosen by the users, like Byzantine Quorum Sys-
tems [10].

Any message emitted by shards comes with at least
f + 1 signatures from nodes. Assuming honest shards,
the attacker can forge at most f signatures, which is not
enough to impersonate a shard. We use the Lemma below
to prove the security of Byzcuit.

Lemma 1. Under Honest Shard assumption, no attacker
can obtain prerecorded messages containing a fresh trans-
action sequence number sT .

Proof. The core idea protecting Byzcuit from these replay
attacks is that the attacker can only obtain prerecorded
messages associated with old transaction sequence num-
bers sT . The transaction sequence number sT is fresh
only if it is at least equal the maximum of the sequence
number of all input and dummy objects of the trans-
action T . Shards update every input and dummy object
sequence number upon aborting transactions in such a
way that sequence numbers only increase. That is, after
emitting pre-accept(T, sT) or pre-abort(T, sT), either
the sequence number of all input and dummy objects
of T are updated to a value bigger than sT (in case of
pre-abort(T, sT)), or the objects are inactivated which
prevents any successive transaction to use them as input
(in case of pre-accept(T, sT)). It is therefore impossible
for the adversary to hold a prerecorded message for a fresh
sT since the only prerecorded messages that the adversary
can obtain contain sequence numbers smaller than sT .

Security of the first phase of Byzcuit. An attacker may
try to replay pre-accept(T, sT) and pre-abort(T, sT) dur-
ing the first phase of the protocol, similarly to the attacks
described in Sections 4.3 and 5.3; the TM then aggregates
these messages into either accept(T, sT) or abort(T, sT),
and forwards them to the shards during the second phase
of the protocol.

Theorem 1 shows that Byzcuit detects that they orig-
inate from replayed messages and ignores them. Intu-
itively, the transaction sequence number sT acts as a
monotonically increasing session identifier associated with
the transaction T ; the attacker cannot obtain prerecorded
messages containing a fresh sT . Byzcuit shards can then
distinguish replayed messages (i.e., messages with old sT)
from the messages of the current instance of the protocol
(i.e., messages with fresh sT).

Theorem 1. Under Honest Shard assumption, Byzcuit
ignores accept(T, sT) and abort(T, sT) messages issued
from replayed pre-accept(T, sT) and pre-abort(T, sT).

Proof. Figure 6 shows that once Byzcuit locks objects for
a particular pair (T, sT), the protocol can only progress
toward accept(T, sT) or abort(T, sT); i.e. shards can
either accept or abort the transaction T . The attacker aims
to trick one or more shards to incorrectly accept or abort T
by injecting prerecorded messages during the first phase of
Byzcuit; we show that the attacker fails in every scenario.

Suppose that a transaction T should abort (the TM
outputs abort(T, sT)), but the attacker tries to trick some
shards to accept the transaction. Figure 6 shows that
the attacker can only succeed the attack if they gather
accept(T, sT) containing a fresh transaction sequence
number sT . Lemma 1 states that no attacker can obtain
prerecorded messages over a fresh transaction sequence
number sT ; therefore the only messages available to the

adversary at this point of the protocol are (at most) n− 1
pre-accept(T, sT) and (at most) n abort(T, sT), where
n is the number of concerned shards. This is not enough
to form an accept(T, sT) message with a fresh transac-
tion sequence number sT (which is composed of n pre-
accept(T, sT) messages); therefore the attacker cannot
trick any shard to accept the transaction.

Suppose that a transaction T should be accepted (the
TM outputs accept(T, sT) with a fresh ST), but the
attacker tries to trick some shards to abort the trans-
action. Figure 6 show that Byzcuit does not require a
fresh transaction sequence number sT to abort transactions
(the freshness of sT is only enforced upon accepting
a transaction); but shards locked the input and dummy
objects of the transaction for the pair (T, sT) (with fresh
sT), so the attacker needs to gather abort(T, sT) contain-
ing the same transaction sequence number sT locked by
shards. Lemma 1 shows that the attacker cannot obtain
prerecorded messages over fresh sT ; therefore the only
messages available to the adversary containing the (fresh)
sT locked by shards at this point of the protocol are
n pre-accept(T, sT). This is not enough to form an
abort(T, sT) message (which is composed of at least one
pre-abort(T, sT)); therefore the attacker cannot trick any
shard to abort the transaction.

Security of the second phase of Byzcuit. An attacker
may try to replay accept(T, sT) and abort(T, sT) mes-
sages during the second phase of the protocol, similarly
to the attacks described in Sections 4.4 and 5.4.

Theorem 2 shows that Byzcuit ignores those replayed
messages. Intuitively, these attacks target shards acting
only as output shards (and not also as input shards) and
exploit the fact that they are only involved in the second
phase of the protocol, and therefore have no knowledge
of the transaction context (to determine freshness) that is
available to the input shards. Byzcuit is resilient to these
replay attacks as it is designed in such a way that there are
no shards that act only as output shards; all output shards
are forced to also become input shards, by introducing
dummy objects if they do not manage any input objects;
this prevents the attacks by removing the attack target.

Theorem 2. Under Honest Shard assumption, Byzcuit ig-
nores replayed accept(T, sT) and abort(T, sT) messages.

Proof. Figure 6 shows that shards only act upon ac-
cept(T, sT) and abort(T, sT) messages if they have the
pair (T, sT) saved in their local cache15. Shards save
a pair (T, sT) in their local cache upon emitting pre-
accept(T, sT) or pre-abort(T, sT), and delete it at the
end of the protocol; therefore the only attack win-
dows where the adversary can replay accept(T, sT) and
abort(T, sT) messages is while the transaction T (asso-
ciated with sT) is being processed by the second phase
of the protocol. This forces the attacker to operates under
the same conditions as Theorem 1.

Appendix B shows that Byzcuit guarantees liveness,
consistency and validity, similarly to S-BAC.

15. Contrarily to S-BAC and Atomix, all Byzcuit shards have the pair
(T, sT) in their local cache after as they all participate to the first phase
of the protocol.

Figure 7: The effect of the number of shards on throughput. Each
transaction has 2 input objects and 5 output objects, both chosen ran-
domly from shards.

8. Implementation & Evaluation

We implement a prototype of Byzcuit (Section 7)
in Java and evaluate its performance and scalability.
To analyze the overhead introduced by our replay at-
tack defenses (i.e., with message sequence numbers and
dummy objects), we compare Byzcuit with replay de-
fenses (byzcuit) with the baseline of Byzcuit without
any replay attack defenses (byzcuit-baseline).

Our implementation of Byzcuit is a fork of the
Chainspace code [1], and is released as an open-source
project16. For BFT consensus, we use the BFT-SMART [3]
Java library (based on PBFT [5]), which is one of the very
few maintained open source BFT libraries. End users run
a client to communicate with Byzcuit nodes, which sends
transactions according to the BFT-SMART protocol. The
Byzcuit client also acts as the Transaction Manager (TM)
and is responsible for driving the cross-shard consensus.

We evaluate the performance and scalability of our
Byzcuit implementation through deployments on Ama-
zon EC2 containers. We also compare Byzcuit with
Chainspace to measure performance improvements, by
running our evaluations in a similar setup as Chainspace.
We launch up to 96 instances for shard nodes and 96
instances for clients on t2.medium virtual machines, each
containing 8 GB of RAM on 2 virtual CPUs and running
GNU/Linux Debian 8.1. We use 4 nodes per shard. Each
measured data point corresponds to 10 runs represented
by error bars. The error bars in Figure 7 and Figure 8
show the average and standard deviation, and the error
bars in Figure 9 show the median and the 75th and 25th
percentiles.
Throughput and Scalability. Figure 7 shows the through-
put of Byzcuit (the number of transactions processed
per second, tps) corresponding to an increasing number
of shards. Each transaction has 2 input objects and 5
output objects, chosen randomly from shards. We test
transactions with 5 output objects for a fair evaluation
of Byzcuit’s replay defenses by triggering the creation of
dummy objects (i.e., a large number of output objects and
a small number of input objects implies a higher probabil-
ity of output-only shards getting selected, triggering the

16. https://github.com/sheharbano/byzcuit

Figure 8: Decrease of Byzcuit throughput with the number of dummy
objects. Each transaction has 1 input object, and up to 5 dummy objects
randomly selected from unique non-input shards. 6 shards are used.

Figure 9: Client-perceived latency vs. system load (number of trans-
actions received per second by Byzcuit), for 6 shards with 2 inputs and
5 outputs per transaction (both chosen randomly from shards).

creation of dummy objects). We find that byzcuit has a
throughput of 260 tps for 2 shards, and linearly scales with
the addition of more shards achieving up to 1550 tps for 10
shards. As expected, the throughput of byzcuit is lower
than byzcuit-baseline by a somewhat constant fac-
tor ranging from 20–200 tps, but still increases linearly.
This is expected because the creation of dummy objects in
byzcuit leads to a higher number of shards processing
the same transaction compared to byzcuit-baseline,
leading to lower concurrency and lower throughput.

Another interesting observation is that the design and
implementation optimizations in byzcuit lead to signif-
icantly higher throughput than Chainspace, even though
the former has lower concurrency due to the dummy
objects. For similar experimental setup and for 2–10
shards, Chainspace achieves 70–180 tps, while byzcuit
achieves 260–1550 tps. This is due to the improved de-
sign of the cross-shard consensus protocol (Section 7),
which results in communication complexity of O(n) in
contrast to Chainspace’s O(n2) (where n is the number of
input shards). Another reason for byzcuit’s significant
throughput improvement is that unlike Chainspace, all
interactions between the Transaction Manager and the
shards are asynchronous. This eliminates the blocking
condition in Chainspace where a shard cannot commit a

https://github.com/sheharbano/byzcuit

transaction in the second phase of the cross-shard consen-
sus protocol, until it receives messages from all concerned
shards corresponding to the first phase.
The Effect of Dummy Objects on Throughput. We pre-
viously observed that dummy objects reduce the through-
put of byzcuit with respect to byzcuit-baseline.
Figure 8 shows the extent of throughput degradation due to
dummy objects. We submit specially crafted transactions
to 6 shards, such that each transaction has 1 input object,
and we vary the number of dummy objects from 1–5
selected from unique shards, resulting in a corresponding
decrease in concurrency because as many shards end up
processing the transaction. For example, 2 dummy objects
means that 3 shards process the transaction (1 input shard,
and 2 more shards corresponding to the dummy objects).
As expected, the throughput decreases by 20–250 tps with
the addition of each dummy object, and reaches 750 tps
when all 6 shards handle all transactions.
Client-perceived Latency. Figure 9 shows the client-
perceived latency—the time from when a client submits
a transaction, until it receives a decision from Byzcuit
about whether the transaction has been committed—under
varying system loads (expressed as transactions submitted
to Byzcuit per second). We submit a total of 1200 trans-
actions at 200–1000 transactions per second to Byzcuit
with 6 shards. Each transaction has 2 inputs objects and 5
output objects, both chosen randomly from shards. When
the system is experiencing a load of up to 1000 tps, clients
hear back about their transactions in less than a second
on average, even with our replay attack defenses.

9. Comparison with Mutex-based Cross-
shard Consensus Protocols

Mutex-based schemes for cross-shard transactions,
such as Ethereum’s cross-shard “yanking” proposal [4],
find a way to avoid complex cross-shard coordination
for transactions that involve objects managed by different
shards. The key idea is to require all objects that a
transaction reads or writes to be in the same shard (i.e., all
locks for a transaction are local to the shard). Cross-shard
transactions are enabled by transferring the concerned
objects between shards, effectively giving shards a lock on
those objects. When shard 1 transfers an object to shard
2, shard 1 includes a transfer “receipt” in its blockchain.
A client can then send to shard 2 a Merkle proof of
this receipt being included in shard 1’s blockchain, which
makes the object active in shard 2.

Mutex-based schemes also need to consider replay
attacks. Clients can claim the same receipt multiple times,
unless shards store information about previously claimed
receipts. Naı̈vely, shards have to store information about
all previously claimed receipts permanently. However,
two intermediate options with trade-offs have been pro-
posed [4]:
• Shards only store information about receipts for l

blocks; so clients can only claim receipts within
l blocks, and objects are permanently lost if not
claimed within l blocks.

• Shards only store information about receipts for l
blocks, and include the root of a Merkle tree of
claimed receipts in their blockchain every l blocks.

If a receipt is not claimed within l blocks, the client
must provide one Merkle proof every l blocks that
have passed to show that the receipt has not been
previously claimed, in order to claim it. The longer
the receipt was not claimed, the greater the number
of proofs that are needed to claim a receipt. These
proofs need to be also stored on-chain to allow other
nodes to validate them.

Byzcuit forgoes the need for shards to store information
about old state (such as inactive objects or old receipts)
as shards only need to know the set of active objects
they manage, and does not impose a trade-off between
the amount of information about old state that needs to
be stored and the cost of recovering old state that was
held up in an incomplete cross-shard transaction (i.e., an
unclaimed receipt).

10. Conclusion

We presented the first replay attacks against cross-
shard consensus protocols in sharded distributed ledgers.
These attacks affect both shard-driven and client-driven
consensus protocols, and allow attackers to double-spend
or lock objects with minimal efforts. The attacker can
act independently without colluding with any nodes, and
succeed even if all nodes are honest; most of the attacks
work without making any assumptions on the underlying
network. While addressing these attacks seems like an
implementation detail, their many variants illustrate that a
fundamental re-think of cross-shard commit protocols is
required to protect against them.

We developed Byzcuit, a new cross-shard consen-
sus protocol merging features from shard-led and client-
led consensus protocols, and withstanding replay attacks.
Byzcuit can be seen as unifying Atomix (from Om-
niledger) and S-BAC (from Chainspace), into an O(n)
protocol, that is efficient and secure. We implemented a
prototype of Byzcuit and evaluated it on a real cloud-based
testbed, showing that it is more efficient than Chainspace,
and on par with Omniledger performance. The resulting
protocol is a drop-in replacement for either, and can be
adopted to immunize systems based on those designs.

Acknowledgements

At the time of this work, George Danezis, Shehar
Bano and Alberto Sonnino were supported in part by EP-
SRC Grant EP/N028104/1 and the EU H2020 DECODE
project under grant agreement number 732546 as well as
chainspace.io. Mustafa Al-Bassam is supported by
The Alan Turing Institute. We thank Eleftherios Kokoris-
Kogias for helpful suggestions on early manuscripts. We
appreciate the valuable feedback we received from our
shepherd and the anonymous reviewers.

References

[1] AL-BASSAM, M., SONNINO, A., BANO, S., HRYCYSZYN, D.,
AND DANEZIS, G. Chainspace: A Sharded Smart Contracts Plat-
form. In Proceedings of the Network and Distributed System
Security Symposium (2018).

[2] BANO, S., SONNINO, A., AL-BASSAM, M., AZOUVI, S., MC-
CORRY, P., MEIKLEJOHN, S., AND DANEZIS, G. SoK: Consensus
in the Age of Blockchains. In Proceedings of the ACM Conference
on Advances in Financial Technologies (2019).

[3] BESSANI, A., SOUSA, J. A., AND ALCHIERI, E. E. P. State Ma-
chine Replication for the Masses with BFT-SMART. In Proceed-
ings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (2014).

[4] BUTERIN, V. Cross-Shard Contract Yanking. https://ethresear.ch/
t/cross-shard-contract-yanking/1450, 2018.

[5] CASTRO, M., AND LISKOV, B. Practical Byzantine Fault Toler-
ance. In Proceedings of the Symposium on Operating Systems
Design and Implementation (1999).

[6] DANEZIS, G., AND MEIKLEJOHN, S. Centrally Banked Cryptocur-
rencies. In Proceedings of the Network and Distributed System
Security Symposium (2016).

[7] GRAY, J. Notes on data base operating systems. In Operating
Systems, An Advanced Course (1978).

[8] KOKORIS KOGIAS, E., JOVANOVIC, P. S., GASSER, L., GAILLY,
N., SYTA, E., AND FORD, B. A. Omniledger: A secure, scale-
out, decentralized ledger via sharding. In Proceedings of the IEEE
Symposium on Security and Privacy (2018).

[9] LUU, L., NARAYANAN, V., ZHENG, C., BAWEJA, K., GILBERT,
S., AND SAXENA, P. A secure sharding protocol for open
blockchains. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (2016).

[10] MALKHI, D., AND REITER, M. Byzantine quorum systems.
Distributed computing 11, 4 (1998), 203–213.

[11] NAKAMOTO, S. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, 2008.

[12] ZAMANI, M., MOVAHEDI, M., AND RAYKOVA, M. Rapidchain:
Scaling blockchain via full sharding. In Proceedings of the ACM
SIGSAC Conference on Computer and Communications Security
(2018).

Appendix A.
Eliciting Messages to Replay

This appendix shows how the attacker can act as (or
collude with) a client to actively elicit and record the target
messages to later use in the replay attacks. This empowers
the attacker to actively orchestrate the attacks.

We describe how the attacker can trigger target mes-
sages in the context of an example, without loss of
generality. Lets assume that shard 1 manages objects
x1 (‘active’) and object x̃1 (‘inactive’ or non-existent),
and shard 2 manages object x2 (‘active’); x̃∗ means any
inactive object on the shard, and y∗ means any output
object (i.e., their details do not matter).

A.1. Shard-led Cross-Shard Consensus

We show how the attacker can act as (or collude with)
a client to actively elicit and record the target messages, in
the context of shard-led cross-shard consensus protocols
as illustrated by Section 4. To elicit pre-accept(T) for
a transaction T (x1, x2) → (y∗) (the output y∗ is not
relevant here) from shard 1, the key consideration is to
closely precede the transaction with another transaction
T ′ that: (i) locks the inputs managed by at least one other
shard (in this case x2 on shard 2); and (ii) to ensure that
the preceding transaction T ′ gets ultimately aborted, and
x2 becomes active again. The steps look as follows:
• The attacker submits T ′(x2, x̃∗)→ (y∗) to shard 2.

This locks x2.

• The attacker quickly follows up by submitting
T (x1, x2) → (y∗) to shard 1 and shard 2. Shard
1 generates pre-accept(T), which is the target mes-
sage that the attacker records. Shard 2 generates pre-
abort(T) because x2 is locked by T ′. Consequently,
in the second phase of S-BAC, both shard 1 and
shard 2 end up aborting T .

• T ′ is eventually aborted, making x2 active again.
To elicit pre-abort(T) for a transaction T (x1, x2) →

(y∗) (the output y∗ is not relevant here) from shard 1,
the key consideration is to closely precede the transaction
with another transaction T ′ that locks the input managed
by the shard (in this case x1 on shard 1). The steps look
as follows:
• The attacker submits T ′(x1, x̃∗)→ (y∗) to shard 1.

This locks x1.
• The attacker quickly follows up by submitting
T (x1, x2) → (y∗) to shard 1 and shard 2. Shard 1
generates pre-abort(T) because x1 is locked by T ′,
which is the target message that the attacker records.
Shard 2 generates pre-accept(T). Consequently, in
the second phase of S-BAC, both shard 1 and shard
2 end up aborting T .

• T ′ is eventually aborted, making x1 active again.
To elicit accept(T) used by the attacks described in

Section 4.4, the attacker simply submits transaction T and
observes and records its successful execution. The attacker
has no incentive to record abort(T) messages as these are
ignored by shards (see Table 2).

A.2. Client-led Cross-Shard Consensus

We show how the attacker can act as (or collude with)
a client to actively elicit and record the target messages, in
the context of client-led cross-shard consensus protocols
as illustrated by Section 5.

To elicit pre-accept(T) from shard 1 for a transaction
T (x1, x2)→ (y∗) (the output y∗ is not relevant here) from
shard 1, the key consideration is to closely precede the
transaction with another transaction that: (i) temporarily
spends the inputs managed by at least one other shard
(in this case x2 on shard 2); and (ii) to ensure that
the preceding transaction is ultimately aborted so that x2

becomes active again. The steps look as follows:
• The attacker submits T ′(x2, x̃∗)→ (y∗) to shard 2,

where x̃∗ is managed by a different shard. Shard 2
emits pre-accept(T ′) and marks x2 as inactive.

• The attacker follows up by submitting T (x1, x2) →
(y∗) to shard 1 and shard 2. Shard 1 generates
pre-accept(T), which is the target message that the
attacker records. Shard 2 generates pre-abort(T)
because x2 is inactive.

• The attacker submits abort(T) to shard 1 to reacti-
vate x1, and sends abort(T ′) to shard 2 to reactivate
x2.

For the attacks described in Section 5.4, the attacker
needs to elicit abort(T) and accept(T) from the target
shards. For the former, the attacker can follow the steps
described previously to elicit pre-accept(T) and pre-
abort(T). To elicit accept(T), the attacker simply submits
transaction T and observes and records its successful
execution.

https://ethresear.ch/t/cross-shard-contract-yanking/1450
https://ethresear.ch/t/cross-shard-contract-yanking/1450

Appendix B.
Byzcuit Security & Correctness

We show that Byzcuit guarantees liveness, consistency,
and validity similarly to S-BAC.

Theorem 3. (Liveness [1]) Under Honest Shards as-
sumption, a transaction T that is proposed to at least
one honest concerned node, eventually results in either
being committed or aborted, namely all parties deciding
accept(T, sT) or abort(T, sT). (From Chainspace [1].)

Proof. We rely on the liveness properties of the byzantine
agreement (shards with only f nodes eventually reach
consensus on a sequence), and the broadcast from nodes of
shards to all other nodes of shards, channelled through the
Transaction Manager. Assuming T has been given to an
honest node, it will be sequenced withing an honest shard
BFT sequence, and thus a pre-accept(T, sT) or pre-
abort(T, sT) will be sent from the 2f+1 honest nodes of
this shard, aggregated into accept(T, sT) or abort(T, sT),
and sent to the f + 1 nodes of the other concerned
shards. Upon receiving these messages the honest nodes
from other shards will process the transaction within their
shards, and the BFT will eventually sequence it. Thus the
user will eventually receive a decision from at least f +1
nodes of a shard.

Theorem 4. (Consistency [1]) Under Honest Shards as-
sumption, no two conflicting transactions, namely transac-
tions sharing the same input will be committed. Further-
more, a sequential executions for all transactions exists.
(From Chainspace [1].)

Proof. A transaction is accepted only if some nodes re-
ceive accept(T, sT), which presupposes all shards have
provided enough evidence to conclude pre-accept(T, sT)
for each of them. Two conflicting transaction, sharing an
input, must share a shard of at least 3f + 1 concerned
nodes for the common object—with at most f of them
being malicious. Without loss of generality upon receiving
the pre-accept(T, sT) message for the first transaction,
this shard will sequence it, and the honest nodes will
emit messages for all—and will lock this object until the
two phase protocol concludes. Any subsequent attempt
to pre-accept(T, sT) for a conflicting T ′ will result in a
pre-abort(T, sT) and cannot yield a accept, if all other
shards are honest majority too. After completion of the
first accept(T, sT) the shard removes the object from the
active set, and thus subsequent T ′ would also lead to
pre-abort(T, sT). Thus there is no path in the chain of
possible interleavings of the executions of two conflicting
transactions that leads to them both being committed.

Theorem 5. (Validity [1]) Under Honest Shards assump-
tion, a transaction may only be accepted if it is valid
according to the smart contract (or application) logic.
(From Chainspace [1].)

Proof. A transaction is committed only if some nodes
conclude that accept(T, sT), which presupposes all
shards have provided enough evidence to conclude pre-
accept(T, sT) for each of them. The concerned nodes
include at least one shard per input object for the transac-
tion; for any contract logic represented in the transaction,

at least one of those shards will be managing object
from that contract. Each shard checks the validity rules
for the objects they manage (ensuring they are active)
and the contracts those objects are part of (ensuring the
transaction is valid with respect to the contract logic) in
order to pre-accept(T, sT). Thus if all shards say pre-
accept(T, sT) to conclude that accept(T, sT), all object
have been checked as active, and all the contract calls
within the transaction have been checked by at least one
shard—whose decision is honest due to at most f faulty
nodes. If even a single object is inactive or locked, or a
single trace for a contract fails to check, then the honest
nodes in the shard will emit pre-abort(T, sT), and the
final decision will be abort(T, sT).

	1 Introduction
	2 Background and Related Work
	3 Attack Overview
	4 Shard-led Cross-Shard Consensus
	4.1 Chainspace Overview
	4.2 Message Recording
	4.3 Attacks on the First Phase of S-BAC
	4.4 Attacks on the Second Phase of S-BAC
	4.5 Real-world Impact

	5 Client-led Cross-shard Consensus
	5.1 Omniledger Overview
	5.2 Message Recording
	5.3 Attacks on the First Phase of Atomix
	5.4 Attacks on the Second Phase of Atomix
	5.5 Real-world Impact

	6 Defenses Against Replay Attacks
	7 The Byzcuit Protocol
	7.1 Byzcuit Protocol Design
	7.2 Security against Replay Attacks

	8 Implementation & Evaluation
	9 Comparison with Mutex-based Cross-shard Consensus Protocols
	10 Conclusion
	References
	Appendix A: Eliciting Messages to Replay
	A.1 Shard-led Cross-Shard Consensus
	A.2 Client-led Cross-Shard Consensus

	Appendix B: Byzcuit Security & Correctness

