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Abstract

Client puzzles are meant to act as a defense against denial of service (DoS) attacks by
requiring a client to solve some moderately hard problem before being granted access to a
resource. However, recent client puzzle difficulty definitions (Stebila and Ustaoglu, 2009; Chen
et al., 2009) do not ensure that solving n puzzles is n times harder than solving one puzzle.
Motivated by examples of puzzles where this is the case, we present stronger definitions of difficulty
for client puzzles that are meaningful in the context of adversaries with more computational
power than required to solve a single puzzle.

A protocol using strong client puzzles may still not be secure against DoS attacks if the puzzles
are not used in a secure manner. We describe a security model for analyzing the DoS resistance
of any protocol in the context of client puzzles and give a generic technique for combining any
protocol with a strong client puzzle to obtain a DoS-resistant protocol.

Keywords: client puzzles, proof of work, denial of service resistance, protocols

1 Introduction

Availability of services is an important security property in a network setting. Denial of service
(DoS) attacks aim to disrupt the availability of servers and prevent legitimate transactions from
taking place. One type of DoS attack is resource depletion: an attacker makes many requests
trying to exhaust the server’s resources, such as memory or computational power, leaving the server
unavailable to service legitimate requests.

Client puzzles, also called proofs of work, can counter resource depletion DoS attacks. Before a
server is willing to perform some expensive operation, it demands that the client commit some of its
own resources by solving a puzzle. The puzzle should be moderately hard to solve – not as hard as
a large factoring problem, for example, but perhaps requiring a few seconds of CPU time. Provided
client puzzles are easy for a server to generate and verify, this creates an asymmetry between the
amount of work done by a client and the work done by a server.

Although many client puzzle constructions have been proposed, there has been less work in
rigourously defining good client puzzles or defining DoS resistance of protocols. The first model for
client puzzles was proposed by Jakobsson and Juels [JJ99]. More recently, Stebila and Ustaoglu
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[SU09] described a security model for the DoS resistance of key exchange protocols, and Chen et al.
[CMSW09a] proposed a formalization of client puzzles and puzzle difficulty, using a game between
a single challenger and a single adversary.

1.1 Contributions and Outline

In this work, we motivate and present stronger notions of security for client puzzles and DoS
resistance of protocols and provide several examples satisfying these new definitions.

An Attack on Previous Difficulty Definitions. The main motivation for our stronger notion of
security is that it should be hard for an adversary to solve many puzzles, not just one. The existing
DoS countermeasure models [JJ99, CMSW09a, SU09] address the ability of a runtime-bounded
adversary to solve a single puzzle, but not of solving multiple puzzles: if one puzzle takes time 220

to solve, for example, will 230 puzzles will take time 250 to solve? This is important in practice, for
an adversary will likely have more power than needed to solve a single puzzle.

In order to demonstrate the inadequacy of existing definitions, in Sect. 2 we examine how for some
puzzles – the generic puzzle construction of Chen et al. [CMSW09a], the MicroMint micropayment
puzzle scheme [RS97], and number-theoretic puzzles such as the recent one of Karame-C̆apkun
[KC10] – it is hard to solve one instance (satisfying existing definitions [SU09, CMSW09a]), but
many instances can be solved without too much more work. This is a weakness in the context of
DoS resistance, and so a good puzzle difficulty definition should preclude this.

Stronger Client Puzzles. In Sect. 3, we propose two notions of strong difficulty for client puzzles,
one for interactive situations and one for non-interactive situations. These stronger difficulty
definitions capture the notion that solving n puzzles should cost about n times the cost of solving
one puzzle. We then provide examples of puzzles satisfying these stronger definitions.

DoS-Resistant Protocols. In Sect. 4, we define what it means for a protocol to be DoS-resistant
in a multi-user network setting. A server should not perform expensive operations unless a client has
done the required work. It should be hard for the work of a legitimate client to be stolen or redirected
(avoiding the attack of Mao and Paterson [MP02]). This generalizes the work of Stebila and Ustaoglu
[SU09] on DoS-resistant key exchange protocols, while also accommodating our stronger notion of
security for multiple puzzles as described above. Then, in Sect. 5, we present a theorem that shows
how to transform any protocol into a DoS-resistant protocol using a strongly-difficult interactive
client puzzle.

We conclude and discuss future work in Sect. 6. The appendices contain background definitions
and notation (Appendix A) and proofs of claims from the main body (Appendices B–F).

1.2 Related Work

Client Puzzles. Client puzzles were first proposed for protection against DoS attacks (in the form
of email spam) by Dwork and Naor [DN92]. Many client puzzle constructions have subsequently been
proposed. There are two main types of client puzzles: computation-bound puzzles, which depend on
a large number of CPU cycles to solve, and memory-bound puzzles [ABMW03, DGN03a, DNW05],
which depend on a large number of memory accesses to solve, and which offer more uniform solving
time across different CPU speeds compared to computation-bound puzzles. Many computation-
bound puzzles are based on the difficulty of inverting a hash function [Bac97, JB99, JJ99, ANL00,
Bac04, CMSW09a], although other techniques (for example, using number-theoretic primitives)
exist as well [DN92, WJHF04, TBFGN06, KC10]. Puzzle-like constructions also appear in other
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cryptographic contexts [RSW96, RS97, Boy07] but with a focus on different security properties.

Difficulty of Client Puzzles. Although there have been many puzzle constructions as noted
above, only a few of these use any formal notion of security, and there has been little work in
developing formal definitions of client puzzle difficulty. The first client puzzle difficulty definition was
given by Jakobsson and Juels [JJ99], and another by Canetti et al. [CHS05]. Some memory-bound
puzzles [DGN03a, DNW05] include proofs of amortized difficulty.

A richer difficulty definition was given by Chen et al. [CMSW09a], using two security experiments:
unforgeability and puzzle difficulty. Importantly, the difficulty definition only addresses the ability of
an adversary to solve a single puzzle. They describe a basic generic client puzzle protocol Π(CPuz).
Finally, they give a generic client puzzle construction from a pseudorandom function and a one-way
function (essentially a MAC and a hash function).

Our definition of puzzle difficulty starts from the Chen et al. [CMSW09a] definition, but with a
number of differences. First, we eliminated the unforgeability property. The unforgeability property
is important for their protocol Π(CPuz), but is not an essential feature of client puzzles. In fact, to
define non-interactive puzzles, in which the client can generate the puzzle itself, we must remove
unforgeability. Next, we strengthened the difficulty definition to consider an adversary who solves
many puzzles, motivated by our attack in Sect. 2. Our DoS resistance model and protocol is
significantly stronger than their protocol Π(CPuz), accommodating multiple users in a network
setting.

Multiple Puzzles. Our work is motivated by the difficulty of solving multiple puzzles which has not
been addressed adequately in previous works. Jakobsson and Juels [JJ99] considered independence
of proofs of work, but only in terms of their solvability, not their difficulty. Canetti et al. [CHS05]
addressed hardness amplification – the difficulty of solving many instances – of weakly verifiable
puzzles (WVPs), which are puzzles that need not be publicly verifiable. The adversary for WVPs
could not see valid puzzle/solution pairs, so Dodis et al. [DIJK09] introduced dynamic WVPs that
did allow the adversary to see solutions and gave a hardness amplification theorem showing that if
solving one dynamic WVP is hard, then solving an n-wise dynamic WVP is also hard. Still, dynamic
WVPs differ from the difficulty definition of Chen et al. [CMSW09a] and our definition, in that
dynamic WVPs generate all puzzle challenges at once, independent of the request, whereas puzzles
in the Chen et al. model are generated in response to, and are dependent upon, client requests.

Modelling DoS Attacks on Protocols. Meadows [Mea99] presented a cost-based framework for
identifying DoS attacks in network protocols (e.g., Smith et al.’s DoS attack [SGNB06] on the JFK
key exchange protocol [ABB+04]), but can only be used to identify and quantify a DoS attack, not
prove that a protocol is DoS-resistant.

Stebila and Ustaoglu [SU09] gave a provable security model for the DoS resistance of key
agreement protocols based on the eCK model for key agreement security [LLM07]. The model splits
key exchange into two portions: a presession for the DoS countermeasure, and a session for the key
exchange. They give an example protocol using hash function inversions for the DoS countermeasure
and building on CMQV [Ust08] for the key exchange protocol. One of their main motivations was
to avoid the DoS attack of Mao and Paterson [MP02] which derived from an authentication failure
where messages could be redirected and accepted.

Our definition of DoS resistance for protocols shares some of these characteristics: it uses a
presession for the DoS countermeasure and is suitable for a multi-user network setting. It can
be used to analyze all protocols, not just key exchange protocols, and it uses a stronger notion
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of security, considering an adversary who solves many puzzles, not just one. By separating the
definition of a puzzle from the definition of a DoS-resistant protocol, we can perform a modular
analysis of each component separately and then combine them.

2 Weaknesses in Existing Definitions

In a public network setting, a server will be providing service to many clients at a time. A
DoS countermeasure based on client puzzles should require appropriate work to be done for each
client request: it should not be possible to solve many puzzles easily. While the existing models
[JJ99, SU09, CMSW09a] describe the difficulty of DoS countermeasures when faced with an adversary
trying to solve one puzzle, these models do not adequately defend against powerful adversaries who
can expend more than the effort required to solve a single puzzle.

In this section, we consider some puzzles where a single instance cannot be solved easily by an
attacker, satisfying existing difficulty definitions, but where an attacker can solve n puzzles more
efficiently than just n times the cost of solving a single puzzle. This motivates our stronger definition
of puzzle difficulty in Sect. 3.

While the examples in this section focus on the security definition of Chen et al. [CMSW09a],
they can also be applied to the model of Stebila and Ustaoglu [SU09].

Generic Puzzle Construction of Chen et al. Chen et al. [CMSW09a] proposed a generic client
puzzle construction based on a pseudorandom function F and a one-way function φ. The challenger
selects a secret s ∈ K with |K| = 2k and public parameters (not relevant to our discussion here),
denoted by ∗, to generate a puzzle. The challenger computes x ← F(s, ∗), where x ∈ X and
|X | ≥ |K|, and then sets y ← φ(x). The solver, given the challenge (y, ∗), has to find a pre-image z
such that φ(z) = y.

This generic construction satisfies the puzzle unforgeability and puzzle difficulty security proper-

ties provided certain bounds are met: namely, |X | ≥ |K| and |φ
−1(y)|
|X | ≤ 1

2k
, for all y. Suppose we

have that |φ−1(y)| ≤ 1 and |X | = 2k. Then the bounds in the generic construction are satisfied and
solving a single puzzle instance requires approximately 2k searches in X . But to solve n puzzles, the
solver can find the value s with at most 2k searches and then obtain a solution with one application
of F for each puzzle. That is, solving n puzzles would require 2k + n operations rather than the
desired n · 2k computations.

MicroMint-Based Puzzle. The MicroMint micropayment scheme [RS97] is effectively a client-
puzzle-based micropayment scheme. A coin is a collision in a hash function: it is a pair of values
x1, x2 such that H(x1) = H(x2) for a given hash function H. It is easy to verify the validity of a
coin.

Generating coins is harder. If H is a regular (or random) function with `-bit outputs, then to
find a collision one must rely on the “birthday paradox” (c.f. [Sti02, §4.2.2]): hash approximately
2`/2 distinct values and search for a collision. This puzzle can be shown to satisfy the puzzle difficulty
definition of the Chen et al. model [CMSW09a] (see Appendix Bfor details).

However, many collisions can be found without too much more work: n collisions can be found
with

√
n · 2`/2 hash function calls, much less than n times the 2`/2 cost of solving a single puzzle.

We emphasize this is not an attack on the MicroMint scheme itself: MicroMint was in fact designed
so that the amortized cost of generating multiple coins is smaller. While potentially a desirable
property in a micropayment scheme, this property is not desirable for client puzzles.
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Number-Theoretic Puzzles. Many client puzzles based on number-theoretic constructions have
been presented, including the recent scheme of Karame and C̆apkun [KC10], which uses modu-
lar exponentiation and argues for security in the Chen et al. model [CMSW09a] based on the
intractability of the RSA problem. Given a puzzle consisting of an RSA modulus N , a challenge x,
and a large integer R >> N , the solver must compute xR mod N .

The security argument rests on the assumption that the best known algorithm for this com-
putation requires O(log(R)) modular operations, assuming that factoring N requires more than
O(log(R)) operations. For a common puzzle difficulty level of say 220, a 1024-bit modulus N certainly
suffices. But in fact a much smaller N would still suffice and would reduce the computational costs
for the verifier, which is important when puzzles are used at extremely low levels in the network
stack, such as TCP (e.g., as in [MPM04]).

Even with a smaller N , say 500 bits, the cost of solving a puzzle by computing xR mod N is
still cheaper than factoring (220 compared to approximately 249 based on the formulas in [BCC+08,
§6.2]). However, if the adversary wants to solve 230 puzzles, the best technique is not to solve all
these puzzles independently (at a cost of 230 · 220 = 250 operations) but to first factor N and then
use this trapdoor to easily generate solutions (at a cost of 249 + 230c < 250, for some small c which
is the cost of easily generating solutions).

Signature forgery. In Appendix C, we present another counterexample puzzle based on signature
forgery.

3 Strong Client Puzzles

The starting point for our definition of strong client puzzles is the model of Chen et al. [CMSW09a].
The main differences are as follows.

Firstly, as motivated by Sect. 2, our definition of puzzle difficulty is more robust in that it
considers the number of puzzles solved by powerful adversaries.

Secondly, we omit the unforgeability security notion for client puzzles. Inherently, there is no
need for puzzles to be unforgeable: in a game played between a challenger and an adversary, the
challenger can keep track of all the puzzles issued to detect any forgeries. It is only when using
puzzles in network protocol that unforgeability sometimes becomes relevant. The main purpose
of unforgeability in Chen et al. [CMSW09a] was to show the DoS resistance of their client puzzle
protocol construction Π(Puz). We argue in Sect. 4 that a richer notion of DoS resistance is required
for a multi-user network setting.

Thirdly, our puzzle definition ensures that the puzzle’s semantic meaning – represented by the
string str, which may identify the resource the client wishes to access – is the same for both the
solver and the verifier. In the model of Chen et al. [CMSW09a], the server’s generation of puz
depended on str, but not in a way that the client could verify: puz was an opaque data structure.
Thus, a client solving puz could not be certain that this would gain access to the str resource; and
similarly, a server receiving a solution for puz could not know that the client solving puz intended
to solve a puzzle related to str. This could allow client’s work to be stolen by an attacker [SU09]
or redirected [MP02]. By making a connection between str and puz more transparent, we can
incorporate semantic meaning from other protocols or applications into a puzzle.

Fourthly, our security experiment allows for non-publicly verifiable puzzles, as suggested in the
notion of weakly verifiable puzzles [CHS05].

Finally, in order to accommodate a variety of puzzle uses, we define two types of difficulty
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experiments, one for interactive settings and one for non-interactive settings. This accommodates
asynchronous applications, such as email, where the client itself generates the puzzle [Bac97, Bac04].
While the non-interactive definition is more general, it is often convenient to consider the more
limited interactive definition because of its simplicity and its more natural use in interactive protocols.
We provide examples of puzzles satisfying each type, and interactive puzzles are at the heart of our
DoS-resistant protocol construction in Sect. 5.

3.1 Client Puzzles

Definition 1 (Client Puzzle). A client puzzle Puz is a tuple consisting of the following algorithms:
• Setup(1k) (p.p.t. setup algorithm):

1. Choose the long-term secret key space sSpace, puzzle difficulty space diffSpace, string
space strSpace, puzzle space puzSpace, and solution space solnSpace.

2. Set s←R sSpace.
3. Set params ← (sSpace, puzSpace, solnSpace, diffSpace,Π), where Π is any additional

public information, such as a description of puzzle algorithms, required for the client
puzzle.

4. Return (params, s).
• GenPuz(s ∈ sSpace, d ∈ diffSpace, str ∈ strSpace) (p.p.t. puzzle generation algorithm): Return
puz ∈ puzSpace.
• FindSoln(str ∈ strSpace, puz ∈ puzSpace, t ∈ N) (probabilistic solution finding algorithm):

Return a potential solution soln ∈ solnSpace after running time at most t.1

• VerSoln(s ∈ sSpace, str ∈ strSpace, puz ∈ puzSpace, soln ∈ solnSpace) (d.p.t. puzzle solution
verification algorithm): Returns true or false.

For correctness, we require that if (params, s) ← Setup(1k) and puz ← GenPuz(s, d, str), for
d ∈ diffSpace and str ∈ strSpace, then there exists t ∈ N with

Pr (VerSoln(s, str, puz, soln) = true : soln← FindSoln(str, puz, t)) = 1 .

3.2 Strong Puzzle Difficulty

A puzzle satisfies strong puzzle difficulty if the probability that a runtime-bounded-adversary can
output a list of n fresh, valid puzzle solutions is upper-bounded by a function of the puzzle difficulty
parameter and n. This is formalized in the following two experiments for the interactive and
non-interactive settings.

We first need to define additional helper oracles as follows:
• GetPuz(str): Set puz ← GenPuz(s, d, str) and record (str, puz) in a list. Return puz.
• GetSoln(str, puz): If (str, puz) was not recorded by GetPuz, then return ⊥. Otherwise, find
soln such that VerSoln(s, str, puz, soln) = true. Record (str, puz, soln). Return soln.2

• V(str, puz, soln): Return VerSoln(s, str, puz, soln).

1FindSoln runs in time at most t so that a client can stop searching for a puzzle after a specified amount of time;
the difficulty definitions in Sect. 3.2 yield that a client must spend at least a certain amount of time to find a valid
solution.

2Note that GetSoln is only obligated to find a solution if puz was actually generated by the challenger. If A
generated puz, then A may need to employ FindSoln to find a solution. Compared to FindSoln, GetSoln has access to
additional secret information that may allow it to find a solution more easily.
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3.2.1 Interactive Strong Puzzle Difficulty

In this setting, we imagine a solver interacting with a challenger: the solver submits a request
for a puzzle, the challenger issues a puzzle, the solver sends a solution to the challenger, and the
challenger checks the solution. The solver can only submit solutions to puzzles that were issued by
the challenger: this immediately rules out puzzle forgery or generation of puzzles by the solver. The
challenger also allows the solver, via queries, to see solutions to other puzzles.

Let k be a security parameter, let d be a difficulty parameter, let n ≥ 1, and let A be an
algorithm. The security experiment Execint-str-diffA,d,Puz (k) for interactive strong puzzle difficulty of a
puzzle Puz is defined as follows:
• Execint-str-diffA,n,d,Puz (k):

1. Set (params, s)← Setup(1k).
2. Set {(stri, puzi, solni) : i = 1, . . . , n} ← AGetPuz,GetSoln,V(params).
3. If VerSoln(s, stri, puzi, solni) = true, the tuple (stri, puzi) was recorded by GetPuz, and

(stri, puzi, solni) was not recorded by GetSoln for all i = 1, . . . , n, then return true,
otherwise return false.

Definition 2 (Interactive Strong Puzzle Difficulty). 3 Let εd,k,n(t) be a family of functions mono-
tonically increasing in t, where |εd,k,n(t)− εd,k,1(t/n)| ≤ negl(k, d) for all t, n such that εd,k,n(t) ≤ 1.
Fix a security parameter k and difficulty parameter d. Let n ≥ 1. Then Puz is an εd,k,n(·)-strongly-
difficult interactive client puzzle if, for all probabilistic algorithms A running in time at most
t,

Pr
(
Execint-str-diffA,n,d,Puz (k) = true

)
≤ εd,k,n(t) .

In the random oracle model,4 To our knowledge, this is the first formal justification for the
security of Hashcash. we can define interactive and non-interactive strong puzzle difficulty in terms
of the number of oracle queries made by the adversary instead of its running time.

Remark. The condition that |εd,k,n(t)− εd,k,1(t/n)| ≤ negl(k, d), for all t and n such that
εd,k,n(t) ≤ 1, captures the property that solving n puzzles should cost n times the cost of solving
one puzzle, at least until the adversary spends enough time t to solve n puzzles with probability 1.

Remark. This bound is quite abstract; let us consider a concrete function for εd,k,n(t). For
example, suppose each Puz instance should take approximately 2d steps to solve. Then we might aim
for Puz to be a εd,k,n(·)-strongly-difficult interactive client puzzle, where εd,k,n(t) ≈ t/2dn+ negl(k).

Remark. In the security experiment, the adversary is allowed to request many more than n
puzzles using GetPuz. The adversary can then pick which n puzzles it submits as its allegedly solved
puzzles {(stri, puzi, solni) : i = 1, . . . , n}. In other words, the adversary could request many puzzles
and hope to find some easy-to-solve instances. This means, for example, that puzzles for which 1%
of instances are trivially solved could not be proven secure (with a reasonable εd,k,n(t)) according to
this difficulty definition.

3 An earlier version of this paper instead required that εd,k,n(t) ≤ εd,k,1(t/n). As noted by Groza and Warinschi
[GW12, §2], this made the definition impossible to satisfy in general, due to the negligibly small possibility that the
challenge contains two identical puzzles. The new condition, that |εd,k,n(t)− εd,k,1(t/n)| ≤ negl(k, d), avoids that
problem.

4In the random oracle model, a hash function is modelled as an ideal random function accessible to the adversary
solely as an oracle. [BR93c]
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Relation to Examples from Sect. 2. The Chen et al. generic puzzle construction in Sect. 2 does
not satisfy our definition of strong puzzle difficulty. From Theorem 2 of [CMSW09a], we have that
the Chen et al. generic construction is εd,k(t)-difficult, with εd,k(t) / 2νk(t) + (1 + t/(2k−t))γd(t),
where νk(t) is the probability of breaking the pseudorandom function family (with security parameter
k) in time t and γd(t) is the probability of breaking the one-way function (with security parameter d)
in time t. By the argument from Sect. 2, there exists an adversary that can win the strongly-difficulty
interactive puzzle game with probability at least ε′d,k,n(t) ' νk(t) + γd(t)/n, which does not satisfy
ε′d,k,n(t) ≤ ε′d,k,1(t/n).

Similarly, the MicroMint puzzle from Sect. 2 does not satisfy Definition 2. Finding a single
`-bit collision (and thus solving a MicroMint puzzle) requires about 2`/2 hash function calls, but
finding n collisions requires only

√
n · 2`/2 calls. Let εk,`,n(q) = q√

n·2`/2 . It is clear that, for n ≥ 2,

εk,`,n(q)� εk,`,1(q/n), and hence MicroMint is not an εk,`,n(·)-strongly difficulty interactive puzzle.

Similarly, the Karame-C̆apkun puzzle [KC10] does not satisfy the interactive strong puzzle
difficulty definition since for sufficiently many puzzles the best approach is to factor the RSA
modulus N and use the trapdoor information to quickly solve puzzles. In other words, εd,k,n(t) is
close to εd,k,1(t/n) for sufficiently large n.

3.2.2 Non-Interactive Strong Puzzle Difficulty

Non-interactive strong puzzle difficulty models the case of client-generated puzzles. Besides being
useful in their originally proposed setting as an email spam countermeasure [Bac97, Bac04], they
can be useful in protocols that are inherently asynchronous, such as the Internet Protocol (IP), or
have a fixed message flow, such as the Transport Layer Security (TLS) protocol.

The technical difference between interactive and non-interactive strongly difficult puzzles is
whether the adversary can return solutions only to puzzles generated by the challenger (interactive)
or can also return solutions to puzzles it generated itself (non-interactive).

The security experiment Execnint-str-diffA,n,d,Puz (k) for non-interactive strong puzzle difficulty is as in
the interactive case with a change to line 3 of the experiment:
• Execnint-str-diffA,n,d,Puz (k):

3. If VerSoln(s, stri, puzi, solni) = true and the tuple (stri, puzi, solni) was not recorded
by GetSoln for all i = 1, . . . , n, then return true, otherwise return false.

The definition of εd,k,n(·)-strongly-difficult non-interactive client puzzles follows analogously.
Remark. If Puz is an εd,k,n(·)-strongly-difficult non-interactive puzzle, then it is also εd,k,n(·)-

strongly-difficult interactive puzzle.

3.3 A Strongly-Difficult Interactive Client Puzzle Based on Hash Functions

In this section, we describe a client puzzle based on hash function inversion, similar to the subpuzzle
used by Juels and Brainard [JB99] or the partial inversion proof of work of Jakobsson and Juels
[JJ99].

Let H : {0, 1}∗ → {0, 1}k be a hash function. Define SPuzH be the following tuple of algorithms:
• Setup(1k): Set sSpace ← {⊥}, diffSpace ← {0, 1, . . . , k}, strSpace ← {0, 1}∗, puzSpace ←
{0, 1}∗ × {0, 1}k, solnSpace← {0, 1}∗, and s←⊥.
• GenPuz(⊥, d, str): Set x ←R {0, 1}k; let x′ be the first d bits of x and x′′ be the remaining
k − d bits of x. Set y ← H(x, d, str). Return puz ← (x′′, y).
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• FindSoln(str, (x′′, y), t): For z from 0 to max{t, 2d − 1}: set soln ← z (in {0, 1}d); if
H(soln||x′′, d, str) = y then return soln.
• VerSoln(⊥, str, (x′′, y), soln): If H(soln||x′′, d, str) = y then return true, otherwise return

false.

Theorem 1. 5 Let H be a random oracle. Let εd,k,n(q) =
( q+n
n2d

)n
+ negl(k). Then SPuzH is an

εd,k,n(q)-strongly-difficult interactive client puzzle, where q = q1 + q2 + · · ·+ qn and qi is the number
of distinct H queries made by A of the form H(·‖x′′i , d, stri) where puzi = (x′′i , yi).

The proof follows a counting argument and appears in Appendix D.6

3.4 Hashcash is a Strongly-Difficult Non-interactive Client Puzzle

In this section, we show that one of the earliest client puzzles, Hashcash [Bac97, Bac04], satisfies
the definition of a strongly-difficult non-interactive client puzzle in the random oracle model.

While Hashcash was originally proposed to reduce email spam, the current specification (stamp
format version 1 [Bac04]) can be applied to any resource. Hashcash is non-interactive: the puzzle
is generated by the same person who solves the puzzle. Hence it should be difficult for a client to
generate a puzzle that can be easily solved. Hashcash is based on the difficulty of finding a partial
preimage of a string starting with a certain number of zeros in the SHA-1 hash function.

A Hashcash stamp is a string of the form ver:bits:date:resource:[ext]:rand:counter. The
field bits denotes the “value” of the stamp (the number of zeros at the start of the output) and
counter is the solution to the puzzle. A stamp is valid if H(stamp)[1...bits] = 0 . . . 0. In the context
of real-world email applications, there may be additional restrictions on the validity of a stamp, such
as whether date is within a reasonable range and whether the email address (resource) specified is
acceptable.

Let HashcashH be the specification of the Hashcash puzzle using the hash function H :
{0, 1}∗ → {0, 1}k in the language of Sect. 3.1. The precise specification is omitted here and given in
Appendix E, but it proceeds in the obvious way. In particular, we note that Hashcash requires no
long-term secret key (so sSpace = {⊥}).

5 An earlier version of this paper unfortunately contained an error in the statement of this result, in which q was
simply the number of distinct H queries made by A. As noted by Groza and Warinschi [GW12], that result was invalid:
while on average q/n queries would be used for each puzzle, in some cases the adversary would be lucky and solve
the puzzle after fewer queries, and could re-allocate some of those queries to another puzzle. Our corrected version
here gives the same bound but by explicitly counting the number of queries used for each puzzle. An alternative
formulation, following the combinatorial enumeration approach used by Groza and Warinschi [GW12, Thm. 2], yields
the following theorem: Let H be a random oracle. Let

εd,k,n(q) =

q∑
i=n

[
zi
] (
z + z2 + z3 + · · ·+ z2

d−1 + z2
d−1
)n

/2nd + negl(k) ,

where
[
zi
]
f(z) denotes the coefficient of zi in the polynomial / formal power series f(z). Then SPuzH is an

εd,k,n(q)-strongly-difficult interactive client puzzle, where q is the number of distinct H queries made by A.
6Rather than proceeding directly to the random oracle model, we could aim to prove SPuzH secure when H has

some concrete hash function property. None of the standard hash function notions [RS04a] is appropriate due to (a)
the partial preimage hint x′′ being given and (b) the multiple nature of the task. One could extend the partial-inversion
proof of work notion [JJ99] (which satisfies (a) but not (b)) or the ePre notion [RS04a] (which satisfies neither) as
appropriate, and then proceed to the random oracle model to heuristically justify the soundness of that new notion;
the end result would be the same.
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Theorem 2. Let H : {0, 1}∗ → {0, 1}k, where k ≥ d, be a random oracle. Let εd,k,n(q) = q+n
n2d

.
Then Hashcash is an εd,k,n(q)-strongly-difficult non-interactive puzzle, where q is the number of
queries made by A to H.

The proof follows a counting argument and appears in Appendix E.

4 Denial-of-Service Resistance of Protocols

Although we have defined what a good client puzzle is, it does not immediately follow that using a
good client puzzle in a protocol yields DoS resistance. In this section, we describe what it means for
a protocol to be DoS-resistant, and in the subsequent section we give a generic construction for
DoS-resistant protocols.

Our approach begins similar to that of Stebila and Ustaoglu [SU09]. We work in an adversary-
controlled multi-user communication network.7 The adversary’s goal is to cause a server to
commit resources without the adversary itself having done the work to satisfy the denial of service
countermeasure.

Protocol Execution. A protocol is a message-driven interaction, taking place among disjoint sets
of clients Clients and servers Servers, where each party is a probabilistic polynomial-time Turing
machine. An execution of the protocol is called a presession. During execution, each party Û may
have multiple instances of the protocol running, with each instance indexed by a value i ∈ Z+; these

instances are denoted by ΠÛ
i . A protocol consists of the following algorithms:

• GlobalSetup(1k) (p.p.t. protocol setup algorithm): Select the long-term secret key space
ρSpace. Choose global public parameters Π of the scheme and return params← (ρSpace,Π);
this is assumed to be an implicit input to all remaining algorithms.
• ServerSetup(Ŝ ∈ Servers) (p.p.t. party setup algorithm): Select ρŜ ∈ ρSpace. Perform any

additional setup required by params.
• CActionj (Ĉ ∈ Clients, i ∈ Z+,mj−1,M

′
j−1), for j = 1, . . . (p.p.t. protocol client action

algorithm): Instance i of party Ĉ produces its jth protocol message for the run of the protocol,
based on the instance’s previous private state mj−1 and the received message M ′j−1. The
output (Mj ,mj) consists of its outgoing message Mj and its new private state mj .
• SActionj (Ŝ ∈ Servers, i ∈ Z+,m

′
j−1,Mj), for j = 1, . . . (p.p.t. protocol server action algo-

rithm): Instance i of party Ŝ produces its jth protocol message for this instance, based on Ŝ’s
long-term secret, the previous private state m′j−1, and the received message Mj . The output
(M ′j ,m

′
j) consists of its outgoing message M ′j and its new private state m′j .

The client is assumed to be the initiator. An instance records its current progress through the
protocol with the value j of the last completed action.

Presessions. After receiving some sequence of SActionj (Ŝ, i, . . . ) calls, a server instance will either
accept or reject ; if it accepts, it outputs a presession identified by a tuple of the form [Ĉ, Ŝ, τ ],
where Ĉ is the partner and τ is a sequence of messages. The sequence of messages τ is meant to
act like a transcript; however, since in DoS-resistant protocols a server may not store state early
in the protocol, portions of τ could have been forged by an adversary. Accepted presessions must
be unique within a party. Additionally, since the protocol may be used for another purpose – key

7It is true that, in an adversary-controlled network, the adversary can deny service simply by not relaying messages.
Our concern, however, is with resource depletion attacks in which a server is overwhelmed with requests.

10



agreement, electronic voting, etc. – we do not require that the protocol terminate after accepting,
and indeed expect that it may continue to perform some additional application-level functionality.

Correctness. A protocol is correct if, for all Ĉ ∈ Clients and Ŝ ∈ Servers who follow the protocol,
there exists a running time t for Ĉ such that, when messages are relayed faithfully between Ĉ and
Ŝ, Ŝ will accept with probability 1. In other words, clients can eventually do enough work to make
connections.8

Denial of Service Countermeasure. To provide DoS resistance, a protocol will typically include
some test so the server can decide, based on the proposed presession [Ĉ, Ŝ, τ ] and its secret ρ,
whether to accept or reject based on some DoS countermeasure in the protocol. It is the adversary’s
goal to cause a server to accept without the adversary having faithfully followed the protocol.

Adversary’s Powers. The adversary controls all communication links and can send, create,
modify, delay, and erase messages to any participants. Additionally, the adversary can learn private
information from parties or cause them to perform certain actions.

The following queries model how the adversary interacts with the parties:
• Send(Û , i,M): The adversary sends message M to instance i of Û who performs the appropriate

protocol action (either CActionj (Û , i,m,M) or SActionj (Û , i,m,M) based on the instance’s
last completed action j − 1), updates its state, and returns its outgoing message, if any.
• Expose(Ŝ): The adversary obtains Ŝ’s secret value ρŜ ; mark Ŝ as exposed.

Security Definition. The basic idea of the security definition is as follows: the amount of credit
the adversary gets in terms of accepted presessions should not be greater than the amount of work
the adversary itself did. An important part of the definition below is solutions from legitimate
clients.

An instance ΠŜ
i that has accepted a presession [Ĉ, Ŝ, τ ] is said to be fresh provided that Ŝ was

not exposed before Ŝ accepted this presession and there does not exist an instance ΠĈ
j which has a

matching conversation [BR93a] for τ . (Intuitively, a “fresh” instance is an attackable instance, one
that has not been trivially solved by exposing the server’s private information.)

Let k be a security parameter, let n ≥ 1, and let A be a probabilistic algorithm. The security
experiment ExecdosA,n,P (k) for DoS resistance of a protocol P is defined as follows:

• ExecdosA,n,P (k): Run GlobalSetup(k). For each Ŝ ∈ Servers, run ServerSetup(Ŝ). Run A(params)
with oracle access to Send and Expose. If, summing over all servers, the number of fresh
instances accepted is n, then return true, otherwise return false.

A protocol is DoS-resistant if the probability that an adversary with bounded runtime can cause
a server to accept n fresh presessions is bounded:

Definition 3 (Denial-of-service-resistant Protocol). Let εk,n(t) be a family of functions that are
monotonically increasing in t, where |εk,n(t)− εk,1(t/n)| ≤ negl(k) for all t, n such that εk,n(t) ≤ 1.
Fix a security parameter k. Let n ≥ 1. We say that a protocol P is εk,n(·)-denial-of-service-resistant
if

1. for all probabilistic algorithms A running in time at most t,

Pr
(
ExecdosA,n,P (k) = true

)
≤ εk,n(t) + negl(k) , and

2. no call to SActionjP (Ŝ, i,m,M) results in an expensive operation unless ΠŜ
i has accepted.

8Limits on the amount of work done by the server come later, in Definition 3.
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Remark. This definition of DoS resistance contains two aspects. The first aspect addresses the
ability of an adversary to cause the server to accept a presession: the inequality in part 1 provides a
bound on the ability of an adversary to cause the server to accept n presessions when the adversary
has only done t operations. The requirement that |εk,n(t)− εk,1(t/n)| ≤ negl(k) enforces the idea
that the amount of work required to cause n presessions to be accepted should be n times the
amount of work required to cause one presession to be accepted.

The second aspect addresses the idea that a server should not perform expensive operations
unless the countermeasure has been passed. As the notion of “expensive” can vary from setting to
setting, we leave it vague, but it can easily be formalized, for example by using Meadows’ cost-based
framework [Mea99].

Avoiding Client Impersonations. Though a DoS countermeasure does not provide explicit
authentication, we still wish to avoid impersonations. For example, suppose a client Ĉ sends
messages meant to prove its legitimate intentions in communicating with server Ŝ. It should not
be possible for an adversary to easily use those messages to cause another server Ŝ′ to perform
expensive operations, nor should it be possible for an adversary to easily use those messages to
convince Ŝ that a different client Ĉ ′ intended to communicate with Ŝ.

This is prevented by the model since party names are included in the presession identifiers. If
an adversary observed a presession [Ĉ, Ŝ, τ ] and then tried to use that information to construct
a presession [Ĉ ′, Ŝ, τ ′] of another user Ĉ ′ with the same server, then this new presession would
be unexposed and the adversary would be prohibited from easily causing a server to accept it by
Definition 3. This in effect requires a binding of values in the DoS countermeasure transcript τ to
the parties – Ĉ and Ŝ – in question.

Avoiding Replay Attacks. We follow the approach of Stebila and Ustaoglu [SU09] in dealing
with replay attacks, where replay attacks are avoided by uniqueness of presession identifiers of
accepted presessions. This does mean that the server has to store a table of presession identifiers,
but this does not constitute a vector for a DoS attack because the server only stores a presession
identifier after it accepts a presession, so it is doing an expensive operation only after the DoS
countermeasure has been passed.

5 Building DoS-resistant Protocols from Client Puzzles

In this section, we present a generic technique that transforms any protocol P into a DoS-resistant
protocol D(P ). Our technique uses strongly-difficult interactive client puzzles as a DoS countermea-
sure and message authentication codes for integrity of stateless connections [AN97]. We prove that
the combined protocol D(P ) is a DoS-resistant protocol.

The client and server each provide nonces and construct the string str using their names, nonces,
and any additional information, such as a timestamp or information from a higher-level protocol.
The server generates a puzzle from str, authenticates the puzzle using the message authentication
code (to avoid storing state), and sends it to the client. The client solves the puzzle using its own
string str and sends the solution to the server. The server checks the message authentication code
and the correctness of the solution. Finally, the server checks that the presession is unique and
accepts. The messages for the DoS countermeasure are interleaved, where possible, with the messages
of the main protocol, and after the countermeasure has accepted the main protocol continues as
needed.
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Specification. Let P be a protocol such that SAction1P does not involve any expensive oper-
ations. Let k be a security parameter. Let MAC : {0, 1}k × {0, 1}∗ → {0, 1}k be a family
of secure message authentication codes (see Appendix A.2 for the full definition). Let Puz =
(Setup,GenPuz,FindSoln,VerSoln) be a strongly-difficult interactive client puzzle with long-term
secret key space sSpace = {⊥} (there is no long-term secret key for puzzles). Although this may
seem restrictive, many puzzles satisfy this constraint, including the hash-based puzzle in Sect. 3.3.
Fix a DoS difficulty parameter d ∈ diffSpace.

Let D(P )Puz,d,MAC,k be the protocol consisting of the following algorithms:
• GlobalSetup(1k): Set ρSpace← {0, 1}k and NonceSpace← {0, 1}k.
• ServerSetup(Ŝ ∈ Servers): Set mkŜ ←R {0, 1}k and ρŜ ← mkŜ .
• CActionjD(P )(. . . ), SActionjD(P )(. . . ): As specified by the protocol in Figure 1.

D(P )Puz,d,MAC,k – Send(Û , i,M) protocol specification

Client Ĉ Server Ŝ
long-term secret: ρŜ = mkŜ

CAction1D(P ):

1. NC ←R NonceSpace

2. (M1,m1)← CAction1P ()
Ĉ,NC ,M1−−−−−−→ SAction1D(P ):

3. NS ←R NonceSpace
4. (M ′1,m

′
1)← SAction1P (M1)

5. str ← (Ĉ, Ŝ, NC , NS ,M1,M
′
1)

6. puz ← GenPuz(⊥, d, str)

7. CAction2D(P ):
NS ,M

′
1,puz,σ←−−−−−− σ ← MACmk

Ŝ
(str, puz)

8. str ← (Ĉ, Ŝ, NC , NS ,M1,M
′
1)

9. soln← FindSoln(str, puz, t)

10. (M2,m2)← CAction2P (m1,M
′
1)

str,puz,σ,soln−−−−−−→ SAction2D(P ):

11. reject if σ 6= MACmk
Ŝ

(str, puz)

12. reject if ¬VerSoln(⊥, str, puz, soln)
13. τ ← (NC , NS ,M1,M

′
1, puz, soln)

14. verify no stored presession [Ĉ, Ŝ, τ ]

15. accept and store presession [Ĉ, Ŝ, τ ]
continue with CActionjP continue with SActionjP

Figure 1: D(P )Puz,d,MAC,k DoS countermeasure protocol.

Remark. The construction D(P ) requires that SAction1P not involve any expensive operations,
as SAction1P is called by SAction1D(P ) before the server instance has accepted. If SAction1P does in
fact involve expensive operations, then P would need to be rewritten so that the expensive operation
is delayed until SAction2P . In other words, the D(P ) construction may result in an additional round
being added before the P protocol is run; this should not be surprising.

Additionally, SAction1P may result in a private output m′1 which the server instance needs to
store until the next message is received. If state storage is considered an expensive operation (as it
could be a vector for a resource depletion DoS attack), then there are two options: use a stateless
connection [AN97] to encrypt m′1 and send it to the client who must return it in the following round,
or, as above, rewrite P so as to delay the operation until SAction2P .

Theorem 3. Let P be a protocol such that SAction1P does not involve any expensive opera-
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tions. Suppose that Puz is an εd,k,n(t)-strongly-difficult interactive puzzle with long-term secret
key space sSpace = {⊥} and that MAC is a family of secure message authentication codes. Then
D(P )Puz,d,MAC,k is an ε′d,k,n(t)-denial-of-service-resistant protocol, for ε′k,n(t) = εd,k,n(t+ t0qSend) +
negl(k), where qSend is the number of Send queries issued and t0 is a constant depending on the
protocol, assuming t ∈ poly(k).

The proof of Theorem 3 follows by a sequence of games, first replacing the message authentication
code with a MAC challenger, and then replacing the puzzles with a Puz challenger. Fresh accepted
presessions correspond to valid solutions to the Puz challenger, yielding the bound relating the
protocol and the puzzle. The details appear in Appendix F.

6 Conclusion

Our goal in this work was to improve security definitions for client puzzles and denial-of-service-
resistant protocols. We presented a new, stronger definition of puzzle difficulty for client puzzles,
motivated by examples considering the effects of an adversary who has enough resources to solve
more than one puzzle. This definition is sufficiently general to be useful for analyzing and proving
the difficulty of a wide range of computation- and memory-bound puzzle constructions.

Whereas the client puzzle difficulty definition suffices for a simple game between a challenger
and an adversary, we need something more advanced for a multi-user network setting. Thus, we
introduced a new definition of DoS resistance for network protocols.

Our work can be viewed in part as combining the client puzzles approach of Chen et al.
[CMSW09a] and the DoS-resistant protocols approach of Stebila and Ustaoglu, extending both to
provide stronger DoS resistance and better modularity.

To demonstrate the utility of our new definitions, we have included examples of two hash-based
client puzzles (including an analysis of the Hashcash client puzzle) and given a generic technique for
converting any protocol into a DoS-resistant protocol using an interactive client puzzle.

Future Work. The interactive request-challenge-solution nature of client puzzles in the Chen et al.
definition [CMSW09a] and our Definition 2 is incompatible with the definition of dynamic weakly
verifiable puzzles [DIJK09], so the hardness amplification theorem from one to many puzzles does
not apply. An important theoretical question arising is the development of a hardness amplification
theorem for client puzzles that is suitable, and avoids the counterexamples from Sect. 2 when going
from the Chen et al. definition [CMSW09a] to our Definition 3.2.1.

Key agreement is the most widely deployed cryptographic protocol on the Internet, and, as a
computationally-expensive operation, is a possible attack vector for DoS attacks. Some Internet key
agreement protocols – such as IKEv2 [Kau05], the Host Identity Protocol (HIP) [MNJH08], and
Just Fast Keying (JFK) [ABB+04] – have been designed with DoS attacks in mind. An important
future work to be undertaken is the formal analysis of the DoS resistance of these protocols using
an approach such as the one we have presented.
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A Background

A.1 Notation

We use different typefaces to denote variables, constants, algorithms, oracles, sets, and security
notions. a←R B denotes a variable a being chosen uniformly at random from a set B. Throughout,
“p.p.t.” and “d.p.t.” stand for probabilistic and deterministic polynomial time, respectively, d refers
to a puzzle difficulty parameter, k refers to a security parameter, and s and ρ are secret keys. negl(k)
denotes a negligible function in k, meaning it is asymptotically smaller than the inverse of any
polynomial in k.

A.2 Message Authentication Codes

Definition 4 (Secure message authentication code [BKR00]). A family of keyed message authen-
tication codes is a set of functions MAC : {0, 1}k × {0, 1}∗ → {0, 1}k. Let A be a probabilistic
algorithm. The experiment is the following algorithm:

18

http://eprint.iacr.org/2004/035
http://people.csail.mit.edu/rivest/RivestShamirWagner-timelock.pdf
http://crpit.com/confpapers/CRPITV54Smith.pdf
http://www.shoup.net/papers/games.pdf
http://dx.doi.org/10.1007/978-3-642-02620-1_27
http://dx.doi.org/10.1007/978-3-540-76969-9_16
http://dx.doi.org/10.1007/s10623-007-9159-1
http://dx.doi.org/10.1007/s10623-007-9159-1
http://eprint.iacr.org/2007/123
http://dx.doi.org/10.1145/1030083.1030117


• ExeceucmaMAC,k(A): Set mk ←R {0, 1}k. Set (m,σ)← AMACmk(·)(). If MACmk(m) = σ and m was
not queried to MACmk(·), then return true, otherwise return false.

Define
Adveucma

MAC,k(q, t) = max
A:q,t

Pr
(
ExeceucmaMAC,k(A) = true

)
,

where the maximum is taken over all probabilistic algorithms A running in time at most t and making
at most q queries to MACmk(·) in the experiment ExeceucmaMAC,k(A). A family of message authentication
codes MAC is secure if Adveucma

MAC,k(q, t) is a negligible function of k when q and t are polynomial in k.

A.3 Client Puzzle Definition of Chen et al.

We now give a brief overview of the client puzzle and puzzle difficulty definitions of Chen et al.
[CMSW09a]; they also include a puzzle unforgeability definition, but we omit this from our review
as it is not relevant to our work (which we justify at the beginning of Sect. 3).

Definition 5 (Client Puzzle [CMSW09a]). A client puzzle is a tuple of the following algorithms:
• Setup(1k): Establishes parameter spaces, public parameters params, and long-term secret s.
• GenPuz(s, d, str): Generates a puzzle of difficulty d based on long-term secret s and string str.
• FindSoln(puz, t): Outputs a potential solution soln for puzzle puz within running time t.
• VerAuth(s, puz): Checks the authenticity of puzzle puz using long-term secret s.
• VerSoln(puz, soln): Checks the correctness of solution soln for puzzle puz.

Definition 6 (Puzzle Difficulty [CMSW09a]). Let d be a difficulty parameter and let k be a security
parameter. Let A be a probabilistic algorithm with oracle access to oracles CreatePuzSoln and Test:
• CreatePuzSoln(str): Set puz ← GenPuz(s, d, str) and find a valid solution soln for puz; return

(puz, soln).
• Test(str): Return puz ← GenPuz(s, d, str).

Consider the following experiment for puzzle difficulty:
• ExecdiffA,Puz,d(k): Set (params, s)← Setup(1k). Run A with params; A is allowed to make any

number of CreatePuzSoln(str) queries. At any point in time, A can make a single Test(str)
query and receives puz. A outputs soln. Return true if VerSoln(puz, soln) = true, and false
otherwise.

A client puzzle Puz is said to be εd,k(·)-difficult if

Advdiff
A,Puz,d(k) = Pr

(
ExecdiffA,Puz,d(k) = true

)
≤ εd,k(t)

for all probabilistic algorithms A running in time at most t, where εd,k(t) is a family of functions
monotonically increasing in t.

A.4 DoS Resistance Model of Stebila and Ustaoglu

We now give an overview of the definition of Stebila and Ustaoglu [SU09] for DoS resistance of key
agreement protocols. A protocol consists of a presession – which contains a DoS countermeasure –
followed by a session. An adversary interacts with a protocol by issuing Send queries (which deliver
messages to parties) and DoSExpose(Ŝ) queries, which reveal a server’s private information related
to the DoS countermeasure. A key agreement protocol is denial-of-service resilient if:

1. when DoSExpose(B̂) has not been called, the presession identifiers (Â, B̂, ch, re) satisfy a
puzzling relation (this models the difficulty of solving a puzzle), and

2. no expensive operations are performed by a server before a presession accepts.
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A relation R is a puzzling relation if all of its members are tuples (Â, B̂, ch, re) for which it
should be hard to produce a new solution re to a puzzle (Â, B̂, ch), even given access to an oracle
that gives valid puzzle solutions. (This puzzle-solving oracle plays a similar to the role of the
CreatePuzSoln query in the Chen et al. definition [CMSW09a].) It is important to note that, here,
the adversary is allowed to query the puzzle-solving oracle on the target puzzle (Â, B̂, ch). In order
to have broken the denial-of-service resistance of the protocol, a runtime-bounded adversary must
simply return a “fresh” valid solution to (Â, B̂, ch), thereby causing a server B̂ to accept a presession
without having done the required work itself.

B Specification of MicroMint Counterexample Puzzle from Sect. 2

Puzzle Construction. In the model of Chen et al. [CMSW09a, Definition 1], a client puzzle is
defined as a tuple of algorithms. Let MAC : {0, 1}k ×{0, 1}∗ → {0, 1}k be a family of keyed message
authentication codes and let H : {0, 1}∗ → {0, 1}`. The following algorithms define MMPuz, which
is the puzzle from Sect. 2 using the MicroMint scheme, in the language of Chen et al. [CMSW09a]
(as we describe in Appendix A.3).
• Setup(1k): Let sSpace ← {0, 1}k, diffSpace ← {`/2}, strSpace ← {0, 1}∗, puzSpace ←

strSpace × {0, 1}k × {0, 1}k, and solnSpace ← {0, 1}∗ × {0, 1}∗. Set mk ←R {0, 1}`. Set
params← (sSpace, puzSpace, solnSpace, diffSpace,⊥). Return (params,mk).
• GenPuz(mk, d = `/2, str): Set m←R {0, 1}k and σ ← MACmk(str,m). Return (str,m, σ).
• FindSoln((str,m, σ), t): Find two values x1, x2 ∈ {0, 1}∗ such that H(str‖m‖x1) = H(str‖m‖
x2) using a collision-finding algorithm (such as in [RS97, §4]). Return (x1, x2).
• VerAuth(mk, (str,m, σ)): Return true if σ = MACmk(str,m) or false otherwise.
• VerSoln((str,m, σ), (x1, x2)): Return true if H(str‖m‖x1) = H(str‖m‖x2), or false other-

wise.
It can be seen by inspection that this puzzle satisfies the correctness requirement of Chen et al.
[CMSW09a].

Security Experiment. There are two security experiments defined by Chen et al.: unforgeability
of puzzles and difficulty of solving puzzles. If MAC is a secure family of message authentication
codes, then it is straightforward to show that the puzzle defined above satisfies the unforgeability
requirement. We focus on the difficulty of solving puzzles since that is what motivates our work on
powerful adversaries as described in Sect. 2.

For the purposes of the security experiment ExecdiffA,MMPuz,d(k), we define the algorithm
• CreatePuzSoln(str): Set (str,m, σ)← GenPuz(mk, d, str) and (x1, x2)← FindSoln((str,m, σ),
∞). Return ((str,m, σ), (x1, x2)).

Fix d = `/2. We can see that A wins ExecdiffA,MMPuz,d(k) for puz† = (str†,m†, σ†) with soln† =

(x†1, x
†
2) if and only if H(str†‖m†‖x†1) = H(str†‖m†‖x†2). Assume H(·) is a random oracle; note that

H(str†‖m†‖·) is also a random oracle. By the birthday paradox (c.f. [Sti02, §4.2.2]) the probability
that an adversary A making qH hash function queries can find a collision is approximately qH/2

`/2,
and thus

Advdiff
A,MMPuz,d(k) ≤ qH

2`/2
+ negl(k) . (1)

This is a monotonically increasing function of qH , so it satisfies the puzzle difficulty definition of
Chen et al. [CMSW09a, Definition 3]. Moreover, it is of the form that one might expect for a
reasonable client puzzle: approximately t/2d, where t is the running time of the adversary and
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d is the difficulty of the puzzle. The random oracle-based puzzle from Chen et al. [CMSW09a,
Appendix C] is of this form as well.

Remark. While the challenger must also make many hash function calls for each CreatePuzSoln
query issued by the adversary, we do not need to account for these queries in (1) since the expression
counts the number of queries made by the adversary, not the total running time of the adversary
and challenger. If we were not working in the random oracle model, then we would need to make
such an accounting.

Attack by Powerful Adversaries. By the birthday paradox, making approximately
√
n · 2`/2

hash function calls results in n hash function collisions. As a result, an adversary can solve n
puzzles using only

√
n · 2`/2 queries, not n · 2`/2 queries as we would like.9 We note that, using this

attack, the n puzzle solutions will all be for the same challenge string str†, since we are working
with random oracle H(str†‖m†‖·); however, the puzzle solutions will be distinct and thus the attack
remains meaningful.

C Another counterexample puzzle based on signature forgery

In this appendix, we give an additional client puzzle counterexample in which n puzzles can be
solved for less than n times the cost of solving one puzzle, similar to the MicroMint example in
Section 2. In this puzzle, a legitimate client solves a puzzle by finding a signature forgery. The
difficulty of the puzzle can be used to set the security parameter of the digital signature scheme.
We typically want puzzles that are only moderately hard to solve – requiring, say, 220 operations –
which needs smaller signature scheme security parameters than usual. For the Chen et al. model
[CMSW09a], we can use any signature scheme that is existentially unforgeable under chosen message
attack [GMR88] suffices; for the Stebila and Ustaoglu model [SU09], we require a signature scheme
that is strongly existentially unforgeable under chosen message attack [ADR02]. Interestingly,
signature-forgery-based puzzle was first suggested in the paper by Dwork and Naor [DN92] that
originally introduced client puzzles.

The basic idea is as follows. We employ a signature scheme by Bellare and Miner [BM99b]. To
understand the puzzle construction, we focus on the verification algorithm:
• Verify(pk,m, (Y, Z)): Set c1 . . . c` ← H(Y,m). Return true if Z2 = Y ·

∏`
i=1 U

ci
i mod N , or

false otherwise.
The important part is that an `-bit hash is computed and then a test is performed to see if this
hash satisfies a particular relation. For a client puzzle, one would typically choose ` sufficiently
small, say, ` = 20, so that a client could iterate through many possible c1 . . . c` to find one that
satisfies the relation, requiring roughly 2`−1 iterations. This allows one to forge a single signature
without obtaining the private keys.

An alternative method for forging signatures is to factor the RSA modulus N , obtain the private
keys, and then use these to sign messages. The runtime of this procedure is dominated by the time
required to factor the RSA modulus N .

The cost of solving a single puzzle, then, is approximately 2`−1 operations. However, an adversary
can solve n puzzles in time tfact(k) + n · tSign, where tfact(k) is the time required to factor a k-bit
RSA modulus and tSign is the time required for a signature. For sufficiently large n, this cost of
solving n puzzles will be less than n times the cost of solving a single puzzle. For example, this is

9And if H is an iterated hash function, we only need to hash dlog2 ne2`/2 values using Joux’s multicollision attack
[Jou04].
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the case with ` = 20, k = 445, tfact(k) = 246, tSign < 2`, and n ≥ 227.

C.1 Background

Definition 7 (Signature scheme). A signature scheme is a tuple S of the following algorithms:
• KeyGen(1`): (p.p.t.) Returns public key pk and private key sk.
• Sign(sk,m): (p.p.t.) Returns σ, a signature of m under sk.
• Verify(pk,m, σ): (d.p.t.) Returns true or false.

Definition 8 (Existential unforgeability [GMR88]). Let S be a signature scheme, A be a probabilistic
algorithm, and H : {0, 1}∗ → {0, 1}` be a hash function. The experiment is the following algorithm:
• ExecufcmaS,H (`,A): Set (pk, sk)← KeyGen(1`). Set (m,σ)← AH,Sign(sk,·)(pk). If Verify(pk,m, σ) =

true and m was not queried to Sign(sk, ·), return true, otherwise return false.
Define

Advufcma
S,H (`, t) = max

A:t
Pr
(
ExecufcmaS,H (`,A) = true

)
,

where the maximum is taken over all probabilistic algorithms A running in time at most t. A signature
scheme S is said to be existentially unforgeable under a chosen message attack if Advufcma

S,H (`, t) is
a negligible function of ` for all t ∈ poly(`).

Bellare-Miner signature scheme. The Bellare-Miner signature scheme (without forward security)
SBM is defined as the tuple consisting of the following three algorithms [BM99b]. 10

• KeyGen(1`): Let k = k(`) be the size of an RSA modulus required for security parameter
`. Pick random distinct k/2-bit primes p, q ≡ 3 mod 4. Set N ← pq. For i = 1, . . . , `,
set Si ←R Z∗N , Ui ← S4

i mod N . Return public key pk = (N,U1, . . . , U`), private key
sk = (N,S2

1 , . . . , S
2
` ).

• Sign(sk,m): Pick R ←R Z∗N . Set Y ← R2 mod N , c1 . . . c` ← H(Y,m), Z ← R ·
∏`
i=1 S

2ci
i

mod N . Return (Y,Z).
• Verify(pk,m, (Y, Z)): Set c1 . . . c` ← H(Y,m). Return true if Z2 = Y ·

∏`
i=1 U

ci
i mod N , or

false otherwise.
As a corollary of Theorem 4.2 of Bellare and Miner [BM99b], we have that, for an adversary running
in time t usingat most qH calls to H and at most qSign calls to Sign,

Advufcma
SBM,H(`, t, qH , qSign) ≤ 2qH

(
2−` +

√
2`Advfact(k, t′)

)
+ 22−kqHqSign , (2)

where t′ = 2t + O(k3) and Advfact(k, t) is the probability that a probabilistic algorithm run-
ning in time t can factor a k-bit RSA modulus N = pq where p, q ≡ 3 mod 4 are random
distinct k/2-bit primes. We take Advfact(k, t) ≤ t/tfact(k), where tfact(k) = 2s(k) and s(k) =(
64
9

)1/3
log2(e)(k ln 2)1/3(ln(k ln 2))2/3 − 14 [BCC+08, §6.2].

C.2 In the Chen et al. model

In this section, we specify the puzzle construction fully in the model of of Chen et al. [CMSW09a]
and prove that it satisfies their definition of a difficult puzzle.

10In fact, the Bellare-Miner scheme is a forward secure signature scheme, in which signing keys can evolve over time
and the compromise of the current signing key does not allow forging of signatures for previous time periods. We do
not require this property, but fortunately the security definition reduces to the standard one when the number of time
periods is taken to be 1, which we assume in the rest of the paper. Our main motivation for choosing this scheme as
the basis of our puzzle is that it is a Feige-Fiat-Shamir-like signature scheme with a proof of security.
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Puzzle construction. Let SBM be the Bellare-Miner signature scheme C.1. Define the following
algorithm:
• SBMForge(pk,m): Set c1 . . . c` ←R {0, 1}` and U ←

∏`
i=1 U

ci
i mod N . Repeat the following:

set Z ←R Z∗N , Y ← Z2/U mod N ; until H(Y,m) = c. Return (Y, Z).
In the model of Chen et al. [CMSW09a, Definition 1], a client puzzle is defined as a tuple of

algorithms. Let MAC : {0, 1}`×{0, 1}∗ → {0, 1}` be a family of keyed message authentication codes.
The following algorithms define SBMPuz, which is the puzzle from Section 2 using the Bellare-Miner
signature scheme in the language of Chen et al. [CMSW09a] (as we describe in Appendix A.3).
• Setup(1`): Set (pk, sk) ← KeyGen(1`), pk ← (N,U1, . . . , U`), and sk ← (N,S2

1 , . . . , S
2
` ). Let

sSpace← {0, 1}`, diffSpace← {2`}, strSpace← {0, 1}∗, puzSpace← strSpace×{0, 1}`×{0, 1}`,
and solnSpace← Z∗N×Z∗N . Set mk ←R {0, 1}`. Set Π← pk and params← (sSpace, puzSpace,
solnSpace, diffSpace,Π). Return (params, (sk,mk)).
• GenPuz((sk,mk), d, str): Set m←R {0, 1}` and σ ← MACmk(str,m). Return (str,m, σ).
• FindSoln((str,m, σ), t): Run SBMForge(pk,m) until time t has elapsed or it returns a value

(Y, Z), whichever comes first. Return (Y,Z).
• VerAuth((sk,mk), (str,m, σ)): Return true if σ = MACmk(str,m) or false otherwise.
• VerSoln((str,m, σ), (Y, Z)): Set c1 . . . c` ← H(Y,m). Return true if Z2 ≡ Y ·

∏`
i=1 U

ci
i

mod N , or false otherwise.
It can be seen by inspection that this puzzle satisfies the correctness requirement of Chen et al.
[CMSW09a].

Security experiment. There are two security experiments defined by Chen et al.: unforgeability
of puzzles and difficulty of solving puzzles. If MAC is a secure family of message authentication
codes, then it is straightforward to show that the puzzle defined above satisfies the unforgeability
requirement. We focus on the difficulty of solving puzzles since that is what motivates our work on
powerful adversaries as described in Section 2.

For the purposes of the security experiment ExecdiffA,SBMPuz,d(`), we define the algorithm
• CreatePuzSoln(str): Set (str,m, t)← GenPuz((sk,mk), d, str) and (Y,Z)← Sign(sk,m). Re-

turn ((str,m, t), (Y,Z)).
Fix d = 2`. We can see that A wins ExecdiffA,SBMPuz,d(`) for puz† = (str†,m†, t†) with soln† =

(Y †, Z†) if and only if (Y †, Z†) is a signature of m† in the SBM signature scheme. Moreover, since
every m in every puzzle generated by CreatePuzSoln was generated randomly, as was m† in the call
to GenPuz(s, d, str†), we have that, except with negligible (in `) probability, m† was never an input
to Sign(sk, ·). Thus, (Y †, Z†) is a forgery for m† under chosen message attack. For an adversary A
running in time at most t, we therefore have

Advdiff
A,SBMPuz,d(`) ≤ Advufcma

SBM,H (`, t+O(qC), qH , qC) + negl(`)

≤ 2qH2−` + 2qH

√
2`Advfact(k, 2t+O(qC) + k3) + 22−kqHqC + negl(`) , (3)

where qC is the number of CreatePuzSoln queries issued and qH is the number of hash function
queries issued by A, and k is the size of the RSA modulus. This is a monotonically increasing
function of t, so it satisfies the puzzle difficulty definition of Chen et al. [CMSW09a, Definition 3].
Moreover, it is of the form that one might expect for a reasonable client puzzle: approximately
t/d, where t is the running time of the adversary and d is the difficulty of the puzzle. The random
oracle-based puzzle from Chen et al. [CMSW09a, Appendix C] is of this form as well.
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We want the expression in equation (3) to be approximately bounded by qH/2
`−1+negl(`). To do

so requires each term in equation (3) to be (approximately) less than or equal to qH/2
`−1+negl(`). For

the first term, it follows vacuously. For the second term, it is satisfied when s(k) ≥ 1+log2 `+2 log2 t,
where s(k) is as defined in Appendix C.1.

Attack by powerful adversaries. For an example that allows an attack by a powerful adversary,
we will choose the difficulty parameter ` and the size of the RSA modulus k = k(`) such that both
forging procedures satisfy the puzzle difficulty requirement. However, an adversary who uses the
factoring approach will be able to solve many puzzles for less than the cost of solving those puzzles
individually using the algorithm SBMForge. In particular, an adversary using the factoring approach
can solve n puzzles in time roughly tfact(k) + ntSign, whereas the cost to solve n puzzles individually
should be n2`−1. When ` = 20, equation (2) requires s(k) ≥ 46 and hence k ≥ 445. This means that
an adversary can solve n puzzles in time 246 + ntSign, which, when tSign < 220, is less than n · 220 for
n ≥ 227.

C.3 In the Stebila and Ustaoglu model

For the Stebila and Ustaoglu model, a puzzle construction using digital signatures would require a
strongly unforgeable signature scheme [ADR02]. A few such schemes exist [ADR02, BSW06, BS07b]
and could be used generically to construct a DoS countermeasure in which the solution to a puzzle
is a forgery of a signature on the puzzle. This would result in a countermeasure that satisfies the
Stebila and Ustaoglu definition, but for which a powerful adversary can solve n puzzles for less than
n times the cost of solving a single puzzle.

C.4 In this paper’s model

This signature-forgery-based puzzle that we constructed to demonstrate a weakness in existing
puzzle difficulty definitions does not satisfy our definition of strong puzzle difficulty from Section 3.2.
Recall that there are two strategies to solve the signature-forgery-based puzzles: (1) construct a
forgery on a single message by finding a preimage in the hash function, or (2) factor the RSA
modulus to recovery the signing key and then sign the message. Suppose we have chosen our system
so that the amount of time it takes to perform (1) is d = 220 operations, the time it takes to factor
the RSA modulus is 2k = 246 operations, and the time it takes to sign a message is tSign < d = 220.
Suppose A is asked to solve n puzzles in time t. If t < 246 + n · tSign, then A employs strategy (1),
otherwise it employs strategy (2). Therefore,

Pr
(

Execint-str-diffA,n,220,SBMPuz(46) = true
)
≥ min {1, f(t, n)} .

where

f(t, n) = max

{
t

n220
,

t

246 + n · tSign

}
.

We observe that f(t, n) > f(t/n, 1) for n > 227 since tSign < d = 220:

f(t, n) =
t

246 + ntSign
≈ t

ntSign
>

t

220n
=
t/n

220
= f(t/n, 1) .

As a result, the signature-forgery-based puzzle is not an εd,k,n(·)-strongly difficult interactive puzzle
according to Definition 2 for εd,k,n(t) = t/dn+ negl(k) (or any constant multiple thereof).
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D Difficulty of the SPuz Hash Function Inversion Client Puzzle

In this appendix, we present a proof that the SPuz hash function inversion client puzzle from
Sect. 3.3 is a strongly-difficult interactive client puzzle in the random oracle model [BR93c].

Theorem 1. Let H be a random oracle. Let εd,k,n(q) =
( q+n
n2d

)n
+ negl(k). Then SPuzH is an

εd,k,n(q)-strongly-difficult interactive client puzzle, where q = q1 + q2 + · · ·+ qn and qi is the number
of distinct H queries made by A of the form H(·‖x′′i , d, stri) where puzi = (x′′i , yi).

Proof. For the Execint-str-diff experiment, we need to specify how the GetSoln oracle obtains a
solution to a generated puzzle.
• GetSoln(str, (x′′, y)): If (x′′, y) was recorded by GetPuz, then return x′, where x = x′||x′′ was

the random bit string chosen in GenPuz for this puzzle; otherwise, return ⊥.
The proof proceeds using a counting argument. Fix d. Let A be a probabilistic algorithm.

Clearly, there is a strategy for A to win the experiment with probability 1, by making at most n2d

calls to H: for each of n puzzles puzi = (x′′i , yi), try all strings z of length d until one is found such
that H(z||x′′i , d, stri) = yi. In the random oracle model, this is essentially the optimal strategy.

Let Zi = {zi,1, . . . , zi,qi+1} ⊆ {0, 1}∗ with |Zi| = qi + 1 (that is, the set contains no repetitions).
Let Ei,j be the event that H(zi,j) = yi for j = 1, . . . , qi. Since the output of H is independent and
uniformly random, and since xi was chosen independently and uniformly at random, we have that
Pr(Ei,j) ≤ 2−d. Let Fi be the event that there exists zi,j ∈ Zi such that H(zi,j) = yi; in other words,

Fi =
∨qi+1
j=1 Ei,j . Let qi ∈ {0, . . . , d} be the number of queries issued to H for puzzle i = 1, . . . , n, so

that q =
∑n

i=1 qi. Then

Pr (
∧n
i=1 Fi) =

∏n
i=1 Pr(Fi) =

∏n
i=1 Pr

(∨qi+1
j=1 Ei,j

)
≤
∏n
i=1

∑qi+1
j=1 Pr(Ei,j)

=
∏n
i=1

qi+1
2d

≤
(∑n

i=1(qi+1)

n2d

)n
=
( q+n
n2d

)n
We note that any adversary making qi queries to H has at best a probability of (qi + 1)/2d of

returning a value zi that satisfies H(zi) = yi: checking qi values using H, and, if that fails then
guessing at random one of the remaining values. Thus,

Pr
(
Execint-str-diffA,n,d,SPuz (k) = true

)
≤ Pr

(
n∧
i=1

Fi

)
≤
(
q + n

n2d

)n
+ negl(k) = εd,k,n(q) .

Finally it is easy to see that
∣∣ε2d,k,n(q)− ε2d,k,1(q/n)

∣∣ ≤ negl(k) for all n and q such that ε2d,k,n(q) ≤ 1.
Thus, SPuz is an ε2d,k,n(q)-strongly-difficult interactive client puzzle.

E Specification and Difficulty of the Hashcash Client Puzzle

In this appendix, we specify Hashcash as a client puzzle in the language of Sect. 3.1 and prove that
it is a strongly-difficult non-interactive client puzzle.

A Hashcash stamp [Bac04] is a string of the form

ver:bits:date:resource:[ext]:rand:counter

• ver is a version identifier and is fixed to 1;
• bits is the “value” of the stamp: the number of zeros at the start of the output;
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• date is the date the stamp is intended for, in the format YYMMDD[hhmm[ss]];
• resource is the name of the resource this stamp is intended for; for email, this is the recipient’s

email address, such as test@example.com;
• ext (optional) is reserved for future extensions and is presently not supported;
• rand is a random string in Base64∗, chosen by the client to avoid collisions with other senders’

stamps;
• counter is a string in Base64∗ that is the solution to the puzzle.

Here, Base64 = {a, . . . , z,A, . . . ,Z, 0, . . . , 9,+, /,=}.
Let H : {0, 1}∗ → {0, 1}k be a hash function. Define HashcashH to be the following tuple of

algorithms:
• Setup(1k): Set sSpace ← {⊥}, diffSpace ← {0, 1, . . . }, strSpace to be the set of strings of

the form ver:bits:date:resource where ver = 1, bits ∈ diffSpace, date is a correctly-
formatted date as specified above, and resource is a correctly-formatted email address,
puzSpace← strSpace× Base64∗, and solnSpace← Base64∗. Set s←⊥.
• GenPuz(⊥, d, str): Set rand ←R Base64k and puz ← str:rand.
• FindSoln(str, puz, t): For i from 0 to max{t, 2d}: set soln← i (in Base64); if H(puz:soln)[1...d]

= 0 . . . 0 then return soln.
• VerSoln(⊥, str, puz, soln), where puz = ver:bits:date:resource::rand: If any of the follow-

ing checks fail, return false: check ver = 1, bits ≥ d, date is valid, resource is valid (for the
application), puz:soln is not in the double-spend database, and H(puz:soln)[1...bits] = 0 . . . 0.
Store puz:soln in the double-spend database. Return true.

Theorem 2. Let H : {0, 1}∗ → {0, 1}k, k ≥ d, be a random oracle. Let εd,k,n(q) = q+n
n2d

. Then
HashcashH is an εd,k,n(q)-strongly-difficult non-interactive client puzzle, where q is the number of
distinct queries made by A to H.

Remark. Theorem 2 assumes that the hash function H behaves as a random oracle. It would
be desirable to use a more concrete hash function property [RS04a], such as preimage resistance.
However, the non-interactive nature of the definition seems to preclude such a security reduction.

Proof. Fix d. Let x1, . . . , xq be the q distinct queries issued by A to H. Note that, although there is
no shortcut for the challenger to respond to CreatePuzSoln queries, we only need to count A’s queries
to H since H is a random oracle. Let Ei be the binary random variable corresponding to the event
that xi is a valid Hashcash stamp — in other words, Ei = 1 if and only if H(xi)[1...d] = 0 . . . 0. Then

Pr(Ei = 1) ≤ 1/2d. Since H is a random oracle and the xi are distinct, the Ei are independent.
Let F =

∑q
i=1Ei. By Markov’s inequality, Pr(F ≥ n) ≤ E(F )/n. Since F is a binomial random

variable with parameters q and p ≤ 1
2d

, we have that E(F ) ≤ q/2d, and hence Pr(F ≥ n) ≤ q/n2d.
The best strategy for an adversary is to make q queries to H to attempt to find valid Hashcash

stamps, and then, if it has found less than n such stamps, to return random guesses (without
checking the oracle) for any remaining stamps; there are at most n such guesses made. Hence,

Pr
(
Execnint-str-diffA,n,d,HashcashH

(k) = true
)
≤ q + n

n2d
= εd,k,n(q) .

Finally, we note that εd,k,n(q) = q+n
n2d

= εd,k,1(q/n) and thereby satisfies |εd,k,n(q)− εd,k,1(q/n)| ≤
negl(k). Thus, HashcashH is an εd,k,n(q)-strongly-difficult non-interactive client puzzle.
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F Denial of Service Resistance of D(P )Puz,d,MAC,k

In this section, we give a proof of Theorem 3, that D(P )Puz,d,MAC,k is a DoS-resistant protocol.

Theorem 3. Let P be a protocol such that SAction1P does not involve any expensive opera-
tions. Suppose that Puz is an εd,k,n(t)-strongly-difficult interactive puzzle with long-term secret
key space sSpace = {⊥} and that MAC is a family of secure message authentication codes. Then
D(P )Puz,d,MAC,k is an ε′d,k,n(t)-denial-of-service-resistant protocol, for ε′k,n(t) = εd,k,n(t+ t0qSend) +
negl(k), where qSend is the number of Send queries issued and t0 is a constant depending on the
protocol, assuming t ∈ poly(k).

Proof. The argument for the first part of Definition 3 proceeds using a sequence of games [Sho06].
The proof idea is relatively straightforward. First, using a hybrid argument in games G1, . . . , Gm,
we replace the message authentication code MAC with a private list of authenticated messages
and reject any messages not on that list; if an adversary can distinguish this from the original
protocol, then we have a forging algorithm for MAC. Next, in game Gm+1, we use the fresh accepted
presessions in the protocol as solutions to the strongly-difficult interactive client puzzle game.

Game G0. Let G0 denote the original protocol D(P )Puz,d,MAC,k. Then

Pr
(

ExecdosA,n,D(P )Puz,d,MAC,k
(k) = true

)
= Pr

(
ExecdosA,n,G0

(k) = true
)
. (4)

Game Gi, for i = 1, . . . , |Servers|. We now describe a sequence of games G1, . . . , Gm, where m =
|Servers|. First, let Ŝ∗1 , . . . , Ŝ

∗
m be a random permutation of Servers. Let Servers∗i = {Ŝ∗1 , . . . , Ŝ∗i−1},

and let Servers
∗
i = {Ŝ∗i+1, . . . , Ŝ

∗
m}. Initialize the experiment ExeceucmaMAC,k with oracle MAC∗(·).

We define game Gi, for i = 1 . . . ,m, as the same game as Gi−1 with the following modifications:
• ServerSetup(Ŝ): If Ŝ 6= Ŝ∗i , then set mkŜ ←R {0, 1}k and ρŜ ← mkŜ , otherwise set ρŜ ←⊥.

• Expose(Ŝ): If Ŝ 6= Ŝ∗i , then return mkŜ , otherwise abort.

• Send(Ŝ, i,M): The following lines from Figure 1 are replaced:
7. If Ŝ 6= Ŝ∗i , then σ ← MACmkŜ (str, puz); otherwise, set σ ← MAC∗(str, puz). If Ŝ ∈

Servers∗i ∪ Ŝ∗i , then add (str, puz, σ) to MACListŜ .

11. If Ŝ ∈ Servers∗i and (str, puz, σ) 6∈MACListŜ , then reject; else if Ŝ = Ŝ∗i and (str, puz, σ)

6∈MACListŜ , then try ((str, puz), σ) as a MAC∗ forgery; else if Ŝ ∈ Servers
∗
i , then reject

if σ 6= MACmkŜ (str, puz).

Let Ei be the event that Expose(Ŝ∗i ) is not called and Ŝ∗i receives a message in line 11 that is a
valid MAC tag but is not in MACListŜ∗i

. Then, when Ei does not occur, any adversary that can

distinguish the probability distribution of messages presented in game Gi−1 from the distribution of
messages presented in game Gi can be used as a MAC∗ forger. Hence,∣∣∣Pr

(
ExecdosA,n,Gi−1

(k) = true
)
− Pr

(
ExecdosA,n,Gi(k) = true

)∣∣∣ ≤ Pr(Ei)Adveucma
MAC,k(qSend, t) , (5)

where qSend is the number of Send queries issued in game Gi and t is the running time of A plus a
constant multiple of qSend. Note that since a valid adversary A against ExecdosA,n,Gi must leave at
least one server unexposed, we have that Pr(Ei) ≥ 1/|Servers|.
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Game Gm+1. Initialize the experiment Execint-str-diffGm+1,nPuz,d(k) with oracles GetPuz(·) and GetSoln(·, ·).
We define game Gm+1 as the same game as G0 with the following modifications:
• Send(Ŝ, i,M): The following lines from Figure 1 are replaced:

6. puz ← GetPuz(str).
7. σ ← MACmkŜ (str, puz); add (str, puz, σ) to MACListŜ .
9. soln← GetSoln(str, puz).

11. Reject if (str, puz, σ) 6∈MACListŜ .

Let {(Ĉi, Ŝi, τi)}, where τi = (Ni, N
′
i , . . .i , puzi, solni), be the set of n fresh presessions accepted

in Gm+1. Then return the set {(stri, puzi, solni)}, where stri = (Ĉi, Ŝi, Ni, N
′
i , . . .i), as the set of

puzzle solutions in Execint-str-diffGm+1,n,Puz,d(k).
First, we note that the probability distributions of messages in games Gm and Gm+1 are identical,

so
Pr
(
ExecdosA,n,Gm(k) = true

)
= Pr

(
ExecdosA,n,Gm+1

(k) = true
)
. (6)

Next, we need to compute Pr
(

ExecdosA,n,Gm+1
(k) = true

)
. By the construction of Gm+1, this

happens precisely when Execint-str-diffGm+1,n,Puz,d(k) = true, since all puzzle-solution pairs received by Gm+1

correspond to puzzles generated by GetPuz. Hence,

Pr
(

ExecdosA,n,Gm+1
(k) = true

)
≤ Pr

(
Execint-str-diffGm+1,n,Puz,d(k) = true

)
.

Since each presession in question is fresh, there is no client instance with a matching conversation.
In other words, there was no query to GetSoln with str, puz. Thus, if the solution is valid in the
presession, then it is also valid for the Puz challenger.

Let t be the running time of A, let t0qSend be the running time of Gm+1 excluding A (where
t0 is some constant specified by the protocol), and let t′ = t + t0qSend. Then, since Puz is an
εd,k,n(t)-strongly-difficulty interactive puzzle, we have that

Pr
(

ExecdosA,n,Gm+1
(k) = true

)
≤ εd,k,n(t′) . (7)

Combining equations (4) through (7), we have that

Pr
(

ExecdosA,n,D(P )Puz,d,MAC,k
(k) = true

)
≤ εd,k,n(t′) + |Servers| ·Adveucma

MAC,k(qSend, t
′) ,

where qSend is the number of Send queries issued and t′ = t+ t0qSend, where t is the running time of
A and t0 is some constant specified by the protocol. Assuming Adveucma

MAC,k(qSend, t
′) ∈ negl(k), we

have
Pr
(

ExecdosA,n,D(P )Puz,d,MAC,k
(k) = true

)
≤ εd,k,n(t′) + negl(k) .

This shows part 1 of Defintion 3. Part 2 follows by inspection on Figure 1, under the assumption
that none of the steps on lines 3–7 and 11–14 are expensive. Thus, D(P )Puz,d,MAC,k is an εd,k,n(t′)-
DoS-resistant protocol.
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