arXiv:1906.05552v2 [cs.DC] 24 Sep 2019

Mir-BFT: High-Throughput BFT for Blockchains

Chrysoula Stathakopoulou
IBM Research - Zurich

Abstract

This paper presents Mir-BFT (or, simply, Mir), a ro-
bust Byzantine fault-tolerant (BFT) total order broadcast
protocol aimed at maximizing throughput on wide-area
networks (WANSs), targeting permissioned and Proof-of-
Stake permissionless blockchains.

We show that Mir achieves unprecedented throughput
on WANss without sacrificing latency, robustness to ma-
licious behavior, or even performance in clusters. Our
evaluation shows that Mir orders more than 60000 signed
Bitcoin-sized transactions per second on a widely dis-
tributed 100 nodes, 1 Gbps WAN setup, while preventing
a range of attacks including request duplication perfor-
mance attacks.

To achieve this, Mir relies on a novel protocol mech-
anism that allows a set of leaders to propose request
batches independently, in parallel, while rotating the as-
signment of a partitioned request hash space to leaders.
Several optimizations boost Mir throughput even further,
including partial replication through a novel abstraction
we call light total order (LTO) broadcast.

Perhaps most importantly, Mir relies on proven BFT
protocol constructs, which simplifies reasoning about Mir
correctness. Specifically, Mir is a generalization of the
celebrated and scrutinized PBFT protocol. In a nutshell,
Mir follows PBFT “safety-wise”, with changes needed to
accommodate novel features restricted to PBFT liveness.

1 Introduction

Blockchains are decentralized, globally-distributed,
strongly consistent replicated systems that run across net-
works of mutually untrusting nodes. Since the inception
of Bitcoin’s decentralized cash application [45], modern
blockchain systems have evolved the ability to run ar-
bitrary distributed applications (e.g., [4, 13]), with the

Tudor David
IBM Research - Zurich

Marko Vukolié¢
IBM Research - Zurich

promise of supporting entire decentralized economies [1]
and business ecosystems across industries [6].

Byzantine fault-tolerant (BFT) protocols, which tol-
erate arbitrary (Byzantine [38]) behavior of a subset of
nodes, have evolved to be the key technology to power
blockchains and ensure their consistency [26,49]. BFT
protocols relevant to blockchain are consensus and state
machine replication (SMR) protocols (e.g., [23]) or, even
more specifically, total order (TO) broadcast protocols
that establish the basis for SMR [46]. Such BFT protocols
have found their use in replacing (or, less often, comple-
menting) energy-wasting and slow Proof-of-Work (PoW)
consensus protocols used to power early blockchains
including Bitcoin, which process between 7 and 60 trans-
actions per second [30,49].

In general, current BFT protocols do not scale well
with the number of nodes (replicas) and hence do not
perform to the needs of blockchain use cases. State-of-
the-art BFT protocols are either very efficient on small
scales in clusters (e.g., [15,35]) or exhibit modest perfor-
mance on large scales (thousands or more nodes) across
wide area networks (WAN) (e.g., [31]).

However, BFT protocols which exhibit excellent per-
formance on medium-size WAN networks (e.g., up to 100
nodes) remain largely unexplored. We focus on this de-
ployment setting as it is highly relevant to different types
of blockchain networks. On the one hand, permissioned
blockchains, such as Hyperledger Fabric [13], are rarely
deployed on scales above 100 nodes, yet use cases gather-
ing dozens of organizations (e.g,. banks) are very promi-
nent [3]. In such use cases, every organization represents
a separate administrative domain, which defines bound-
aries of trust, and the requirement that each organization
runs (or administers) at least one node is very common.
On the other hand, this setting is also highly relevant in
the context of large scale permissionless blockchains, in

which anyone can participate, that use weighted voting

(based e.g., on Proof-of-Stake (PoS) [20, 33], delegated

PoS (DPoS) [7]), or committee-voting [31], to limit the

number of nodes involved in the critical path of the con-

sensus protocol. With such weighted voting, the number
of (relevant) nodes for PoS/DPoS consensus is typically
in the order of a hundred ([7]) or sometimes even less

(e.g., few dozens of nodes [10]).

This paper fills in the void and presents Mir-BFT (or,
simply, Mir), a novel total order (TO) BFT protocol that
achieves the best throughput to date on public WAN
networks, as confirmed by our measurements up to 100
nodes. Mir achieves this without compromising robust-
ness to failures and malicious attacks, latency or perfor-
mance on small scale and in clusters. The following sum-
marizes the main features of Mir, as well as contributions
of this paper:

e Mir builds on the seminal leader-based PBFT proto-
col [23] by generalizing its “liveness” part. In short,
Mir allows multiple concurrent leaders to propose
batches of requests in parallel, in a sense multiplex-
ing several PBFT instances into a single total order.
In doing so, Mir leverages multiple secure connec-
tions (gRPC) across each pair of nodes, as opposed to
state-of-the-art designs that use a single TCP/TLS con-
nection between a pair of nodes, which is important
in boosting throughput in small deployments of Mir
(e.g., up to 10 nodes). '

e On the protocol level, the seemingly simple idea of
using multiple leaders in parallel raises the issue of
request duplication performance attacks which may be
indistinguishable from normal request re-submissions
needed to address the request censoring attacks by
Byzantine leaders. In short, with up to n leaders, re-
quest duplication attacks may induce an n-fold dupli-
cation of every single request and bring the effective
throughput to its knees, voiding the benefits of using
multiple leaders. As its main novelty in the context
of BFT TO protocols, Mir partitions the request hash
space across replicas, preventing request duplication,
while rotating this partitioning assigment across pro-
tocol configurations/epochs, adressing request censor-
ing.

e While the base (“vanilla”) version of Mir implements
classical TO broadcast and disseminates every request
to every correct node, this guarantee is unneccessarily
strong for some blockchains. To this end, we intro-
duce the concept of a light total order (LTO) broad-
cast, which is identical to TO, except that it provides

!Here, Mir relies on the original PBET UDP-oriented logic to deal
with potential re-ordering that stems from using multiple connections.

partial data availability guaranteeing the delivery of
every request to at least one correct node. Other cor-
rect nodes get and agree on the order of cryptographic
hashes of requests, which is the basis for maintaining
other TO properties. LTO can potentially be used to
boost vanilla Mir throughput in blockchain systems
that separate the execution of applications (smart con-
tracts) from the agreement on the order of transactions
(e.g., Hyperledger Fabric [13]). Mir further uses client
signature verification sharding optimization to offload
CPU, which often becomes a bottleneck in Mir.

e Mir avoids “design-from-scratch”, which is known to
be error-prone for BFT [15]. Mir is a generalization
of the well-scrutinized PBFT protocol ?, which Mir
closely follows “safety-wise” while introducing im-
portant generalizations to PBFT liveness (e.g., leader
election). Restricting changes to PBFT liveness sim-
plifies the reasoning about Mir correctness.

e Finally, we implement Mir in Go and run it with up
to 100 nodes in a WAN, as well as in clusters and
under faults, for different transaction sizes, comparing
it to state of the art BFT protocols. We also evaluate
the impact of multiple optimizations we propose. Our
results show that Mir drastically outperforms state of
the art, ordering more than 60000 signed Bitcoin-sized
tps on a scale of 100 nodes on a WAN, with typical
latencies of 1-2 sec.

To put this into perspective, Mir’s 60000+ tps on 100
nodes on WAN are enough to 3x multiplex the advertised
peak throughputs of the top 20 blockchain networks per
market cap (less than 20k tps in total [8] for more than
$260B USD total market capitalization). It is 2.5x the al-
leged peak capacity of VISA (24k tps [8]) and more than
30x faster than the actual average VISA transaction rate
(about 2k tps [49]). We expect that such a performance
will open the door for new blockchain use cases.

The rest of the paper is organized as follows. In Sec-
tion 2, we define system model and in Section 3 we
briefly present PBFT (for completeness). In Section 4,
we give an overview of Mir and changes it introduces to
PBFT. We then explain Mir implementation details in
Section 5. We present Mir optimizations, including LTO,
in Section 6. Section 7 gives evaluation details. Finally,
Section 8 discusses related work. Mir correctness argu-
ments are postponed to Appendix A, while discussion
of less novel protocol details (including state transfer,
reconfiguration and durability) is in Appendix B.

ZMir variants based on other BFT protocols can be derived as well.

Client

primary fails

primary i E
(view 0) |

'. Node 0
AN %M kM"/ kY < -
LN e, o 7 S U e
RN VAR \5 N+ Node 5

REQUEST! PRE- @ PREPARE | COMMIT ﬁ VIEW- VIEW- ' NEW-VIEW | ReqUEST PRE-
' PREPA| CHANGE CHANGE- PREPARE

Validate requests Commit requests

ACK

Figure 1: PBFT communication pattern and messages. Bottleneck messages are shown in bold.

2 System Model

We assume an eventually synchronous network [27] in
which the communication among correct processes can
be fully asynchronous before some time GST', unknown
to nodes, after which it is assumed to be synchronous.
Processes are split into a set of n nodes (the set of all
nodes is denoted by Nodes) and a set of clients. We
assume a public key infrastructure in which processes are
identified by their public keys; we further assume node
identities are lexicographically ordered and mapped by
a bijection to the set [0...n — 1] which we use to reason
about node identities. At any point in time, at most f
nodes can simultaneously be Byzantine faulty (i.e., crash
or deviate from the protocol in an arbitrary way), such
that n > 3 f 4+ 1. Any number of clients can be Byzantine.

We assume an adversary that can control Byzantine
faulty nodes but cannot break the cryptographic prim-
itives we use, such as PKI and cryptographic hashes.
H(data) denotes a cryptographic hash of data, while
datag, denotes data signed by process p (client or node).
Processes communicate through authenticated point-to-
point channels (our implementation uses gRPC [5]).

Nodes implement a BFT total order (atomic) broad-
cast service to clients. To broadcast request r, a client
invokes BCAST(r), with nodes eventually outputting
DELIVER(sn, r), such that the following properties hold:

P1 Validity: If a correct node delivers r then some client
broadcasted r.

P2 Total Order: If two correct nodes deliver requests
and 7’ with sequence number sn, then r = 7.

P3 No duplication: If a correct node delivers request r
with sequence numbers sn and sn’, then sn = sn’.

P4 Liveness: If a correct client broadcasts request r, then
every correct node eventually delivers r.

3 Crash Course on PBFT

We depict the PBFT communication pattern in Figure |.
PBFT proceeds in rounds called views which are led by
the primary. The primary sequences and proposes client’s
request in a PRE-PREPARE message — on WANSs this
step is typically a network bottleneck. Upon reception of
the PRE-PREPARE, other nodes validate the request,
which involves, at least, verifying the authenticity of a
client’s request (we say a node pre-prepares the request).
This is followed by two rounds of all-to-all communica-
tion (PREPARE and COMMIT messages), which are
not bottlenecks as they leverage n links in parallel and
contain metadata (request hash) only. A node prepares
a request and sends a COMMIT message if it gets a
PREPARE message from a quorum (2 + 1 nodes) that
matches a PRE-PREPARE. Finally, nodes commit the
request in total order, if they get a quorum of matching
COMMIT messages.

The primary is changed only if it is faulty or if asyn-
chrony breaks the availability of a quorum. In this case,
nodes timeout and initiate a view-change. View-change
involves a communication among nodes in which the
information about the latest pre-prepared and prepared
requests is exchanged, such that the new primary, which
is selected in round robin fashion, must re-propose a
potentially committed request under the same sequence
number within a NEW-VIEW message (see [23] for de-
tails). The view-change pattern can be simplified using
signatures [22].

After the primary is changed, the system enters the
new view and common-case operation resumes. PBFT
complements this main common-case/view-change pro-
tocols with checkpointing (log and state compaction) and
state transfer subprotocols [23].

Protocol PBFT [23] Mir

Client request authentication vector of MACs (1 for each node) signatures
Batching no (or, 1 request per “batch”) yes
Multiple-batches in parallel yes (watermarks) yes (watermarks)
Round structure/naming views epochs

Round-change responsibility

view primary (round-robin across all nodes)

epoch primary (round-robin across all nodes)

No. of per-round leaders 1 (view primary)

many (from 1 to n epoch leaders)

No. of batches per round unbounded bounded (ephemeral epochs); unbounded (stable epochs)
Round leader selection primary is the only leader primary decides on epoch leaders (subject to constraints)
Request duplication prevention | enforced by the primary hash space partitioning across epoch leaders (rotating)
Internode transport UDP multiple gRPC connections between every pair of nodes

Table 1: High level overview of the original PBFT [23] vs. Mir protocol structure.

4 Mir Overview

Mir is based on PBFT [23] (Sec. 3) — major differences
are summarized in Table 1. In this section we elaborate
on these differences, giving a high-level overview of Mir.

Request Authentication. While PBFT authenticates
clients’ requests with a vector of MACs, Mir uses sig-
natures for request authentication as most blockchains
do (e.g., to prevent any number of colluding nodes from
spending client’s assets), as well as to avoid concerns
associated with “big-MAC” attacks related to the MAC
authenticators PBFT uses [24]. This change is hence re-
quired for robustness, however, it hampers throughput,
as per-request verification of clients’ signatures requires
more CPU than that of MACs.

Batching and Watermarks. Mir processes requests
in batches, a standard throughput improvement of PBFT
(see e.g., [15,35]). However, it also retains request/batch
watermarks, used by PBFT to boost throughput. In PBFT,
request watermarks, low and high, represent the range
of request sequence numbers which the primary/leader
can propose concurrently. While many successor BFT
protocols eliminated watermarks in favor of batching
(e.g, [15,17,35]), Mir reuses watermarks to facilitate
concurrent proposals of batches by multiple leaders.

Protocol Round Structure. Mir proceeds in epochs
which correspond to views in PBFT. Like PBFT views,
each epoch has the primary, which is a node determin-
istically defined by the epoch number, by round-robin
rotation across all the participating nodes of the protocol.

Each epoch e has a set of epoch leaders (denoted
by EL(e)), which we define as nodes that can propose
batches in a given epoch (in contrast, in PBFT only the
primary is the leader). Within an epoch, Mir determinis-
tically partitions batch sequence numbers across epoch

leaders, such that all leaders can propose their batches
simultaneously, without conflicts.

Unlike in PBFT, some epochs have limited duration
in terms of the maximum number of batches that can be
ordered in an epoch. Such epochs are called ephemeral.
An ephemeral epoch that orders the maximum number of
batches transitions to the next epoch via gracious epoch-
change protocol, which is a much more lightweight re-
configuration protocol compared to PBFT view change.

We call an epoch stable, i.e., with no bound on number
of batches it can order, if and only if the number of epoch
leaders is greater or equal to the configuration parameter
StableLeaders. In this paper, we set StableLeaders = n
(i.e., a stable epoch has all nodes as leaders), and config-
ure Mir to start from a stable epoch. From a stable epoch,
Mir moves to the next epoch only in case of failures or
asynchrony (we talk about ungracious epoch-change).

Selecting Epoch Leaders. In this paper, we use a
very simple approach to selecting the set of epoch lead-
ers.’ Namely, the epoch e primary chooses and reliably
broadcasts the set of epoch leaders EL(e) to all nodes,
subject to the following constraints: 1) if e starts gra-
ciously, the leader set does not reduce in size compared
to previous epoch e — 1 and it grows if the primary be-
lieves that more than |EL(e — 1)| nodes are correct and
|EL(e — 1)| < StableLeaders, 2) if e starts ungraciously,
the leader set reduces in size (if it contained more than
one leader), and 3) the primary is always in the leader
set. In our evaluation, we used the policy in which the
leader set grows and reduces in size by exactly one node,
although different policies are easy to implement.

Request Duplication and Request Censoring Attacks.
Moving from the single-leader PBFT to the multi-leader

3More elaborate leader set choices, which are outside the scope
of this paper, can take into account execution history, fault patterns,
weighted voting, distributed randomness, or blockchain stake.

Mir poses the challenge of request duplication. Namely, a
simplistic approach to multiple leaders would be to allow
any leader to add any request into a batch (as done in
e.g., [25,36,43]), either in the common case, or in the case
of client request retransmission. The simplistic approach,
combined with a client sending a request to exactly one
node, allows no duplication with good throughput only
in the best case, i.e., with no Byzantine clients/leaders
and with no asynchrony.

However, this approach is not robust [24] outside the
best case, in particular with Byzantine clients sending
identical request to multiple nodes, performing the re-
quest duplication performance attack. Moreover, a client
cannot be naively declared as Byzantine and blacklisted
if it sends a request to multiple nodes. Indeed, as Byzan-
tine leaders can drop requests selectively (we talk about
request censoring), a client needs to send the request to at
least f + 1 nodes (i.e., to O(n) nodes, when n =31+ 1)
in the worst case in any BFT protocol.4 Therefore, a
simplistic approach to parallel request processing with
multiple leaders [25,36,43] faces attacks that can reduce
throughput by factor of O(n), nullifying the effects of
using multiple leaders. We demonstrate the effects of
these attacks in Section 7.3.

To cope with these attacks, Mir partitions the request
hash space into buckets which are then assigned to
leaders (preventing request duplication) and rotates the
bucket assignment across ephemeral epochs and within
stable epochs (addressing request censoring).

Buckets and Request Partitioning. Mir partitions the
hash space into m * n non-intersecting buckets of (approx-
imately) equal size, where m is a configuration parame-
ter. Each leader of epoch e is assigned at least L%j
buckets; in case of remaining buckets, the primary and
subsequent epoch leaders per lexicographic order, are
assigned 1 additional bucket each.

At any point in time, a leader can include in its batch
only requests from its active buckets. Figure 2 illustrates
the mapping of requests to (active) buckets in a stable

epoch withn =4 (m=1).

Rotating Active Bucket Assignment. In a stable
epoch (see details in Sec. 5.3), leaders periodically (i.e.,
after a number of ordered batches) rotate the assignment
of buckets, such that leader i gets assigned active buckets
that previously were active at leader i + 1, per modulo
n arithmetics. This is also illustrated in Figure 2, for

4Incentives, e. g., transaction fees [45, 50], could help with request
censoring in case of a rational adversary [11], potentially simplifying
Mir. Here, we focus on the more challenging (“irrational”’) adversary.

' rotation ;

Req1

node 4 -

Figure 2: Request mapping in a stable epoch withn = 4:
Solid lines represent the active buckets. Hash(Req. 1) is
mapped to the first bucket, active in node 1. Hash(Req. 2)
is mapped to the third bucket, active in node 3. Rotation
shifts bucket assignment across leaders.

n = 4. A similar active bucket rotation is done across
ephemeral epochs (Sec. 5.4.1). For simplicity, and since
ephemeral epochs are short-lived, the active bucket as-
signment within an ephemeral epoch is fixed.

Parallelism. The Mir implementation (detailed in
Sec. 5.0) is highly parallelized, with every worker thread
responsible for one batch. In addition, Mir uses multi-
ple gRPC connections among each pair of nodes which
proves to be critical in boosting throughput in a WAN
especially with a small number of nodes.

Generalization of PBFT and Emulation of Other
BFT Protocols. Mir reduces to PBFT by setting
StableLeaders = 1. This makes every epoch stable, hides
bucket rotation (primary is the single leader) and makes
every epoch change ungracious. Mir can also approxi-
mate protocols such as Tendermint [19] and Spinning
[48] by setting StableLeaders > 1, and fixing the max-
imum number of batches and leaders in every epoch to
1, making every epoch an ephemeral epoch and rotating
leader/primary with every batch.

S Mir Implementation Details

5.1 The Client

Upon BCAST(0), broadcasting operation o, client ¢ cre-
ates a message (REQUEST, 0,1,c¢)s,. The message in-
cludes the client’s timestamp #, a monotonically increas-
ing sequence number, that must be in a sliding window
between the low and high client watermark t,, <t <t.,.
Client watermarks in Mir allow multiple requests origi-
nating from the same client to be “in-flight”, while allow-

ing them to be processed by different leaders in parallel.
The low and high watermarks of the client’s timestamp
sliding window are periodically advanced with the check-
point mechanism described in Section 5.5.

In this section, we assume that the client sends the
REQUEST to all nodes. We however implemented a
lightweight heuristic allowing clients to submit requests
to a single node, estimating the right leader based on the
load a client sends and on the bucket rotation period.

5.2 Common-case operation

Within an epoch e, the leadership in proposing batches is
partitioned across epoch leaders. Epoch primary proposes
the first batch in the epoch; after that, the leaders take
turn in leading batches in a deterministic, lexicographic
order. We say that a leader leads batch By, when the
leader is assigned broadcasting a PRE-PREPARE for
the batch with sequence number sn. Batches are proposed
in parallel by all epoch leaders and are processed like in
PBFT. Recall that batch watermarking allows the PBFT
primary to propose multiple batches in parallel; in Mir,
we simply extend this to multiple leaders (see Fig. 3).

o v v R
4 f% Esx el [ass

node 0

node 1

node 2

node 3

Figure 3: PRE-PREPARE sending in Mir stable epoch:
All nodes are epoch leaders, balancing the proposal load.

In epoch 0, we assign buckets to leaders sequentially,
starting from the buckets with the lowest hash values
which we assign to primary 0, and so on. When e >
0, the primary picks a set of consecutive buckets for
itself, starting from the bucket which contains the oldest
request it received; this is key to ensuring Liveness (P4,
Sec. 2). The other leaders are then deterministically and
sequentially assigned the following buckets.

With such an assignment, the protocol proceeds as
follows. Upon receiving (REQUEST, 0,t,¢)s, from a
client, an epoch leader first verifies that the request times-
tamp is in the client’s current window ¢, <t <tc, and
maps the request to the respective bucket by hashing the
request payload along with the client timestamp and iden-
tifier i, = H(o|[t||c). If the request falls into the leader’s

active bucket, the leader also verifies the client’s signa-
ture on REQUEST. Malformed signatures result in a
node locally blacklisting the client for a period of time.

The request is discarded if %, is already in the logs of
the node, either because it has already been preprepared
or because it is already pending in a bucket.

Each bucket is implemented as a FIFO queue. Once
enough requests are gathered in the current active bucket
of the leader, or if timer T, expires (since the last batch
was proposed by i), leader i adds the requests from the
current active bucket in a batch, assigns to the batch its
next available sequence number sn (provided sz is within
batch watermarks) and sends a PRE-PREPARE mes-
sage. If Tpq o, time has elapsed and no requests are avail-
able, leader i broadcasts a special PRE-PREPARE mes-
sage with an empty batch. This guarantees the progress
of the protocol with low load.

Each node j accepts a PRE-PREPARE (we say
preprepares the batch and the requests it contains), with
sequence number sn for epoch e from leader i provided
that: (1) the epoch number matches the local epoch num-
ber and j did not preprepare another batch with the same
e and sn, (2) node i is in the EL(e) set, (3) leader i
leads sn, (4) the sequence number sn of the batch in the
PRE-PREPARE is between a low watermark and high
watermark: w < sn < W, (5) every request in the batch
has a timestamp within the current client’s watermarks,
(6) none of the requests in the batch have already been
preprepared, (7) each request in the batch belongs to one
of i’s active buckets, and (8) every request in the batch
was submitted by a client authorized to write and the
request signature is valid.

Condition (8) effectively enforces access control,
which helps protect against flooding denial-of-service
(DoS) and helps ensure Validity (Property P1, Sec. 2).
As this step may reveal to be a CPU bottleneck in Mir if
performed by all nodes (e.g., in a case where all nodes
need to perform a relatively expensive cryptographic task
such as signature verification per transaction), we use
signature sharding as an optimization (see Sec. 6.2).

If validation succeeds, node j then sends a PREPARE
and the protocol proceeds exactly as PBFT. Upon com-
mitting a batch with sequence number k from leader i,
node j removes from its buckets any request that is al-
ready in batch k.

5.3 Active bucket rotation (stable epoch)

Mir introduces a bucket rotation mechanism to prevent
request censoring, as we motivated in Section 4.
Bucket rotation in stable epoch relies on leader-to-

leader bucket handover, which works as follows. Every
BR(e) batches (a configuration parameter), leaders rotate
the assignment of buckets, such that leader i gets assigned
buckets previously led by leader i 4+ 1 (in modulo » arith-
metics). To prevent request duplication, leader i waits to
commit locally all batches pertaining to buckets i gets
assigned to (in particular those lead by i + 1), before start-
ing proposing own batches. Other nodes also do the same
before they pre-prepare batches in these buckets that are
proposed by i.

Referring to the example shown in Figure 2, withn =4
and 4 buckets in total, after BR(e) batches, node 0 gets
assigned the red bucket (which was assigned to node 1),
yet node O starts proposing batches only after it locally
commits all batches pertaining to the red bucket that were
previously committed — informally, node 1 hands over
the red bucket to node 0.

5.4 Epoch-change

Mir distinguishes two variants of epoch-change, gracious
and ungracious epoch change.

5.4.1 Gracious epoch-change

A gracious epoch change occurs when the protocol de-
livers the maximal number of batches in an ephemeral
epoch. Its goal is to implement a lightweight mechanism
for potentially growing the set of leaders towards a stable
epoch, and to implement a variant of the bucket rotation
to ensure Liveness across ephemeral epochs.

After the primary of ephemeral epoch e + 1
(EpPrimary(e+ 1)) delivers all batches in an ephemeral
epoch e (or, as an optimization, shortly before),
EpPrimary(e+ 1) reliably broadcast the configuration
of epoch e + 1. To this end, we use the classical 3-phase
Bracha reliable broadcast [18].

The epoch configuration information, which the pri-
mary reliably broadcasts, contains: 1) the set of epoch
leaders for the new epoch, 2) identifiers of buckets that
the primary picked for itself, derived from the oldest
requests pending at the primary. Recall that, if e ends
graciously, the leader set cannot reduce in size and it
grows if the primary of epoch e+ 1 believes that more
than |EL(e)| nodes are correct. In this case, the primary
proposes min(StableLeaders, EL(e) + 1) nodes, chosen
by the primary. In case the primary of epoch e+ 1 esti-
mates that no more than |[EL(e)| nodes are correct, it is
allowed to maintain the same set of leaders as in the pre-
vious epoch — this avoids frequent oscillations between
gracious and ungracious epoch changes, e.g.,in case few
nodes are crash-faulty.

Finally, similar to bucket handover (Sec. 5.3), leader
i in epoch e + 1 starts proposing batches, as soon as it
delivers all batches from e from nodes that were assigned
the buckets now assigned to i.

5.4.2 Ungracious epoch-change

Ungracious epoch-changes in Mir are caused by epoch
timeouts due to asynchrony or failures and generalize
PBFT view-changes. Similar to PBFT, after delivering
batch sn in epoch e, a node resets and triggers an epoch-
change timer ecTimer. Mir supports adaptive timeouts.
To set ecTimer, a node locally estimates the average
commit rate and sets the timeout proportional to the me-
dian commit time of a batch. If an ecTimer expires, a
node enters the epoch-change subprotocol to move from
epoch e to epoch e + 1. In this case, a node sends an
EPOCH-CHANGE message to the primary of epoch
e+ 1. EPOCH-CHANGE message follows the structure
of PBFT VIEW-CHANGE message (page 411, [23])
with the difference that it is signed and that there are
no VIEW-CHANGE-ACK messages exchanged (to
streamline and simplify the implementation similarly
to [21]). The construction of the NEW-EPOCH message
then proceeds in the same way as the PBFT construction
of the NEW-VIEW message.

Before triggering the PBFT-inherited processing of
NEW-EPOCH message, nodes wait to reliably deliver
configuration information pertaining to the new epoch,
which the primary reliably broadcasts, just like in gra-
cious epoch change (Sec. 5.4.1). The difference is that
in an ungracious epoch change the epoch primary must
select a smaller number of epoch leaders than in the pre-
vious epoch. Concretely, in the configuration for new
epoch e, the epoch primary picks the number of leaders
in the last epoch ¢’ for which it has the configuration, and
proposes at most max(1,|EL(¢') — e+ €| leaders. Note
that the epoch primary must always be in the epoch leader
set.

Finally, to counter the possibility of losing requests
due to an epoch change, a node resurrects potentially pre-
prepared but uncommitted requests from previous views
that are not reflected in the NEW-EPOCH message. In-
deed, when an epoch change occurs, not all batches that
were created and potentially preprepared before this event
are delivered when installing the new epoch. To prevent
the requests in these batches from being lost (due to con-
dition (6) in pre-preparing a batch — Sec. 5.2), before
resuming normal operation after an ungracious epoch
change, each correct node ensures that (1) the requests
in such batches are returned to node’s pending buck-
ets, and (2) these requests are removed from the logs of

the node where they were marked as preprepared. Thus,
these requests are ready to be proposed again. Together
with the requirement that clients ensure that a correct
replica eventually receives their request, this guarantees
Liveness (P4), i.e., that client requests are eventually de-
livered, even in the face of view changes.

5.5 Checkpointing (Garbage Collection)

Similarly to PBFT, Mir uses a checkpoint mechanism
to prune the message logs. After each node i has
delivered a batch with sequence number snc divisi-
ble by configuration parameter C (which means that
all batches with sequence numbers lower than snc
have been locally committed at i) node i broadcasts
a (CHECKPOINT, snc, H(sn())o;, where sn. the last
checkpoint and H (sn.) is the hash digest of the batches
with sequence numbers sz in range sn’c <sn < snc. Each
node collects checkpoint messages until it has 2f + 1,
including its own, and persists a checkpoint certificate.
At this point, the checkpoint is stable and the node can
discard the common-case messages from its log for se-
quence numbers lower than sn.

Mir advances batch watermarks at checkpoints like
PBFT does. Clients’ watermarks are also possibly ad-
vanced at checkpoints, as the state related to previously
delivered requests is discarded. For each client c, the low
watermark 7., advances to the highest timestamp # in a re-
quest submitted by c that has been delivered, such that all
requests with timestamp ¢’ < have also been delivered.
The high watermark advances to t.,, = w, +1,, where
w, the length of the sliding window.

Note that node i does not discard the validated requests
that are pending in the bucket queues. These are removed
from the pending queue either when it proposes the re-
quest in a PRE-PREPARE message or when the request
is committed, as explained in section 5.2.

5.6 Implementation Architecture

We implemented Mir in Go. Our implementation is
multi-threaded and inspired by consensus-oriented par-
allelism (COP) architecture previously applied to PBFT
to maximize its throughput on multicore machines [16].
Specifically, in our implementation, a separate thread
is dedicated to managing each batch during the com-
mon case operation, which simplifies Mir code structure
and helps maximize performance. We further parallelize
computation-intensive tasks whenever possible (e.g., sig-
nature verifications, hash computations). The only com-
munication in common case between Mir threads per-
tains to request duplication prevention — the shared data

structures for duplication prevention are hash tables, with
per-bucket locks; instances that handle requests corre-
sponding to different leaders do not access the same
buckets. The only exception to the multi-threaded op-
eration of Mir is during an ungracious epoch-change,
where a designated thread (Mir Manager) is responsible
for stopping worker common-case threads and taking
the protocol from one epoch to the next. This manager
thread is also responsible for sequential batch delivery
and for checkpointing, which however does not block the
common-case threads managing batches.

Our implementation also parallelizes network access.
We use a configurable number of independent network
connections between each pair of servers, which results
in several gRPC connections between each pair of servers
(the number of gRPC connections between a pair of
servers is, however, considerably smaller than the number
of Mir threads). This proves to be critical in boosting Mir
performance beyond seeming bandwidth limitations in a
WAN that stem from using a single TCP/TLS connection.
In addition to multiple internode connections, we use an
independent connection for handling client requests. As
a result, the receipt of requests is independent of the rest
of the protocol — we can safely continue to receive client
requests even if the protocol is undergoing an epoch
change. Our implementation can hence seamlessly use,
where possible, separate NICs for client’s requests and
intranode communication to address DoS attacks [24].

Finally, cleaning-up duplication prevention-related
data structures at checkpoint is a relatively expensive
operation; yet because the watermark distance is larger
than the checkpoint period, BFT instances can still pro-
ceed even when handling a checkpoint — therefore, this
does not significantly affect throughput.

6 Optimizations

6.1 Lightweight Total Order (LTO)

When the system is network-bound (e.g., with large re-
quests and/or on a WAN) the maximum throughput is
driven by the amount of data each leader can broadcast in
a PRE-PREPARE message. However, data, i.e., request
payload, is not critical for total order, as the nodes can
establish total order on request hashes. While in many
blockchains all nodes need data [2,4], in some others [13],
ordering is separated from request execution and full
replication across ordering nodes is an overkill.

For such blockchains, Mir optionally boosts through-
put using what we call Light Total Order (LTO) broadcast.
LTO is defined in the same way as TO broadcast (Sec. 2)

except that LTO requires property P4 to hold for hash

of the request H(r) instead for request r and adds the

following property:

P5 Partial Replication: If a correct client broadcasts
request r, then at least one correct node eventually
delivers r.

LTO optimization for Mir modifies the protocol as
follows. Each leader broadcasts a full PRE-PREPARE
message only to a set of f+ 1 Replicas (a leader is al-
ways in Replicas of its own batch). To the rest of the
nodes, let us call them Observers, the leader broadcasts
a lightweight PRE-PREPARE message which contains
only metadata about the requests. This metadata contains:
(a) the hash of the request (b) the identifier of the client
who submitted the request and (c) the request timestamp.
The request hash is necessary so that each node can re-
move committed requests from their pending queues.
The client identifier and request timestamp are necessary
to guarantee that all nodes advance the watermarks per
client in consistently.

Upon receiving a PRE-PREPARE (Sec. 5.2),
Observers must only verify: (a) condition (1): the epoch
number of the batch is correct and no other batch has
been proposed in the same epoch with the same sequence
number and (b) condition (6) to guarantee no duplica-
tion. Conditions (2)-(5) and (7)-(8) ensure that the batch
is valid and it is sufficient that one correct node has veri-
fied them. Such a correct verifier will always exist among
the set of 2 f + 1 senders of the PREPARE messages that
each node expects before sending a COMMIT message.

Besides LTO, we also evaluated (Sec. 7) highly avail-
able LTO (haLTO) variant of Mir, with partial replication
to 2f + 1 nodes, making data available at at least f + 1
correct nodes.

6.2 Signature Verification Sharding

As the Mir multi-leader approach addresses network bot-
tlenecks, it often exposes a CPU bottleneck due to rel-
atively costly client signature verification. To offload
CPU, we enable the signature verification sharding opti-
mization. In short, in a stable epoch we require that the
signatures in each batch are verified by only f 4 1 nodes
instead of requiring each node to perform a signature
verification, while in a ephemeral epoch, the number of
verifiers is 2f + 1.

In detail, let Verifiers(sn,e) be the set of nodes that
are responsible for verifying the transaction signatures of
the batch with sequence number sn in epoch e. The leader
that proposes the batch is always in Verifiers(sn,e). For
the other nodes in Verifiers(sn,e) we use a partitioning

mechanism similar to the one we introduced for partition-
ing requests into buckets. Each batch is hashed to a value
and the value is mapped to a VerificationBucket. How-
ever, unlike with request sharding, where each bucket is
assigned to exactly one leader, each VerificationBucket
is assigned to £+ 1 (resp., 2f 4 1) nodes in a stable (resp.,
ephemeral) epoch.

A node i upon receiving (PRE-PREPARE,sn,e)
verifies the clients’ signatures in a batch if i €
Verifiers(sn,e) before broadcasting (PREPARE, sn, ¢).
Otherwise, if i ¢ Verifiers(sn,e), node i will check
only conditions (1)-(7) (see section 5.2). Each
node j broadcasts (COMMIT,sn,e) upon receiving
(PRE-PREPARE,sn,¢). In a stable epoch, a node
waits for (PREPARE, sn,e) from all f+ 1 nodes in
Verifiers(sn,e) and f more PREPARE messages.

7 Evaluation

In this section, we report on experiments we conducted
in scope of Mir performance evaluation. Our evaluation
aims at answering the following questions: (1) how does
Mir scale on a WAN? (2) how does Mir perform in clus-
ters? (3) what is the impact of Mir optimizations? (4)
what is the impact of duplication prevention mechanism?
and (5) how does Mir perform under faults and perfor-
mance attacks?

Batch size 2 MB

Cut batch timeout 500 ms (n < 49), 1s(n =49), 2s(n = 100)

Max batches ephemeral epoch 256 (n <16), 16%n (n > 16)

Bucket rotation period 128 (resp., 256 for large payload) (n < 16),
16xn (n > 16)

Buckets per leader (m) 2

Checkpoint period 128

‘Watermark window size 256

Parallel gRPC connections S5(n=4),3(n=10), 1 (n>10)

Epoch-change timeout 20's

Table 2: Mir configuration parameters used in evaluation

Experimental setup. Our evaluation consists of mi-
crobenchmarks of 2 request payload sizes: (1) small, 500
byte requests, which correspond to average Bitcoin tx
size [9], and (2) large, 3500 byte requests, typical in Hy-
perledger Fabric [13].

We compare Mir to a state-of-the-art PBFT implemen-
tation optimized for multi-cores [16]. For fair compar-
ison, we use the Mir codebase tuned to closely follow
the PBFT implementation of [16] hardened to implement
Aardvark [24]. As another baseline, we compare the com-
mon case performance of Chain, an optimistic subpro-
tocol of the Aliph BFT protocol [15] with linear mes-

=)

S

'

Mir-5000 ——
PBFT-500b —8—
Chain-500b —e—
Honeybadger-250b ——

S

peak_throyghput,[thoysands, tps (Ktps)L,
o o o 3 '8

—f]

o »h o &« o &n o

peak throughput [thousands §ps (Ktps)].

Mir-3500b ——
PBFT-35000 —%—
Chain-3500b —¥—

K
*

*

)

20 80 100

40 60
number of nodes

(a) small payload (500 bytes, except Honeybadger - 250 bytes)

o
)

40 60 100
number of nodes

(b) large payload (3500 bytes)

Figure 4: WAN scalability experiment.

140 —40
3 K—H—K ¥ £3 §_3
g 5
20 Mir —— <
a PBFT —¢— 3
300 Chain —%— S0 K %
° ChainSigs —5— ©
3 +— + P e—a g
580 — 2 —a a
o Q.
£ =20
gEO =
2 . o | 2
£ £
340 2
g go ir ——
s s PB’\é!I[——
20
= N Chain —k—
g 0 g ChainSigs —Q—_

o

20 40

60 100
number of nodes

(a) 500 byte payload

o

20 40 80 100

60
number of nodes

(b) 3500 byte payload

Figure 5: Throughput performance of Mir compared to Chain and PBFT in a single datacenter.

sage complexity, which is known to be near throughput-
optimal in clusters, although it is not robust and needs to
be abandoned in case of faults [15]. PBFT and Chain are
always given best possible setups, i.e., PBFT leader is
always placed in a node that has most effective band-
width and Chain spans the path with the smallest la-
tency. We also compare with Honeybadger [42] using
the open source implementation’ which was also used
in the performance evaluation in [42]. We only com-
pare Honeybadger with Mir for small requests, since
the default payload in the open source implementation
is fixed to 250 byte requests. We do not compare to
other protocols because they are either unavailable (e.g.,
Hashgraph [36], Red Belly [25]), unmaintained (BFT-
Mencius [43]), faithfully approximated by PBFT (e.g.,
BFT-SMaRt [17], Spinning [48], Tendermint [7], Hot-
Stuff [51]), or report considerably worse performance
than Mir (e.g., Algorand [31]).

We use VMs on a leading cloud provider, with 32 x 2.0
GHz VCPUs and 32GB RAM, equipped with 1Gbps net-
working and limited to that value for experiment repeata-
bility, due to non-uniform bandwidth overprovisioning

Shttps://github.com/initc3/HoneyBadgerBFT-Python

10

we sometimes experienced. Table 2 shows Mir configu-
ration parameters we used. Unless mentioned differently,
Mir uses LTO and signature sharding optimizations.

7.1 Common-case experiments

Scalability on WANs. To evaluate Mir scalability, we
ran it with up to n = 100 nodes on a WAN setup which
spans 16 distinct datacenters across the world (beyond
n = 16, we collocate nodes across already used data-
centers). Figure 4 depicts the common-case stable epoch
performance of Mir, compared to that of PBFT and Chain
(for both small and large requests) and Honeybadger (for
small requests).

Client requests are generated by increasing the client
instances and request rate per client instance until the
throughput is saturated and we report the throughput just
below saturation. Client machines are also uniformly
distributed across the 16 datacenters. The client instances
estimate which node i has an active bucket for each of
their requests and broadcast each request to nodes i —
1,---,i+k, where k < f — 1, so at most to f + 1 nodes.

We observe that PBFT throughput decays rapidly, fol-

https://github.com/initc3/HoneyBadgerBFT-Python

lowing an O(1/n) function and scales very poorly. Chain
scales better and even improves with up to n = 16 nodes,
sustaining 20k (resp., 3k) tps for small (resp., large) re-
quests, but is limited by the bandwidth of the thinner net-
work connection. Compared to Honeybadger, Mir retains
much higher throughput, even though: (i) Honeybadger
request size is smaller (250 bytes vs 500 bytes), and
(i) Honeybadger batches are significantly larger (up to
500K requests in our evaluation). This is due to the fact
that Honeybadger is computationally bound by O(n?)
threshold signatures verification and on top of that the
verification of the signatures is done sequentially. Honey-
badger’s throughput also suffers from request duplication
(on average 1/3 duplicate requests per batch), since the
nodes choose the requests they add in their batches at
random. Moreover, we report on Honeybadger latency,
which is in the order of minutes (partly due to the large
number of requests per batch and partly due to heavy
computation), significantly higher than that of Mir. In our
evaluation we could not increase the batch size as much
as in the evaluation in [42], especially with increasing
the number of nodes beyond 16, due to memory exhaus-
tion issues. Finally, in our evaluation PBFT outperforms
Honeybadger (unlike in [42]), as our implementation of
PBFT leverages the parallelism of Mir codebase.

Mir dominates other protocols delivering 56.4k (resp.,
28.3k) tps with small (resp., large) requests with n =4
nodes which peaks at 66.3k tps at n = 33 nodes for small
and 36.5k tps at n = 16 nodes for large requests, due
to more effective payload and signature sharding as the
number of nodes increases. With n = 100, Mir maintains
more than 60k tps for small transactions, as for this pay-
load size CPU is the main bottleneck at 100 nodes. For
large requests, where network bandwidth is the bottle-
neck, throughput reduces to 16.3k with 100 nodes, a drop
which we attribute in part to the heterogeneity of VMs
across datacenters (despite the identical specifications)
and most importantly to the non-uniform partition of the
available uplink bandwidth. Nevertheless, Mir delivers
the best performance of all protocols to date with 100
nodes on a WAN, even compared to very optimistic pro-
tocols such as Chain.

Performance in a single datacenter. Figure 5 depicts
fault-free performance in a single datacenter with up to
n = 100 nodes. For small requests, Chain dominates Mir
delivering roughly 1.6x the peak throughput (130k tps vs
83k tps). This difference is due to signature verification
in Mir (Chain uses vectors of MACs to authenticate a
request to f + 1 replicas). Indeed, as soon as we add
clients’ signatures to Chain (ChainSigs in Fig. 5), Chain’s

11

throughput drops below that of Mir. Mir maintains more
than 80k tps throughput for small requests, significantly
outperforming PBFT. For large requests Mir delivers
28.9k tps on n = 100 nodes, as in a cluster the uplink
bandwidth is more uniformly distributed.

Impact of optimizations and bucket rotation. In this
experiment (see Fig. 6) we fix n = 16 and run detailed
fault-free latency-throughput experiments on a WAN for
Mir and its variants. We also show the performance of
Chain and PBFT as a reference. Nodes are distributed
over 16 distinct datacenters across the world.

Mir robust bucket rotation (Sec. 5.3, “Mir (vanilla)”
in Fig. 0) saturates at roughly 42.8k (resp., 21.1k) tps
for small (resp., large) requests, an approximate over-
head of 3.9% (resp., 4.8%) compared to an idealized non-
robust vanilla Mir (“Mir-NoRotation”) which involves
no bucket rotation. This is more than compensated by
Mir optimizations (Sec. 6). With signature sharding and
LTO (“Mir-LTO”), Mir achieves a peak throughput of
36.7k tps for large transactions (delivering 1Gbps good-
put), while with highly available LTO (“Mir-halL.TO”)
Mir achieves 26.3k tps. For small transactions, LTO does
not considerably improve performance at this scale be-
cause bandwidth is not the bottleneck (hence not shown),
but signature sharding boosts Mir up to 62.9Kk tps.

All variants of Mir maintain roughly Is (low load) to
2s (high load) end-to-end latency. PBFT latency is lower
at 600-800 ms, yet PBFT saturates under very low load
in Mir terms.

7.2 Impact of duplication prevention

In this section we examine the impact of duplicate trans-
actions to goodput, i.e., throughput of unique transactions.
In Fig. 7 we compare the performance of Mir (vanilla),
to a version of the protocol where the leaders do not par-
tition requests in buckets, but rather add in batches all
their available requests (similarly to Hashgraph [36] and
Red Belly [25]). We examine the impact of duplicates
in an optimistic scenario, where the clients submit their
transactions to only f + 1 nodes, as well as in a scenario
where the clients sent their requests to all. The impact is a
heavy penalty of 65% and 85%, respectively, for Bitcoin
size requests and is similar for large requests.

7.3 Performance under faults

Performance under standard crash faults. We now
describe the behavior of Mir when leader crashes occur.

-
=)

10 Mir-NoRotation —@—) Mir-NoRotation ——
ﬂ) Mir (vanilla) —¢— 9 Mir (vanilla) —>¢—
Mir-SigShard —¥— Mir-halLTO —8—
8 Chain —l— 8 Mir-LTO —i— 1
PBFT —6— s Chain —6— |
_ _ PBFT —e—
Z6f “ 6 1
2 26 ¢
2 2 st
g g
54t S al
3
2+ 2+
Wt
0Cl 10000 20000 30000 40000 50000 60000 7000C 00 5000 10000 15000 20000 25000 30000 35000 40000 45000
Throughput [tps] Throughput [tps]
(a) 500 byte payload (b) 3500 byte payload
Figure 6: Impact of bucket rotation and Mir optimizations on a WAN with n=16 nodes.
8 drops to 0 due to actual faults, see Sec. 5.4.2) last in the
7 order of epoch change timeouts.
6
ZS
>
24 Resistance to request censoring (Byzantine leaders).
LH In this experiment we emulated Byzantine behavior by
2 having an increasing number (from 0 to f = 5) of Byzan-
Mir (vanilla) —¢— 1 1 1 1 -
N M (no duplication prevention) - oot 0 -] tine leaders dropping .(censorlng) requests, in a depl.oy
Mir (no duplication prevention) - client to all —5— ment of n = 16 nodes in our WAN setup. The Byzantine

0 5000 10000 15000 20000 25000

Goodput [tps]

30000 35000 40000 4500C
Figure 7: The impact of duplication prevention on 16

nodes on WAN for 500B requests.

Figure 8 presents the evolution of throughput as a func-
tion of time when one and two leaders fail simultaneously.
We run this experiment in a WAN setting with 16 nodes,
and trigger a view change if an expected batch is not
delivered within 20 seconds. When there is one leader
failure, a view change is triggered and the system imme-
diately transitions to a configuration with 15 leaders, and
a virtually optimal throughput. When two failures occur
simultaneously, the first view changes takes the system
to a configuration with 15 leaders. The first few batches
are delivered in this configuration, but, since one of the
15 leaders has failed, a second view change is triggered
that takes the system to a configuration with 14 leaders,
from which execution can continue. In this scenario, the
figure also depicts the evolution of the leader set in case
the failed nodes return online: within three epochs, the
system is in a stable state with 16 leaders again.

We can observe that gracious epoch changes are seam-
less in Mir (these occur from second 141 onwards in the
experiment with 2 faults, and are described in Sec. 5.4.1),
whereas ungracious epoch changes (when throughput

12

nodes drop 20% of the transactions they receive. Fig. 9
shows that mean latency remains below 2.2s (resp., 2.7s)
when clients submit to 3f 41 (resp., f 4 1) nodes, while
tail latencies (99th percentile) remain below 11s (resp.,
12). The trade-off in throughput, as discussed in Sec. 0,
due to bucket rotation is minimal.

Resistance to delays (Byzantine leaders). A com-
mon performance attack discussed in BFT literature is
when Byzantine leaders reduce the throughput by de-
laying proposing batches marginally less than the view-
change timeout [24]. Rotating leader protocols partially
address this, since the Byzantine nodes can delay batches
only once over n rounds. Similarly, in Mir each leader is
responsible only for a fraction of the requests, reducing
vulnerability to this attack.

Adaptive timeouts (Sec. 5.4.2) allow Mir to detect fast
such Byzantine leaders and remove them from the lead-
erset. A Byzantine node can delay the protocol only once
every n epochs, at which point it becomes epoch primary
and adds itself back to the leaderset. With non-adaptive,
conservative, timeouts (30s), for 3500B requests, we eval-
uate that Mir throughput drops from 20k tps to 10k tps,
while with adaptive timeouts throughput drops to 14k tps.
The performance can be further improved by increasing
epoch length with a trade-off on increasing tail latencies.

1 leader failure

2 simultaneous leader failures

— 50000 16 15 16 |15, 14 | 14 | 14 | 15 | 16

2 leaders leaders leaders ldrs) leaders| leaders | leaders | leaders | leaders

X 40000 l I I

= I I I I

g oo : | pecon K

g 20000 ades ! leader | faulty ! back to

£ 10000 k. iire q / failur | leaders | , stable

= 0 | A&~ Suspecied I return | I epoch
0 50 100 150 200 250 O 100 200 300 400 500 600

Time (seconds)

Time (seconds)

Figure 8: Performance under crash faults.

99%

99%
mean

mean

- client to f+1 ——
- client to all -8—
- client to f+1 —©—
- client to all —l—

2 3
number of byzantine leaders

Figure 9: Mean and tail latencies (99%) for increasing
number of Byzantine leaders that drop 20% of their trans-
actions.

8 Related Work

The seminal PBFT [23] protocol started intensive
research on practically feasible BFT protocols.
Performance-wise, PBFT has a single-leader bottleneck
and does not scale with the number of nodes. Mir
generalizes PBFT and removes this bottleneck with
a multi-leader approach enforcing a robust request
duplication prevention. Request duplication elimination
is simple in PBFT and other single-leader protocols,
which require the leader to enforce it.

Aardvark [24] was the one the first BFT protocols,
along with [12, 14, 48], to point out the importance of
BFT protocol robustness, i.e., sustainable liveness in pres-
ence of active denial of service and performance attacks.
In practice, Aardvark is a hardened PBFT protocol, and
uses clients’ signatures, regular periodic view-changes
(rotating primary) and resource isolation using separate
NICs for separating client-node from node-node traffic.
Mir implements all of these and is robust in Aardvark
sense. Beyond Aardvark-like features, Mir is the first
protocol that combines robustness with multiple lead-

13

ers, preventing request duplication performance attacks,
paving the way for Mir’s excellent performance.

The first replication protocol to point out the impor-
tance of multiple leaders was Mencius [40] in the context
of crash-failures. Mencius is a Paxos-style [37] protocol
which leverages multiple leaders to reduce the latency
of replication on WANS, the approach which was later
followed by other crash-tolerant protocols (e.g., EPaxos
[44]). The approach was extended to the BFT context
by BFT-Mencius [43]. Mencius and BFT-Mencius are
geared towards optimizing latency and shard clients’ re-
quests by mapping a client to a closest node. However,
as a node can censor the request, a client is forced, in
the worst case, to re-transmit the request to other nodes
which creates a vulnerability to request duplication at-
tacks which BFT-Mencius does not handle. Mir, instead,
maps clients’ requests to buckets which are then assigned
to nodes, not unlike consistent hashing [32]. Mir further
rotates bucket assignment in time to enforce robustness
to request duplication. Unlike Mencius, EPaxos and BFT-
Mencius, Mir does not optimize for latency, paying a
small price as it does not assign clients to the closest
nodes — however, our experiments show that this impact
is acceptable, in particular given that the blockchain is
not the most latency-sensitive application.

Recent BFT protocols, proposed in the blockchain con-
text [25, 36], that exhibit multi-leader flavor, also do not
address request duplication. Furthermore, unlike Mir,
these proposals invent new BFT protocols from scratch
which is a highly error-prone and tedious process [15].
In contrast, Mir follows an evolutionary rather then rev-
olutionary design approach to a multi-leader protocol,
building upon proven PBFT/Aardvark algorithmic and
systems’ constructs, which considerably simplifies the
reasoning about Mir correctness.

HotStuff [51] is a BFT protocol which requires linear
numbers of messages both during normal case operation
and during view change. However, as we observed in

this work, at the scale targeted by Mir, message complex-
ity is not an issue in practice. As a trade-off for linear
message complexity, normal case operation in HotStuff
requires an additional phase of communication. Addi-
tionally, HotStuff uses a pipelined design with rotating
leaders, leading to a slight improvement in throughput
when compared to PBFT. Nevertheless, HotStuff does
not escape the fundamental downside of PBFT we ad-
dress in this paper, i.e., sequential (albeit from different
leaders) broadcasts of proposals, and therefore follows a
similar, infavorable scalability trend as PBFT.

Optimistic BFT protocols [15,35] have been showed to
be very efficient on a small-scale in clusters. In particular
Aliph [15], is a combination of Chain crash-tolerant repli-
cation [47] ported to BFT and backed by PBFT/Aardvark
outside the optimistic case, in which all nodes are correct.
We demonstrated that Mir holds its ground with BFT
Chain in clusters and it considerably outperforms it in
WAN:S. Nevertheless, Mir remains compatible with the
modular approach to building the optimistic BFT pro-
tocols of [15], where Mir can be used as a robust and
high-performance backup protocol. Zyzzyva [35] is an
optimistic leader-based protocol that optimizes for la-
tency. While we opted to implement Mir based on PBFT,
Mir variants based on Zyzzyva latency-efficient commu-
nication pattern are conceivable with our approach.

Eventually synchronous BFT protocols, to which Mir
belongs, circumvent the FLP consensus impossibility
result [29] by assuming eventual synchrony. These proto-
cols, Mir included, guarantee safety despite asynchrony
but rely on eventual synchrony to provide liveness. Al-
ternatively, probabilistic BFT protocols such as Honey-
badger [42] provide both safety and liveness (except with
negligible probability) in purely asynchronous networks.
By comparing Honeybadger and Mir, we showed that
this comes as a tradeoff, as Mir significantly outperforms
Honeybadger, even though both protocols target the same
deployment setting (up to 100 nodes in a WAN).

As blockchains brought an arms-race to BFT pro-
tocol scalability [49], many proposals focus on large,
Bitcoin-like scale, with thousands or tens of thousands
of nodes [28,31]. In particular, Algorand [31] is a recent
BFT protocol that deals with BFT agreement in popula-
tions of thousands of nodes, by relying on a verifiable
random function to select a committee in the order of
hundred(s) of node. Algorand then runs a smaller scale
agreement protocol inside a committee. We foresee Mir
being a candidate for this “in-committee” protocol inside
a system such as Algorand as well as in other blockchains
that effectively restrict voting to a smaller group of nodes,
as is the case in e.g., Proof of Stake proposals [20]. In

14

addition, Mir is particularly interesting to permissioned
blockchains, such as Hyperledger Fabric [13]. Stellar [41]
uses SCP, a Byzantine agreement protocol which uses
assymetric quorums and trust assumptions targetting pay-
ment networks, at similar scales as Mir. However, assym-
metric quorums weaken both the trust assumptions and
the liveness guarantees of traditional BFT protocols. In
this paper, we show it is possible to obtain high through-
put and low latencies while maintaining the strong guar-
antees of BFT protocols with symmetric quorums.
Finally, another class of protocols [34, 39] partition
transaction verification into independent shards. Mir is
complementary to such protocols, as they either require
ordering within a shard, or total ordering of the shards.
The committees that perform this ordering are similar
in size to the ones targeted by Mir. Additionally, shard-
ing protocols either require knowledge of the application
to ensure conflicting transactions cannot belong to dif-
ferent shards [34], or conflicts among already verified
transactions need to be detected at ordering [39].

References
[1] Algorand. http://www.algorand.com.

[2] Bitcoin. http://bitcoin.org.

[3] The Corda Platform.
corda-platform/.

https://www.r3.com/

[4] Ethereum. http://ethereum.org.

[5]1 gRPC. http://grpc.io.

[6] Hyperledger. http://www.hyperledger.org.
[7] Tendermint. http://tendermint.com.

[8] Daily hodl: Cryptocurrency transaction speeds:
The complete review. https://dailyhodl.com/
2018/04/27/cryptocurrency-transaction-
speeds-the-complete-review/, 2018.

[9]

Bitcoin visuals: Transaction sizes. https://
bitcoinvisuals.com/chain-tx-size, 2019.

[10] EOS Canada: What is the role of a block pro-
ducer? https://www.eoscanada.com/en/what-

is-the-role-of-a-block-producer, 2019.

[11] A.S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J.-
P. Martin, and C. Porth. Bar fault tolerance for
cooperative services. SIGOPS Oper. Syst. Rev.,

39(5):45-58, Oct. 2005.

http://www.algorand.com
http://bitcoin.org
https://www.r3.com/corda-platform/
https://www.r3.com/corda-platform/
http://ethereum.org
http://grpc.io
http://www.hyperledger.org
http://tendermint.com
https://dailyhodl.com/2018/04/27/cryptocurrency-transaction-speeds-the-complete-review/
https://dailyhodl.com/2018/04/27/cryptocurrency-transaction-speeds-the-complete-review/
https://dailyhodl.com/2018/04/27/cryptocurrency-transaction-speeds-the-complete-review/
https://bitcoinvisuals.com/chain-tx-size
https://bitcoinvisuals.com/chain-tx-size
https://www.eoscanada.com/en/what-is-the-role-of-a-block-producer
https://www.eoscanada.com/en/what-is-the-role-of-a-block-producer

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Y. Amir, Y. Amir, B. Coan, J. Kirsch, and J. Lane.
Byzantine replication under attack. In Proceed-

ings of the Conference on Dependable Systems and
Networks (DSN), 2008.

E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. D. Caro, D. Enyeart, C. Fer-
ris, G. Laventman, Y. Manevich, S. Muralidharan,
C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith,
A. Sorniotti, C. Stathakopoulou, M. Vukolic, S. W.
Cocco, and J. Yellick. Hyperledger fabric: a
distributed operating system for permissioned
blockchains. In Proceedings of the Thirteenth Eu-
roSys Conference, EuroSys 2018, Porto, Portugal,
April 23-26, 2018, pages 30:1-30:15, 2018.

P. Aublin, S. B. Mokhtar, and V. Quéma. RBFT: re-
dundant Byzantine fault tolerance. In /[EEE 33rd In-
ternational Conference on Distributed Computing
Systems, ICDCS 2013, 8-11 July, 2013, Philadel-
phia, Pennsylvania, USA, pages 297-306, 2013.

P.-L. Aublin, R. Guerraoui, N. Knezevi¢, V. Quéma,
and M. Vukolié. The next 700 BFT protocols. ACM
Trans. Comput. Syst., 32(4):12:1-12:45, Jan. 2015.

J. Behl, T. Distler, and R. Kapitza. Consensus-
oriented parallelization: How to earn your first mil-
lion. In Proceedings of the 16th Annual Middleware
Conference, Vancouver, BC, Canada, December 07
- 11, 2015, pages 173-184, 2015.

A. N. Bessani, J. Sousa, and E. A. P. Alchieri.
State machine replication for the masses with BFT-
SMART. In International Conference on Depend-
able Systems and Networks (DSN), pages 355-362,
2014.

G. Bracha and S. Toueg. Asynchronous consen-
sus and broadcast protocols. J. ACM, 32:824-840,
October 1985.

E. Buchman. Tendermint: Byzantine fault tolerance
in the age of blockchains. M.Sc. Thesis, University
of Guelph, Canada, June 2016.

V. Buterin and V. Griffith. Casper the friendly final-
ity gadget. CoRR, abs/1710.09437, 2017.

M. Castro and B. Liskov. Authenticated Byzan-
tine fault tolerance without public-key cryptogra-
phy. Technical Report MIT/LCS/TM-589, MIT
Laboratory for Computer Science, 1999.

M. Castro and B. Liskov. Practical byzantine fault
tolerance. In Proceedings of the Third Sympo-
sium on Operating Systems Design and Implemen-

15

(23]

[24]

[25]

(26]

(27]

(28]

[29]

(30]

(31]

tation, OSDI 99, pages 173—186, Berkeley, CA,
USA, 1999. USENIX Association.

M. Castro and B. Liskov. Practical Byzantine fault
tolerance and proactive recovery. ACM Trans. Com-
put. Syst., 20(4):398-461, Nov. 2002.

A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and
M. Marchetti. Making byzantine fault tolerant sys-
tems tolerate byzantine faults. In Proceedings of
the 6th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2009, pages 153—
168, 2009.

T. Crain, C. Natoli, and V. Gramoli. Evaluating
the Red Belly blockchain. CoRR, abs/1812.11747,
2018.

K. Croman, C. Decker, I. Eyal, A. E. Gencer,
A. Juels, A. E. Kosba, A. Miller, P. Saxena, E. Shi,
E. G. Sirer, D. Song, and R. Wattenhofer. On scal-
ing decentralized blockchains - (A position paper).
In Financial Cryptography and Data Security - FC
2016 International Workshops, BITCOIN, VOTING,
and WAHC, Christ Church, Barbados, February
26, 2016, Revised Selected Papers, pages 106—125,
2016.

C. Dwork, N. Lynch, and L. Stockmeyer. Consen-
sus in the presence of partial synchrony. J. ACM,
35(2):288-323, Apr. 1988.

I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse.
Bitcoin-ng: A scalable blockchain protocol. In /3th
USENIX Symposium on Networked Systems Design
and Implementation (NSDI 16), pages 45-59, Santa
Clara, CA, 2016.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Im-
possibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374-382, Apr.
1985.

A. Gervais, G. O. Karame, K. Wiist, V. Glykantzis,
H. Ritzdorf, and S. Capkun. On the security and
performance of proof of work blockchains. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna,
Austria, October 24-28, 2016, pages 3—16, 2016.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and
N. Zeldovich. Algorand: Scaling Byzantine agree-
ments for cryptocurrencies. In Proceedings of the
26th Symposium on Operating Systems Principles,
pages 51-68. ACM, 2017.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

D. Karger, E. Lehman, T. Leighton, R. Panigrahy,
M. Levine, and D. Lewin. Consistent hashing and
random trees: Distributed caching protocols for re-
lieving hot spots on the world wide web. In Pro-
ceedings of the Twenty-ninth Annual ACM Sympo-
sium on Theory of Computing, STOC ’97, pages
654-663, 1997.

A. Kiayias, A. Russell, B. David, and R. Oliynykov.
Ouroboros: A provably secure proof-of-stake
blockchain protocol. In J. Katz and H. Shacham,
editors, Advances in Cryptology — CRYPTO 2017,
pages 357-388, Cham, 2017. Springer International
Publishing.

E. Kokoris-Kogias, P. Jovanovic, L. Gasser,
N. Gailly, E. Syta, and B. Ford. Omniledger: A
secure, scale-out, decentralized ledger via sharding.
In 2018 IEEE Symposium on Security and Privacy,
SP 2018, Proceedings, 21-23 May 2018, San Fran-
cisco, California, USA, pages 583-598, 2018.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and
E. Wong. Zyzzyva: speculative Byzantine fault
tolerance. In Proceedings of the Symposium on
Operating Systems Principles (SOSP). ACM, 2007.

L. Baird. The Swirlds Hashgraph consen-
sus algorithm: Fair, fast, Byzantine fault toler-
ance. https://www.swirlds.com/downloads/
SWIRLDS-TR-2016-01.pdf, 2016.

L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16:133—-169, May 1998.

L. Lamport, R. Shostak, and M. Pease. The Byzan-
tine generals problem. ACM Trans. Program. Lang.
Syst., 4:382-401, July 1982.

L. Luu, V. Narayanan, C. Zheng, K. Baweja,
S. Gilbert, and P. Saxena. A secure sharding pro-
tocol for open blockchains. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October
24-28, 2016, pages 17-30, 2016.

Y. Mao, F. P. Junqueira, and K. Marzullo. Men-
cius: Building efficient replicated state machines
for wans. In Proceedings of the 8th USENIX Con-
ference on Operating Systems Design and Imple-
mentation, OSDI’08, pages 369-384, Berkeley, CA,
USA, 2008. USENIX Association.

D. Maziéres. The Stellar consensus proto-
col: A federated model for internet-level con-
sensus. https://www.stellar.org/papers/stellar-
consensus-protocol.pdf, November 2015.

16

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

A. Miller, Y. Xia, K. Croman, E. Shi, and D. Song.
The honey badger of BFT protocols. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, Oc-
tober 24-28, 2016, pages 31-42, 2016.

Z. Milosevic, M. Biely, and A. Schiper. Bounded de-
lay in byzantine-tolerant state machine replication.
In IEEE 32nd Symposium on Reliable Distributed
Systems, SRDS 2013, Braga, Portugal, 1-3 October
2013, pages 61-70, 2013.

I. Moraru, D. G. Andersen, and M. Kaminsky.
There is more consensus in egalitarian parliaments.
In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP *13,
pages 358-372, New York, NY, USA, 2013. ACM.

S. Nakamoto. Bitcoin: A peer-to-peer electronic
cash system.

F. B. Schneider. Implementing fault-tolerant ser-
vices using the state machine approach: A tutorial.
ACM Comput. Surv., 22(4):299-319, 1990.

R. van Renesse and F. B. Schneider. Chain replica-
tion for supporting high throughput and availability.
In Proceedings of the Symposium on Operating Sys-
tems Design and Implementation (OSDI), 2004.

G. S. Veronese, M. Correia, A. N. Bessani, and
L. C. Lung. Spin one’s wheels? Byzantine Fault
Tolerance with a spinning primary. In Proceedings
of International Symposium on Reliable Distributed
Systems (SRDS). IEEE Computer Society, 2009.

M. Vukolié. The quest for scalable blockchain fab-
ric: Proof-of-work vs. BFT replication. In Infer-
national Workshop on Open Problems in Network
Security (iNetSec), pages 112—125, 2015.

G. Wood. Ethereum: A secure decentralised gener-
alised transaction ledger. http://gavwood.com/
paper.pdf, 2016.

M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta,
and I. Abraham. Hotstuff: BFT consensus with
linearity and responsiveness. In Proceedings of the
2019 ACM Symposium on Principles of Distributed
Computing, PODC 2019, Toronto, ON, Canada,
July 29 - August 2, 2019., pages 347-356, 2019.

https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
https://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

A Correctness Arguments

In this section we sketch Mir correctness arguments, fo-
cusing on TO properties, as defined in Section 2, dis-
cussing also the impact of optimizations (Sec. 0).

Validity (P1) relies on clients’ signatures which Mir
uses to authenticate the requests. Without signature shard-
ing, every signature is verified by at least 2f + 1 nodes,
out of which f 4 1 are correct. With signature sharding,
clients’ signatures are verified by at least f + 1 nodes, out
of which at least one is correct — guaranteeing Validity.

Agreement (P2) is best shown by contradiction and re-
duction to PBFT Agreement, which we outline here. Sup-
pose that Agreement does not hold in Mir; in this case,
because of the Mir structure which generalizes PBFT,
there exists an execution of PBFT similar to that of Mir,
in which: 1) all requests proposed in a Mir epoch are
proposed in the respective PBFT view by the primary,
2) every gracious epoch change in Mir is replaced by
view-change in PBFT due to timeouts, and 3) there is an
Agreement violation in PBFT. A contradiction.

No-duplication (P3) stems from the way Mir pre-
vents duplicate pre-prepares (rule (6) in accepting PRE-
PREPARE, Sec/ 5.2). The exception to this rule, in form
of batch/request resurrection during ungracious epoch
change (Sec. 5.4.2), does not impact P3, as only requests
from uncommitted batches as resurrected.

Liveness (P4) can be shown by contradiction as fol-
lows. Assume a correct client sends a request to all nodes,
which is received by at least one correct node i. Fix req
to be the oldest request received by i for which liveness is
broken. Consider time after GST'. It is easy to show that
in Mir, either (1) i becomes an epoch primary infinitely
often, or (2) there is the last epoch e, a stable epoch that
runs infinitely long. In case (1), let e be an epoch in which
req is the oldest request pending at node i and i is the
primary (such an epoch exists due to the choice of req
and the resurrection of uncommitted but pre-prepared
requests (Sec. 5.4.2)). In case (2), i gets to be the leader
infinitely often in e including being the leader of a bucket
req belongs to. In both cases, req gets proposed by i and
is committed (system runs after GST'), a contradiction.

Signature sharding (Sec. 6.2) optimization does not
compromise Validity/Agreement. In case of a stable
epoch, we expect all the nodes to be alive, since all nodes
are in EL set. Therefore, we expect that all f + 1 PRE-
PREPARE messages from nodes that verify siggnatures
will arrive. If they do not, the batch timer will expire and
Mir enters an ephemeral epoch. In case of an ephemeral
epoch, 2f + 1 nodes will verify every client’s request. As

17

the set of 2f + 1 nodes that sent PRE-PREPARE and

PREPARE messages intersect with the set of verifiers in
at least f + 1 nodes in an ephemeral epoch, at least one

of these will be a correct node.

Similarly, it is easy to see that LTO optimization
(Sec. 6.1) yields Liveness (P4) on hashes and ensures
Partial Replication (P5, Sec. 6.1) on request payloads.

B State Transfer, Reconfiguration and
Durability

B.1 State transfer

Nodes can temporarily become unavailable, either due
to asynchrony, or due to transient failures. Upon recov-
ery/reconnection, replicas must obtain several pieces of
information before being able to actively participate in
the protocol again. To achieve this, replicas need to ob-
tain current epoch configuration information, the latest
stable checkpoint (which occurred at the round having
sequence h), as well as information concerning proposals
having sequence numbers between /24 1 and the current
round n.

The state must, in particular, contain two pieces of
information: (1) the current epoch configuration, which
is necessary to determine the leaders from which the
replica should accept proposals, and (2) client timestamps
at the latest checkpoint, which are necessary to prevent
including client requests that have already been proposed
in future batches.

A reconnecting replica i obtains this information by
broadcasting a (HELLO, ne;, c;,b;) message, where ne; is
the latest NEW-EPOCH message received by the replica,
c; is the replica’s last stable checkpoint, and b; is the last
batch i delivered. Upon receipt of a HELLO message,
another replica j replies with its own HELLO message,
as well as with any missing state from the last stable
checkpoint and up to the current round 7.

We perform further optimizations in order to reduce
the amount of data that needs to be exchanged in case
of a reconnection. First, upon reconnecting, replicas an-
nounce their presence but wait for the next stable check-
point after reconnection before actively participating in
the protocol again. This enables us to avoid transferring
the entire state related to requests following the preced-
ing stable checkpoint. Second, the amount of data related
to client timestamps that needs to be transmitted can be
reduced through only exchanging the root of the Merkle
tree containing the client timestamps, with the precise
timestamps being fetched on a per-need basis.

B.2 Membership reconfiguration

While details of membership reconfiguration are out-
side of the scope of this paper, we briefly describe how
Mir deals with adding/removing clients and nodes. Such
requests, called configuration requests are totally or-
dered like other requests, but are tagged to be inter-
pretable/executed by nodes (hence they are not subject
to the LTO optimization, Sec. 6.1). As Mir processes
requests out of order (just like PBFT), configuration re-
quests cannot be executed right after committing a re-
quest as the timing of commitment might diverge across
nodes resulting in non-determinism. Instead, configura-
tion requests are taken into account only at checkpoints
and more specifically all configuration requests ordered
between checkpoints k — 1 and k, take effect only after
checkpoint k+ 1.

B.3 Durability (persisting state)

By default, Mir implementation does not persist state or
message logs to stable storage. Hence, a node that crashes

18

might recover in a compromised state — however such
a node does not participate in the protocol until the next
stable checkpoint which effectively restores the correct
state. While we opted for this approach assuming that
for few dozens of nodes simultaneous faults of up to a
third of them will be rare, for small number of nodes the
probability of such faults grows and with some probabil-
ity might exceed threshold f. Therefore, we optionally
persist state pertaining to sent messages in Mir, which is
sufficient for a node to recover to a correct state after a
crash.

We also evaluated the impact of durability with 4
nodes, in a LAN setting, where it is mostly relevant due
to small number of nodes and potentially collocated fail-
ures, using small transactions. We find that durability has
no impact on total throughput, mainly due to the fact
that persisted messages are amortized due to batching,
Mir parallel architecture and the computation-intensive
workload. However, average request latency increases by
roughly 300ms.

	1 Introduction
	2 System Model
	3 Crash Course on PBFT
	4 Mir Overview
	5 Mir Implementation Details
	5.1 The Client
	5.2 Common-case operation
	5.3 Active bucket rotation (stable epoch)
	5.4 Epoch-change
	5.4.1 Gracious epoch-change
	5.4.2 Ungracious epoch-change

	5.5 Checkpointing (Garbage Collection)
	5.6 Implementation Architecture

	6 Optimizations
	6.1 Lightweight Total Order (LTO)
	6.2 Signature Verification Sharding

	7 Evaluation
	7.1 Common-case experiments
	7.2 Impact of duplication prevention
	7.3 Performance under faults

	8 Related Work
	A Correctness Arguments
	B State Transfer, Reconfiguration and Durability
	B.1 State transfer
	B.2 Membership reconfiguration
	B.3 Durability (persisting state)

