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Abstract

One of the research fields at the Institute for Simulation and Software Technology at the German
Aerospace Center (DLR) , is to discover new concepts which provide reliability and trustwor-
thiness in software applications [1, 2]. Since today’s process operations in distributed systems
are fairly complex, recording all actions is critical in order to ensure reliability and constitute
trust in the systems.

One example application, developed by the department of Intelligent and Distributed Sys-
tems in collaboration with the German Space Operations Center (GSOC), is the Backend Cat-
alog for Relational Debris Information (BACARDI) [3]. Its purpose is to collect and store
information about more than ten million objects in orbit around earth, measured by various
sensor networks. Before storing the data additional calculations like size, velocity, orbit, and
collision detection with other objects, are performed on each object in a distributed manner. Col-
lecting provenance about involved steps and actors is vital to prove the reliability of the events,
especially to detect possible collisions. On the one hand it is about collecting provenance, on the
other hand it is about protecting provenance from unintended or intended changes, since only
unchanged data can be utilised for trustworthy predictions and safe inference in BACARDI or
similar systems [3].

After Nakamoto proposed the blockchain technology in his paper, new types of tamper
resistant and distributed data storage techniques have evolved from it [4]. These technologies can
be applied to vital provenance data to protect it from possible alternation, even in distributed
systems. Therefore, the main subject of this thesis is to elaborate and survey concepts for
storing provenance data in blockchain-like databases. These concepts are analysed in terms
of their advantages and disadvantages, tamper-resistance, and possible use cases, followed by
a proof-of-concept implementation of all concepts in one particular blockchain-like database.
Subsequently, performance measurements are conducted on each implementation followed by an
analysis with respect to the concept design.
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Chapter 1

Introduction

1.1 Motivation and Problem Discussion

Today’s fast growing, yet malleable data sets – which can be copied, altered or spread in various
ways by new technologies – highlight the inevitable need to track the origin and lineage of such
data, to provide trust. This is especially true, if data lineage about tasks and processes in
distributed systems is collected and stored by many agents at the same time. Proof of integrity
has a substantial part in creating trust in such data, since in this case only unchanged data
is valid, and therefore, trustworthy for further and safe inference. A widely known method to
check, if data in general has remained unchanged since it was stored or processed, is to calculate
cryptographic hashes from the data, before saving or processing it. This hash is kept secret or
announced publicly, depending on its usage. Later on, one can prove the integrity of the data
by repeating the process and then comparing the result with the previously stored hash. If both
hashes have the same value, the data can be considered as valid and, therefore, trustworthy.

However, “How to Break MD5 and Other Hash Functions” by Wang and Yu has shown that
this process can produce hash collisions which might enable attackers to alter the data, but
still ensure that the hash remains the same. In this case, one would consider the data as valid
even if it had been changed. It is believed that current hash methods, like SHA256 or SHA512,
are solving these problems. Yet, recent findings show that with steady rising computing power,
these methods could be considered insecure as well [6, 7]. This is especially true if one wishes
to guarantee the integrity of a growing data set over a very long period, which may exceed the
save lifespan of the used hashing algorithms. An extended method to provide trust in data
or hashes itself is to sign them with digital signatures. This technique, known as key signing,
enables one to prove that only trusted third parties worked with the data and thus the data
may be considered as trustworthy; still, neither of these methods is able to provide tamper-
resistant data. With the invention of cryptographic Merkle-Trees by Merkle in his work “Secrey,
Authentication, and Public Key Systems” in 1979, several storing concepts were proposed which
led to more tamper-resistant data structures in general [8].

However, without having a byzantine fault tolerant system, a trustworthy data store in a dis-
tributed fashion is not achievable [9]. By combining peer-to-peer networking with Merkle trees,
asymmetric cryptography, time-stamping and proof-of-work, Nakamoto proposed the blockchain
as one solution [4]. His concept evidently creates trust and authenticity by providing a tamper-
resistant distributed database for maintaining the ownership of digital money, including the
complete lineage of all occurred transactions. Derivative concepts of distributed and tamper-
resistant storage systems, with different aspects in mind, have evolved from this first blockchain.
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2 1. Introduction

Since provenance and blockchain are focused on the lineage of data the combination of both
worlds may lead to more tamper-resistant provenance databases in distributed systems. The
following chapters will propose an integrated approach to achieving tamper-resistant storage
systems for provenance data with the use of blockchain-like databases.

1.2 Methodical Approach

In 2013, the World Wide Web Consortium (W3C) released the PROV standard for generating
coherent and machine readable provenance data along with a data model [10, 11]. Based on its
core definitions, this document will discuss and offer three concepts of how to secure provenance
data by storing it into a tamper-resistant blockchain database. The analysis of these concepts
will be done with respect to the following research questions:

What are the possible concepts for storing provenance in blockchain-like data-
bases?

For each concept an explanation is given along with the mapping between the core PROV Data
Model (PROV-DM) concepts and the blockchain database. Each mapping is presented with
similar data sets to illustrate the differences between the concepts.

What are the influences of the concepts regarding tamper-resistance and se-
curity of the blockchain?

Each concept will be examined with respect to the usual blockchain concepts. This will highlight
advantages and disadvantages in the concepts in terms of tamper-resistance and security.

What are the main differences between the concepts in terms of provided
trustworthiness?

With answering the former questions a conclusion about the trustworthiness for each concept is
given.

What are appropriate use cases for the concepts?

Each concept will be concluded with guidance on when to use which concept in a given environ-
ment, and use case.

1.3 Structure

Chapter 2 In the second chapter the term provenance, and the PROV standard is introduced.
Further on, a distinction between the terms immutable and tamper-resistant is given. Thereafter,
an explanation of the blockchain technology, including an analysis of its possibilities to store data,
is given along with a discussion regarding tamper-resistance. Lastly, alternative blockchains and
blockchain-like databases are discussed in the same context

Chapter 3 The third chapter discusses previous works, which have already proposed solutions
to data storage in blockchains, or similar data structures. Hereafter, a distinction to this work
will be provided to the reader.
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Chapter 4 In chapter four the three concepts are proposed along with a discussion of the
former mentioned research questions. The chapter is concluded with comparison of the three
concepts.

Chapter 5 Chapter five first describes the requirements and definition, followed by the de-
rived software architecture of concepts. Afterwards important aspects of implementation are
highlighted for each concept.

Chapter 6 Chapter six first describes the test environment used to test the implemented
concepts. Subsequently, the test procedure is explained. In the last section the measurements
are analysed for each concept with a strong focus on performance. The chapter is concluded by
a summary and a general comparison of the concepts.

Chapter 7 Finally, an overview about the achieved results is given and further research topics
are mentioned.
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Chapter 2

Background

2.1 Provenance

2.1.1 Definition

According to Oxford Dictionaries and Wikipedia, the term provenance originated from the
French word provenir and can be translated as ”to come from” [12, 13]. It was originally used
in relation to works of art, describing the ownership and locations of an object [13, 12]. But
nowadays the term is used in many research fields, including computer science. As stated by
Moreau in “The Foundations for Provenance on the Web”:

“Provenance [. . .] is becoming an important concern for several research communities
in computer science, since it offers the means to verify data products, to infer their
quality, to analyse the processes that led to them, and to decide whether they can
be trusted.”[14]

Since this document focuses on the PROV standard to express provenance data, the W3C
definition of the term provenance will be used:

“Provenance is information about entities, activities, and people involved in produc-
ing a piece of data or thing, which can be used to form assessments about its quality,
reliability or trustworthiness.”[10]

2.1.2 Distinction to Metadata

The term metadata is used to describe objects by their properties, for example the size or author
of a file [15]. Some of these properties are related to provenance. The file size is a property that
gives direct information about the content itself, in contrast to the author who was involved
in editing the file. In conclusion, provenance is as a subset of metadata, which only contains
information describing the lineage of data [15].

2.2 PROV Standard and PROV Data Model

2.2.1 Definition

As introduced before, the PROV standard was released by the W3C Provenance Working Group,
in April 2013 [10]. The PROV Data Model superseded the older OPM Provenance Model (OPM),
which was originally initialised on the first International Provenance and Annotation Workshop
(IPAW) and released to the public in December 2007 [16, 17, 18]. According to the W3C, the
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6 2. Background

Table 2.1: Overview PROV Attributes [11]

Attribute Allowed In Value

prov:label Any construct A value of type xsd:string
prov:location Entity, Activity, Agent, Usage, Generation,

Invalidation, Start and End
A value

prov:role Usage, Generation, Invalidation, Association,
Start and End

A value

prov:type Any construct A value
prov:value Entity A value

model’s purpose is to translate domain or application specific provenance representations into
a generic model. This in turn can be used to exchange, process, and reason over the data in
heterogeneous systems, like the web [11].

In addition to the syntax of PROV-DM, the Provenance Working Group defined formal se-
mantics which allow the mapping of the data model into different representations [19]. The most
important are: PROV Ontology (PROV-O), PROV Extensible Markup Language (PROV-XML)
and PROV Notation (PROV-N) [20]. PROV-O expresses the model with the Web Ontology Lan-
guage in Version 2 (OWL2) and the Ressource Description Framework (RDF), while using the
RL profile of OWL2 [21]. This representation is intended for reasoning over provenance data,
while leaving five relations of the PROV-DM out of scope [21]. The PROV-XML representation
is intended for exchange of provenance data across systems [22]. The same intention has recently
submitted PROV JavaScript Object Notation (PROV-JSON) by Huynh and et al., which so far
has the status of a member submission to the W3C [23]. PROV-N is a specialised notation
which can be used to express provenance data in a more readable format [24]. It is mostly used
in examples throughout the standard, as well as in this work. Another important element of
the model are constraints, which are used to validate provenance data against the standard by
a predefined set of rules [25]. Since PROV is used as foundation for mapping provenance data
into a blockchain-like database, a detailed description based upon the PROV-DM: The PROV
Data Model is provided in the next subsections [11].

2.2.2 Basic Elements

The PROV standard defines some basic elements which are used in any representation and data
model along with the standard. These elements are firmly explained below. A more detailed
description can be found in chapter 5.7 of the PROV Data Model Specification [11].

Namespaces Namespaces are identified by an Internationalized Resource Identifiers (IRI) as
defined in RFC 3987 [26]. The PROV namespace defaults to the IRI http://www.w3.org/

ns/prov# and maintains all of its own concepts, while avoiding naming collisions with other
standards. For convenience in various representations the base IRI is mapped to a prefix, which
for PROV is usually prov. For example, the absolute IRI http://www.w3.org/ns/prov#agent
is then mapped to prov:agent.

Qualified Name According to PROV-DM, qualified names consists of a namespace, which
could be shortened by a prefix, and a local name. If no namespace or prefix is denoted it refers
to the default namespace. Therefore, a qualified name must be a valid IRI, but not necessarily
in the PROV namespace.

http://www.w3.org/ns/prov#
http://www.w3.org/ns/prov#
http://www.w3.org/ns/prov#agent
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Figure 2.1: PROV-DM Core Classes [21]

Identifier Identifiers are defined as valid qualified names and considered unique. Hence, if
one identifier appears more than once in a document it must be the same thing or object.

Attributes and Values Attributes are used to attach further information to objects. These
attributes are predefined in the PROV namespace (Table 2.1). Other attributes, that do not
follow this naming convention are not interpreted. Values assigned to attributes are constants
of type, string, number, time, qualified name, IRIs or encoded binary data [11]. However, the
standard itself recommended preferring compatible RDF types or qualified names [11, 27].

2.2.3 Types

As briefly mentioned in the definition of the W3C, the use of PROV-DM is to express the
process of generating entities with activities by involved agents. The types entity, activity,
and agent together with the relations between them, form the core concepts of the PROV-DM
(Figure 2.1). Since every component is modelled around these three types, a description along
with each respective formal PROV-N notation is given below.

Entity An entity is the prime type and concept; it is considered the object or more general
thing one wants to describe provenance about. In terms of the model an entity can be a physical,
digital or conceptual thing, as long as one can collect provenance about it [11]. As depicted in
Figure 2.1, an entity is usually denoted as a yellow coloured ellipse. The entity is expressed in
PROV-N as entity(id, [attr1=val1, ...]), where id is the unique and mandatory identifier
followed by an optional set of attribute-value pairs. [11] The example states an instance of an
entity with the identifier ul:thesis-stoffers, prov:type of ul:mastersthesis.

entity(ul:thesis -stoffers -16032017 ,

[prov:type="ul:mastersthesis "])

Activity The type activity represents actions performed upon entities, while other entities
may be created in this process. Possible actions, among others are: generating, transforming,
or modifying one or more entities [11]. As shown in Figure 2.1, an activity is usually denoted
as a blue rectangle.
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An activity is expressed in PROV-N as activity(id, st, et, [attr1=val1, ...]), where
id is the unique identifier of that activity followed by optional attributes. st and et describe the
start and end time of an activity, while the set of attributes has the same purpose as in an entity.
The following example states an instance of an activity with the identifier ul:worked-on-thesis
and prov:type ul:edit. It was started and completed on the 3th of October 2016.

activity(ul:worked -on-thesis , 2016 -10 -03 T09 :00:00 ,

2016 -10 -03 T09 :30:00 , [prov:type="ul:edit "])

Agent An agent can be considered to be a person or machine who is responsible for an activity.
Therefore, an agent is capable of influencing entities or acting on behalf of other agents. As
depicted in Figure 2.1, an agent is usually denoted as a orange house shaped polygon. An agent
is expressed in PROV-N as agent(id, [attr1=val1, ...]), where id is the unique identifier
followed by an optional set of attribute-value pairs. The following example states an instance of
an agent with the identifier martin-stoffers. The lists of attributes consist of a name Martin

Stoffers, a prov:type of value prov:Person and a registration number of value 3748896.
While prov:type is located in the PROV namespace, the attributes ul:regno and ul:name are
application specific.

agent(ul:martin -stoffers , [ul:regno ="3748896" ,

ul:name=" Martin Stoffers", [prov:type="prov:Person "])

2.2.4 Components

The PROV standard is categorized into six components, which cover different aspects of prove-
nance. A short overview about all components, types and relations is given in Table A.1 attached
to Appendix A. The first three components wrap the core model, while the last three compo-
nents are part of the extended model. The first component deals with entities, activities and
relations to represent generation and usage of entities. Relations for defining start and end of
an activity, as well as invalidation of entities, complete this component. The next component
explains how to model the derivation of entities from others. The third component focuses on
agents and their responsibility and influence on entities, activity and other agents. The fourth
component introduces the concept of bundles, which enables provenance about provenance. The
fifth component five describes how to model alternates of entities. The last component introduces
collections to provide a logical structure to model provenance for groups of entities.[11]

Component 1

The first component of the PROV-DM consists of six concepts, which are expressed as relations
between entities and activities. A Unified Modeling Language (UML) representation of this
concept is depicted in Figure A.1 attached to Appendix A.

Generation Generation is the concept of producing entities with activities. As defined by the
standard, this entity does not exist before its generation and thus cannot be used by another
activity beforehand. Therefore, the generation is considered a relation between both types and is
expressed in PROV-N as wasGeneratedBy(id; e, a, t, attrs). The only required attribute
is the identifier for the generated entity e itself. While each entity must have been created
by an activity a, it is likely that one does not have information about the other attributes.
To allow recording of such processes the standard declares all other attributes as optional,
although at least one must be present. The following example expresses the generation of
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ul:thesis-stoffers by activity ul:worked-on-thesis, while the exact time t and further
attributes are undefined.

wasGeneratedBy(ul:thesis -stoffers -20170316 ,

ul:worked -on -thesis , -)

Usage While generating new entities, an activity might use others in this process. For that
reason the concept of usage is defined in PROV. Similar to generation, it is a relation between
these two types. Its representation is written as used(id; e, a, t, attrs). The specification
of all attributes follows along the rules of generation. An example might be the usage of entity
tr:WD-prov-dm-20111215 in activity ul:worked-on-thesis at a given time t.

used(tr:WD-prov -dm -20111215 , ul:worked -on -thesis ,

2017 -03 -16 T09 :10:00)

Communication The concept, communication, expresses the dependency of one activity onto
another, established by the creation of an entity.

The PROV-N is written as wasInformedBy(id; a2, a1, t, attrs) and implies the ex-
change of an entity generated by activity a1 and used by a2. While both activities must be
declared in the attributes, id and time t are optional. The following example states that the
activity ex:print-thesis is informed by ul:worked-on-thesis, as an entity is generated.

wasInformedBy(ex:print -thesis ,

ul:worked -on -thesis)

Start As previously outlined, an activity can depend on entities, generated by different ac-
tivities. This, however does not imply the existence of that particular activity. Therefore, the
start and generation of an activity can be expressed with the relation wasStartedBy(id; a2,

e, a1, t, attrs). The only required attribute is the identifier of activity a2, which was be-
ing triggered by entity e generated by activity a1 at time t. Following the previous examples,
a valid relation could be the start of an activity ex:print-thesis, triggered trough entity
ul:thesis-stoffers-20170316. The activity involved in generating the entity can be set as
third attribute, which in this case is the activity ul:worked-on-thesis.

wasStartedBy(ex:print -thesis , ul:thesis -stoffers -20170316 ,

ul:worked -on -thesis , 2017 -03 -17 T10 :00:00)

End Similar to the start of an activity the standard defines a relation for its end of existence.
The end of an activity is triggered by an entity, which was in turn is generated by an activity. The
PROV-N notation is written as wasEndedBy(id; a2, e, a1, t, attrs), while all attributes
are defined as in the wasStartedBy relation. Therefore, the only difference in the example, beside
the relation name, is the time when the activity ex:print-thesis was ended.

wasEndedBy(ex:print -thesis , ul:thesis -stoffers -20170316 ,

ul:worked -on -thesis , 2017 -03 -17 T10 :10:00)
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Invalidation The concept of invalidation describes the process of destruction, or expiring of
an entity, by an activity. After invalidating an entity it is no longer available for further use,
but this does not necessary state a complete deletion. It is defined as wasInvalidatedBy(id;

e, a, t, attrs), while only the entity e itself must be declared in the attributes. As shown
in the example, the entity ul:thesis-stoffers is invalided by the activity ul:print-thesis,
since the generated entity is the new valid version of the thesis.

wasInvalidatedBy(ul:thesis -stoffers -20170316 , ex:print -thesis , -)

Component 2

The second component describes four concepts related to derivations of entities from other
entities. As one can see in Figure A.2 attached to Appendix A, all concepts are defined as
relations between entities.

Derivation, Revision, Quotation and Primary Source The process of derivation can
be determined as a result of generating a new entity as an update, revision or quotation of
another entity. This includes the usage of other entity as a main source in the process. Ac-
cording to the standard and explained above, this implies an underlying activity. Any kind
of derivation must be declared with the statement wasDerivedFrom(id; e2, e1, a, g2, u1,

attrs); where the generated entity e2 and the used entity e1 must be declared, while all other
attributes are optional. These attributes are: the activity a generating the entity e1 and, if
known, relations for generation g2 and usage u1. Specific kinds of derivations are expressed
trough a prov:type entry in the optional attributes. As given in the example, a revision
of ul:thesis-stoffers-20170310 can be sub-typed from a derivation using the prov:type
prov:Revision.

wasDerivedFrom(ul:thesis -stoffers -20170316 ,

ul:thesis -stoffers -20170310 , -, -, -,

[prov:type="prov:Revision "])

Component 3

The third component introduces the type agent and relations to model its responsibility for
entities, activities or other agents. Further on, more general relations to express influence are
defined. The four underlying concepts are depicted in Figure A.3 and Figure A.4.

Attribution An agent is attributed to an entity if he was involved in the process of generating
it by using an activity. According to the standard, attribution is expressed as wasAttributedTo
(id; e, ag, attrs). While entity e and agent ag are mandatory, all other attributes are
optional. The following example states that the entity ul:thesis-stoffers-20170316 was
attributed to the agent ul:martin-stoffers.

wasAttributedTo(ul:thesis -stoffers -20170316 , ul:martin -stoffers)

Association Similar to the attribution, the concept association expresses the responsibility
of the agent, but in terms of activities. The relation is defined as wasAssociatedWith(id; a,

ag, pl, attrs) with activity a as mandatory attribute, while all others are optional. The plan
pl is defined as entity with the prov:type prov:Plan, which the agent ag relies on to achieve
some goals. The following example states that agent ul:martin-stoffers is associated with
activity ul:worked-on-thesis, while executed it as part of the plan ul:milestone-1.
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wasAssociatedWith(ul:worked -on-thesis , ul:martin -stoffers ,

ul:milestone -1)

Delegation Delegation models the concepts of responsibility and authority of agents on others.
The relation, written as actedOnBehalfOf(id; ag2, ag1, a, attrs), states that agent ag2
acted on behalf of agent ag1. The activity a represents the process, which agent ag2 executed.
While ag1 and ag2 are mandatory attributes, a and attrs are optional. A simple example is
listed below.

actedOnBehalfOf(ex:print -shop , ul:martin -stoffers ,

ex:print -thesis)

Influence Some entities, activities, or agents may have influence on others which cannot be
modelled with the previous concepts. Therefore, the standard introduced the wasInfluencedBy
relation, which allows the linking of two types. The relation is written as wasInfluencedBy(id;
o2, o1, attrs). The attributes Object o1 and Object o2 could be any of entity, activity, or
agent. They are mandatory, while id and attrs are optional. An example might be the indirect
influence of the agent ul:michael-martin onto the entity ul:master-thesis-stoffers in his
role as supervisor.

wasInfluencedBy(ul:master -thesis -stoffers , ul:michael -martin ,

[prov:role="ul:Supervisior "])

Component 4

Component four relates to the concept of bundles, which are useful if one wants to express
provenance about provenance. The UML representation is pictured in Figure A.5.

Bundle constructor A bundle is defined like a normal entity, but extended with the attribute
prov:type of value prov:Bundle in its attribute list. These entities are then used to link or
merge previously collected provenance to or with other provenance data. For example, all
provenance beforehand can be represented by the bundle ul:master-thesis-stoffers. Later
on this bundle, representing the past work flow on the thesis, was attributed to the agent
ul:university-leipzig.

bundle ul:master -thesis -stoffers

entity(ul:master -thesis -stoffers , [prov:type="prov:Bundle "])

entity(ul:thesis -stoffers -20170316 ,

[prov:type="ul:mastersthesis "])

wasAttributedTo(ul:master -thesis -stoffers ,

ul:university -leipzig)

endBundle
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Component 5

The fifth component introduces concepts for alternation and specialisations of entities, which
are intended to highlight different aspects of the same object in provenance. The concepts are
depicted in Figure A.6.

Specialization A specialised entity shares all aspects with the more generalised entity. The
concept is close to a derived class in Object-oriented programming (OOP), which inherits all
attributes from its parent class. In distinction to the concept derivation, no activity is directly
involved, hence it’s the same object. Specialisation is written as specializationOf(infra,

supra) in PROV-N. An example, is a specific version ul:thesis-stoffers-20170316 of a
more generic entity ul:thesis-stoffers-finished.

specializationOf(ul:thesis -stoffers -20170316 ,

ul:thesis -stoffers -finished)

Alternate The concept, alternate, in contrast to specialised, can be used to link two entities
which share some general aspects but are not considered the same object. An alternate entity
is not influenced by the other entity and is therefore written as alternateOf(e1, e2) without
further attributes. For example, entities of the same document generated in different processes
can be stated as alternates, since both have their own provenance.

alternateOf(ul:thesis -stoffers -20170316 ,

ul:thesis -stoffers -20170310)

Component 6

Component six, shown in Figure A.7, introduces the concept of collections and how to model
membership for it. They are intended to express general provenance for large sets of entities.
This includes evolving of collections itself.

Collection and Membership A Collection is defined as an entity with the additional at-
tribute prov:type of value prov:Collection, hence provenance can be recorded about it. A
new member is put into the collection with the hadMember(c, e) relation. An example is a
collection with all versions of the master thesis, which were generated throughout the writing
process.

entity(thesis -stoffers -versions ,

[prov:type="prov:Collection "])

hadMember(ul:thesis -stoffers -versions ,

ul:thesis -stoffers -20170316)

hadMember(ul:thesis -stoffers -versions ,

ul:thesis -stoffers -20170310)

2.3 Immutability and Tamper-Resistance

Since blockchain databases are a new field of research, many claims are taken about their
capabilities. One of these claims is the immutability of data in blockchains. As mentioned in
the introduction, protecting provenance data from being altered is a big concern. To avoid
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inaccuracy, this section will give a distinction between immutability and tamper-resistance, and
how these terms are further used in this document.

According to Hasan and et al. in ”The Techniques and Challenges of Immutable Storage with
Applications in Multimedia” immutability is a characteristic or property given to an object. It
forbids, by definition, all changes to that object over time. In terms of data, this would imply that
no changes can be made since the data is permanent [28, 29]. As presented in “Tamper-Resistant
Storage Techniques for Multimedia Systems” by Haubert et al., software based solutions are
not capable of providing complete protection against tampering if the storage medium is not
immutable. Thus, thinking about blockchains as distributed databases with software based
protection mechanisms and algorithms, the characteristic of immutability is not attributable.

By design the blockchain can be considered as strong tamper-resistant, since it’s very difficult
to modify the data it contains. In contrast to immutability, the property tamper-resistance can
range in levels of difficulty and, therefore, in the trustworthiness it provides.

As in other systems, these levels are bound to other parameters like performance or usability.
Therefore, the term tamper-resistant is used further in this document as an indicator for the
trustworthiness of a blockchain, with respect to other aspects.

2.4 Blockchains

2.4.1 History of Blockchains and Bitcoin

In 2008, Nakamoto proposed the blockchain in his paper ”Bitcoin: A Peer-to-Peer Electronic
Cash System” [4]. His goal was to create a public distributed ledger to account transactions
of digital money without a centralised authority. To achieve this goal, Nakamoto used several
techniques. As mentioned in the introduction, beside peer-to-peer networking, these are: asym-
metric cryptography and digital signatures, time-stamping, proof-of-work, and Merkle-Trees [4,
31]. The combination of these techniques significantly reduce the possibility of double-spending
and also provide a byzantine fault tolerant system [4, 32].

The first implementation of the Bitcoin blockchain and its inherent digital currency Bitcoin
(BTC), was made public as open source software in 2009. In its current version 0.13.2, the
blockchain has evolved into a peer-to-peer network of approximately ten million nodes which
exchange about 230.000 transactions per day [33, 34]. The backbone of the network consists
of about 5300 full nodes [35], which maintain a database with approximately 100 GByte in
size. As of January 2017, Bitcoin is by far the largest public blockchain [34]. Since most of its
successors are strongly influenced by Bitcoin, the following sections will highlight the common
function principles and the basic concepts which ensure tamper-resistance and reliability in
blockchains. A shorter overview, including storage capabilities, can be found attached in the
appendix(Table B.1).

2.4.2 Function Principles

Peer-to-Peer Network

As mentioned above, the Bitcoin network is built by many nodes, which are directly connected
to each other. In general, nodes are used to broadcast received messages with information
about transactions and blocks to all its peers. The decision whether a message is relayed or not
depends on the consensus rules of the network. One important rule is that honest nodes only
broadcast messages containing a valid transaction or block [36] [37, Ch.6]. To check the validity,
full nodes must maintain a database of all blocks and transactions they ever considered valid [37,
Ch.6]. All other nodes must request missing information from these full nodes. Therefore, full
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nodes are able to exchange information about requested transactions and blocks with its peers
directly. These requests are often made by new full nodes entering the network or Simplified
Payment Verification (SPV) clients, which do not maintain a full copy of the blockchain [37, Ch.6]
[32]. The latter mentioned node type is mostly used in devices with limited resources, such as
smartphones. Another vital node type for the network is the Bitcoin core client, which includes
a mining component. Beside having a copy of the blockchain and broadcasting transactions and
blocks, the node can add new entries to the blockchain [37, Ch.6].

Bitcoin Addresses

In order to send or receive Bitcoins to or from others, Bitcoin uses unique addresses. As shown
in Figure B.2, an address is based upon a 256 bit cryptographic key pair generated by using
the Elliptic Curve Digital Signature Algorithm (ECDSA). For anonymity reasons and size
optimisation, the public key is transformed into a public key hash by calculating the hash with
RIPEMD160(SHA256(pubkey)) [38],[37, Ch.4]. The hash is completed by adding a single byte
to the beginning of the address and a four byte checksum at the end. Finally, the result is
Base58Check encoded for an easier exchange and usability [39].

Wallets

To create new transactions a node must have access to a wallet with one or more Bitcoin
addresses [37, Ch.4]. Consequently, a wallet can create addresses and store the corresponding
private keys [40]. To keep up with the current state of the blockchain, the wallet software
monitors the Bitcoin network for new blocks and transactions [37, Ch.4]. If a transaction
including a maintained address is found, the Bitcoin balance is updated and the transaction
data is stored for later use [37, Ch.4]. In addition, the wallet tracks how many blocks do confirm
each received transaction.
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Transactions

As depicted by Nakamoto in his paper, a coin and its lineage of ownership is recorded in a chain
of digital signatures, also known as transactions (Figure 2.2) [4]. A simplified transaction must
include: the amount of coins to transfer, the hash of the previous transaction, and the public
key of the new owner [4]. By signing the transaction, the previous owner proves that he is the
valid owner of the coin in the previous transactions and is willing to transfer it [4]. By linking
the previous transaction hash, every client in the network can validate the ownership history
by following the chain of transactions. Since the original transaction concept does not allow
for splitting or combining Bitcoin values, or even get a change returned, the Bitcoin blockchain
introduced a more complex transaction model with multiple transaction inputs and outputs
(Figure B.1) [32]. To combine smaller amounts of Bitcoins multiple inputs are used, while
multiple outputs are used for spending fractions of Bitcoins to multiple recipients or returning
a change [32]. As long as nobody claims an output from a previous transaction by referencing
it in a transaction input it is called Unspended Transaction Output (UTXO) [41].

When broadcasting a transaction into the network the ownership transfer is announced
publicly. Other nodes in the network, which are receiving a message containing a transaction,
must perform multiple checks on it before relaying them to their peers. These rules are explicitly
listed in the Protocol rules in the developer section of the BitcoinWiki [42]. Beside checking if
a transaction is already in the local transaction pool or included in a block, a node performs
checks on syntactical correctness and applies rules regarding size and type of transaction. A
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node also searches for each referenced UTXO in its transaction pool. If a UTXO is already
spent in another transaction or is missing from the pool, the whole transaction is rejected. A
node must ensure that a transaction does not spend more Bitcoins as assigned to the inputs.
Consequently, the sum of all Bitcoins in the inputs must be greater or equal to the sum of all
Bitcoins in the outputs [42]. If not all the Bitcoins are assigned to the outputs, the difference is
collected as a fee by the miner. This will be explained later in more detail.

In contrast to the proposed transaction model, each UTXO also includes a PubKey Script
instead of using plain public keys (Figure 2.3) [32]. By combining it with the signature script
from the corresponding transaction input, a complete Script is formed [32, 41]. It is written
in a Forth-like stack-based scripting system, which does not support loops due to stability and
security reasons, hence it is Non-Turing complete [43]. A typical use case of Script is the
verification of a public key hash from the Bitcoin address against a signature and public key in
a pay-to-pub-key-hash transaction. The example script first puts the two values from scriptSig
onto the stack (Listing 2.1). The opcode OP DUP duplicates the top stack value, which is
in this case the public key. Afterwards the top value is hashed with the function defined by
OP HASH160. After putting the public key hash onto the stack, both hashes are compared
due to the OP EQUALVERFIY opcode. Finally, OP CHECKSIG verifies the signature against
the public key and returns true if they match. Assuming multiple UTXOs as inputs in one
transaction the verification will only succeed if each Script returns true [42]. Consequently,
Script ensures the proof of ownership for any transfer and adds flexibility for other use. One
usage of interest, is the capability of storing data, which will be explained in the next section. A
transaction which is considered valid by a node it is added to the transaction pool and broadcast
to its peers.

scriptSig: <sig > <pubKey >

scriptPubKey: OP_DUP OP_HASH160 <pubKeyHash > OP_EQUALVERIFY OP_CHECKSIG

Listing 2.1: Example script [43]

Blocks

While chained transactions are provide a strong proof of ownership, they do not solve the entire
double-spending problem. In terms of digital assets or currencies, double-spending is the attempt
to spend the same asset or coin more than once [44]. This problem can occur in a blockchain,
if the same UTXO is used in more than one transaction as input. To avoid such attempts,
Nakamoto introduced blocks to mark UTXOs as spent by time-stamping them [4]. Similar to
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transactions, blocks are linked to the predecessor by its hash in the block header (Figure 2.4a).
This chain of blocks can be considered the main database of any blockchain. A block header
also includes a root hash (Figure 2.4b). Its value is calculated by hashing any transaction
into a cryptographic Merkle-Tree, which should be time-stamped by the block. This well known
technique was invented by Merkle in his work “Secrey, Authentication, and Public Key Systems”
[8]. As stated in the white paper, the Merkle-Tree serves for two main purposes in Bitcoin [4].
First, it is used to reduce the size of the block header by adding only one hash value rather than
the hash values of all related transactions. Second, it provides a tamper-resistant and easy to
evaluate data structure for the database. The tamper-resistance is achieved due to the fact that
the root hash of the tree will change if one of the transactions on the leafs is altered. The next
value included is the nonce, which has an important role for the solution of the double-spending
problem within the Proof-of-Work (PoW) mechanism in the mining process of new blocks [45,
32, 46]. In addition to the block concept of the original paper, the Bitcoin blockchain added
three more values to the block header [46]. These are: a 32 bit integer for the version, a 32 bit
unix timestamp, and the 32 bit nBits value which is also used in the PoW mechanism [46]. Its
value is changed due to the mining power in the network, to ensure a constant block rate of
approximately one block in ten minutes [46].

Mining blocks and Generating coins

As firmly introduced at the beginning of this section, a new block is generated by a full node
with mining capabilities and a full copy of the blockchain. To successfully mine a new block, a
node tries to create a new block on top of its longest chain of blocks [4, 32]. Subsequently, a
coinbase transaction is generated by the miner and the hash is added to the Merkle-Tree [32].
This special transaction type is used to collect the mining fees from all included transactions
and claim a reward for the new block. Afterwards, a node selects transactions by its own rules
from its internal transaction pool, which are yet not included in any seen block. The hashes of
those transactions are added into the Merkle-Tree, until the whole block size reaches about one
megabyte in size. By hashing all header values a node tries to find a valid block header hash,
which is less than or equal to the hash calculated from the nBits value [46]. Therefore, the node
utilizes the four byte nonce to find a valid solution by changing its value, before including it
into the hash algorithm [45]. Due to the 232 bits, a node may have to try 4294967296 values
in the worst case. This mechanism for mining a new block is the widely known Proof-of-Work
[47]. Its main characteristic is that finding a solution to the problem is relatively hard, but
validating the result by others is easy. If a mining node has found a solution, the block header
is broadcast to its peers. Similar to transactions, other nodes must validate new block headers
before relaying them to their peers. Accordingly, to the rules a node verifies that the block is not
a duplicate of any other block in current chain by searching the block header hash in its database
[42]. The new block header hash is checked against the current nBit value to ensure the block
meets the desired difficulty. Afterwards, checks on syntactical correctness and time conditions
are performed. If the first transaction is coinbase and the following list of transactions is not
empty, a node must verify each transaction. These checks are similar to the checks performed
on transactions itself. In case a transaction includes an already spent transaction output, the
new block is invalid and dropped by the node. In addition, a node recalculates the Merkle root
hash for comparison with the one in the new block header. To increase the processing speed
of the Merkle-Tree, a node can utilize the Merkle-Proof without having all transactions in its
transaction pool or requesting it[8]. One important rule to avoid the double-spending problem is
to prove that the PoW was performed correctly by the node which mined the block. By hashing
the calculated Merkle root hash with the given nonce and the previous block header hash, the
node can verify the PoW by comparing the result with new block header hash [47, 42, 37].
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Forking

In general forking refers to the point that a blockchain can be split in two branches at the last
block, while the chain is built upon it [32]. The two forking types are Normal occasional Forking
and Rare extended Forking (Figure 2.5). As shown in the example, multiple nodes mined a new
block on top of block 1 in the blockchain in both cases. Consequently, more than one valid block
header for block 2 is broadcast into the network. Due to signal delays the majority of nodes
would not receive the same block headers at the same time. Therefore, each node may receive
a different valid block 2 first. According to the rule that only the longest chain is accepted by
the network, nodes immediately start to mine on this block [42]. Valid blocks for block 2 which
are received later are added as forks. Until one node successfully finds a valid block 3 on top of
its block 2, it will relay the headers into the network. On receipt, all nodes still mining on top
of its block 2 will immediately switch to the fork with block 3 to maximize the probability of
gaining the next reward for block 4. This simple concept ensures linear history of blocks which
all nodes can trust in.

Instead of normal occasional forking, rare extented forking can have two reasons; where one
is the majority attack, explained in the next section [32]. The second cause of rare forks, also
known as hard forks, are changes to the protocol of the blockchain which might be introduced
as part of the normal development process. Since not all nodes are updated at the same time,
they consider different blocks as valid. This leads to forks in the chain, were each version
of the network is mining another branch of the blockchain. During the update process more
and more nodes will change to mine on the newer fork, leaving an old stale fork. Since hard
forks can include rules, forcing nodes to rebuild the blockchain from a specific block on, they
can be considered problematic in terms of reliability and tamper-resistance. In August 2008,
this occured in Bitcoin due to a critical exploit, which was actively used by attackers [48].
In consequence to the roll back, all transactions after the attack were deleted from the active
blockchain.

2.4.3 Majority Attacks

Considering a network of honest mining nodes which are competing with each other to find the
next block for claiming the reward, a possible attacker who tries to tamper with the blockchain
must mine new blocks faster in order to attack the network [47, 49]. Such an attack becomes
likely in Bitcoin, if an attacker owns more than 50 percent of all mining nodes in the network
[4]. In this case it is possible to double-spend Bitcoins by first building a transaction with the
correct payment address. As soon as the transaction is included in a block and recognized by
the victim, the attacker broadcast another transaction with a different payment address but the
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same UTXO as input into the network [49], [37, Ch. 8]. At the same time he announces a block
on the same previous block, which includes the second transaction. This leads to a branch in
the blockchain were the next block on top decides which branch will be the longest chain. Due
to its mining capabilities, the attacker will successfully mine a block on top of its own block.
Consequently, the first transaction is invalid by the rules of network and the victim is never
paid. To prevent such an attack in the first place, a common rule is to consider a transaction
as successfully stored in the blockchain if a certain amount of blocks are mined on top of the
block, with the time-stamped transaction. Currently, a transfer is considered completed after
six blocks on top, since the probability of an attack to happen at this point is under 0.1 Percent
[50, 49]. Secondly, due to the current size of the Bitcoin network and the costs for setting up
nodes with the capability of mining each new block does make an attack even more unlikely. In
addition, mining blocks according to the rules with such capabilities would be more profitable
due to the rewards [37, Ch. 8]. Therefore, a blockchain with a huge decentralized network of
miners can be considered more tamper-resistant and trustworthy than networks with less mining
capabilities or networks with centralized mining capabilities.

2.4.4 Altcoins

Driven by the success of Bitcoin, other digital currencies evolved from the first blockchain. The
majority of these Altcoins are direct forks of Bitcoin’s original implementation. With almost
all functionality in common, changes usually aim for: faster transaction processing, different
PoW mechanisms, new transaction types and coins supply strategies [37, Ch. 9]. Due to the
function principles of blockchains these parameters are strongly coupled together. Consequently,
changing them may have an influence in tamper-resistance and therefore in trustworthiness.

For example, Litecoin and Dodgecoin changed the PoW to prevent a centralisation of the
mining power in huge pools like in Bitcoin [51, 52]. Therefore, both blockchains have started to
use a simplified version of Scrypt as PoW mechanism [53, 54]. Instead of being computational
intensive, Scrypt is designed to demand significant amounts of memory for the calculation. This
idea should prevent miners from using Application Specific Integrated Circuit (ASIC)s for the
computation of new blocks and enable slower computers to equally participate in the process.
The creators of both Altcoins assumed that this will lead to a significantly better distribution
of coins held by the miners. However, due to new specialised ASICs with larger memory and
GPU computation, this concept showed similar problems to PoW.

Another approach is the Proof-of-Stake (PoS) mechanism [55]. One usage is present in the
Peercoin blockchain, which aims to develop a more secure solution to majority attacks [56, 57].
Therefore, Peer-Coin introduced two types of blocks with different trust levels which are mined
by PoS or PoW. Blocks mined with PoS do have a significantly higher trust level than PoW-
Blocks. Consequently, nodes mined with PoS are preferred. By mining such a block a node
places a special coinstake transaction, which includes unspent coins from the miner as input.
To be a valid transaction the coins placed must have been unspent for a longer time period.
The reward for the miner is an additional percentage of coins which is calculated form the coins
spent. This concept is close to interest rates in fiat money. As a result miners without mining
pools, but some coins, can successfully generate new blocks. By this means, the centralization
of mining capabilities is reduced in comparison to Bitcoin.

In addition, blockchains like Dodgecoin or Litecoin, raised the block rate up to ten times
faster than in Bitcoin [51, 52]. By raising the rate these blockchains provide a faster processing of
transactions into blocks resulting in more efficient storage of data, but double-spending becomes
more likely to happen. This is especially true, if such blockchains are using a similar concept for
the Proof-of-Work mechanism as in large blockchains like Bitcoin. In combination with smaller
or centralized networks of mining nodes, these chains should be considered less tamper-resistant.
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2.4.5 Private Blockchains

A young field of research in blockchains are private or permissioned blockchains. Distinct from
blockchains like Bitcoin, these chains are not open to the public and mostly intended for use in
a controlled environment. They are usually deployed in private networks or networks owned by
one or more contractors. The focus is to share reliable information about ownership and related
transfers by using a blockchain data structure. By having a trustworthy group of participating
nodes these chains usually do not use a PoW mechanism for validating the blocks. Omitting
the PoW leads to a significantly faster block rate, but lowers the resistance against tampering.
Therefore, external agreements between all stakeholders are established to reach the desired
trustworthiness. According to Hampton, omitting the PoW in a private environment would
be no problem. The author argued that no majority attack is needed to tamper a private
blockchain, since 100 Percent of all nodes are controlled by one stakeholder [58]. Consequently,
attackers who could control all nodes are already controlling the whole private network [58]. A
typical feature of some private blockchains is the native capability of storing larger data sets;
therefore, private data can be stored directly without being accessible by others. [31]

2.4.6 Storage Capabilities

OP RETURN Transaction Outputs

The recommended, but also most controversial option for appending arbitrary data to trans-
actions in all classic blockchains, is the use of opcode OP RETURN in the Script section of
UTXOs. If this opcode is executed the script will fail immediately [46, 43]. While normal nodes
will ignore the following bytes, specialized nodes can interpret them as intended. Up to version
0.11.0, Bitcoin does allow only 80 bytes of data appended after the opcode [59]. In addition,
exactly one UTXO with only OP RETURN is allowed per transaction, preventing the database
from rapidly increasing due to larger UTXOs. However, this does have a huge drawback in
terms of huge data sets like in provenance.

By placing OP RETURN first, the PubKey Script cannot include a public key hash, which
prevents everyone to claim the ownership. Thus, a UTXO is a provable and not spendable
transaction output (Listing 2.2) [41]. Subsequently, the amount of Bitcoin from the included
input transactions cannot be spent to an address within this UTXO. Instead, the miner will take
all Bitcoins from the inputs as mining fee. When using multi-output transactions, a fraction of
Bitcoins can be transferred to other addresses, while raising the general fee due to the bigger
transaction [41, 32].

1 scriptSig: <sig > <pubKey >

2 scriptPubKey: OP_RETURN {arbitrary data}

Listing 2.2: Example script with OP RETRUN [43]

Further on, the blockchain guide mentions the possibility for nodes to prune these type of
UTXO from the databases [32]. As normal Bitcoin full nodes currently do not attempt to do
this, alternative nodes may decide to do so in the future [46]; this can lead to the loss of all copies
of transaction outputs holding provenance data. But self hosted full nodes, which do not drop
these entries, can partially solve this problem. Lastly, the PubKey Script field is not encrypted
[43]. To protect private provenance data, strong cryptography is mandatory. Depending on the
encryption method this will lower the space for arbitrary information, too. One advantage is
the strong proof of existence provided by the block, which includes a transaction that yields this
type of UTXO. After the block was added to the chain and more blocks were mined on top, it
becomes statistically unlikely that the transaction will be removed in the future. Therefore, the



5 Alternative Blockchains and Blockchain-like Databases 21

current version of the Bitcoin blockchain provides a very strong tamper-resistance for provenance
data, since all transactions including the UTXOs are stored on multiple nodes and validated by
them.

Coinbase transaction

Another approach to store data in blockchains and altcoins is the coinbase transaction, which
is added to the block by a mining node [32]. In contrast to normal transaction, a coinbase
transaction does not have a predecessor to whom it could reference to in the transaction input
[60, 46, 41]. Therefore, the SignatureScript does not need to hold a public key and signature
to prove the ownership [60, 46]. The 100 bytes available are only limited by the block height,
which must be placed in the first four bytes of the Script. Therefore, the Script section can hold
up to 96 bytes of arbitrary data. One part that may limit the bytes available is the extra nonce,
which allows full nodes to extend the four byte nonce from the block header by 8 more bytes.
This quirk was introduced to raise the probability for finding a valid block header, which is very
unlikely within the provided range of the standard nonce [60].

A major drawback of this approach is the need of a mining node in order to create valid
blocks, which will be accepted from the network. Adding a block to the chain is very unlikely
without having proper mining capabilities. But by considering the problem of pruned UTXOs in
normal transaction, a self hosted node should be used for ensuring access to all stored data over
longer time periods. Therefore, coinbase transactions offer the opportunity to add additional
space for provenance data and, subsequently, coins gained from mining a block can be used as
input for further transactions. These are then directly linked to the coinbase transaction, which
provides the possibility to link additional related information between transactions. Since coin-
base transactions will never get pruned from any database on full nodes, they can be considered
as strong tamper-resistant and very reliable [37, Ch.8].

2.5 Alternative Blockchains and Blockchain-like Databases

In contrast to Altcoins, alternative blockchains and blockchain-like databases are independent
from the Bitcoin implementation. Most of these chains are developed with a different focus,
such as more efficient storage of data and assets or building a more general blockchain concept
[31]. Two alternatives are explained in the next section, to determine their capabilities in terms
of data storage and tamper-resistance. As in the previous section, a shorter overview can be
found in the appendix (Table B.1).

2.5.1 Ethereum

The Ethereum blockchain was first proposed in 2013 and initially released in May 2015 as open
source project by Buterin [61]. It focused on generalising the blockchain to provide a base
for more complex application than distributed ledgers in digital currencies [62, 63, 64, 65].
According to its Authors,

“[. . .] Ethereum intends to provide is a blockchain with a built-in fully fledged
Turing-complete programming language that can be used to create ”contracts” that
can be used to encode arbitrary state transition functions [. . .] [61]”.

Ethereum can be used in private or public networks due to its available source code [66].
While having is own currency - Ether - and using similar concepts in terms of networking, mining
and PoW, Ethereum tries to overcome some major drawbacks in Bitcoin and other closely linked
blockchains implementations. According to Buterin these are, ”Lack of Turing-completness”,
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”Value-blindness”, ”Lack of State”, and ”Blockchains-blindness” [61]. The ”Lack of Turing-
completeness” refers to the fact that the script language of Bitcoin cannot handle loops due to
security reasons, which is very space inefficient in some cases. ”Value Blindness” refers to the
concept of changing the output on behalf of external parameters, when the UTXO is used. For
example the current exchange rate, on a specific date in the future. Since Bitcoin only handles
the binary state ’spent/unspent’ for UTXOs, this is referred to as ”Lack of State”. Ethereum
instead is capable of handling multiple states, which makes the developing of meta protocols
and stateful contracts easier. ”Blockchains-blindness” refers to the fact that UTXOs in Bitcoin
cannot access blockchain values such as block headers. But according to Buterin, this might be
a useful resource of randomness for contracts and applications in Ethereum [61]. These ideas
later take place in form of definitions to the Ethereum Virtual Machine (EVM) in the paper
ETHEREUM: A SECURE DECENTRALISED GENERALISED TRANSACTION LEDGER
by Wood, a co-author of Ethereum [67].

According to this work, the state in Ethereum is represented by accounts rather than by
UTXOs as in Bitcoin. These accounts are reachable by a 20 byte address. To maintain the state
each account holds: its own storage, its current balance in Ether, a transaction-counter (nonce),
and the contract code. There are two types of accounts in Ethereum. The first one is owned
by external users and controlled by private keys, similar to Bitcoin. The second type is created
internally and controlled by the contract code itself. Internal accounts are capable of creating
new internal accounts during execution. The latter is not possible in Bitcoin, but necessary for
allowing multiple state transitions.

Ethereum uses messages between accounts to trigger state transitions, these messages are
similiar to transaction in Bitcoin. They include the address of the receiving account, the amount
of Ether to transfer, some data to transmit, and values for STARTGAS and GASPRICE. Mining
nodes which include messages into a block, must execute the contract of the destination account.
While executing, the GAS balance is reduced by a specific fee depending on the opcode’s used
in the contract. This mechanism prevents endless loops, which can occur during the execution
of a transaction due to the Halting problem.

Due to its focus, the block rate in Ethereum is about 50 times faster than in Bitcoin [67,
65]. As in other blockchains, this allows for faster processing of transactions but also for a faster
execution of the code. With regards to a similar foundation to the generic blockchains and
the size of the network on the one hand, Ethereum is as tamper-resistant as Bitcoin. But the
Turing-completeness of Ethereum can lead to attacks based upon exploitable contract code, as
evidenced in the Decentralized Autonomous Organization (DAO) incident [68] Consequently, the
Ethereum blockchain was hard forked by a new versions of the blockchain software. Mining nodes
which agreed with this release started to mine on a previous block before the incident. Since the
Ethereum project changed some of the consensus rules in favour of its biggest stakeholder, the
predicate of reliability and tamper-resistance was undermined. Subsequently, the project was
split into two projects, were both are mining on separate forks.

Storage Capabilities

Like in Bitcoin, the Ethereum community mostly dislikes approaches utilizing the blockchain
for storage of huge data sets. But in contrast to other chains, Ethereum is explicitly designed to
store data using two different methods. One utilizes the storage for data in accounts the other
uses events also known as Log storage. Both methods are implemented within the contract code.
For better explanation of the following two examples, Solidity as high level language for contract
description is used [69].
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Storage As briefly outlined before, every account in Ethereum has extra storage for data.
This storage is implemented in the EVM as key-value store with 256 bit word size [67]. It can
be read out, or written during the execution of the contract and interpreted as boolean, integer
or byte arrays. As shown on line 2, Solidity uses variables to accesses the storage, which in
this case is a 256 bit unsigned integer (Listing 2.3) [69]. In addition, Solidity offers modifiers
which add the ability to secure variables from being written by others than the owner. This
functionality is shown in line 5 and used to protect the set function in line 7. After compiling the
script to EVM code, the contract must be created by an external account by sending a special
message [67]. As a result, a new addressable account exists in Ethereum where other accounts
can read out the current value by sending a message but only the owner account can write it.

1 contract SimpleStorage {

2 uint private storedData;

3 address owner = msg.sender;

4

5 modifier onlyOwner { if (msg.sender != owner) throw;_}

6

7 function set(uint x) onlyOwner { storedData = x; }

8 function get() constant returns (uint) { return storedData; }

9 }

Listing 2.3: Solidity Script for storing Data in contracts [70, 71]

This technique has the advantage of being intuitive and easy to use for programmers. One
disadvantage is that the use of higher level scripting languages hides the complexity of the
resulting EVM code. Since the fee for the execution of a contract is calculated on the executed
operations in the EVM, the resulting fees highly depends on this code. This is especially true
for operations like SSTORE, which cost 20000 GAS each execution. Since 32 bytes are written
in one call to the operation, 1024 byte of data will consume about 640000 GAS. At a current
GAS price of 18GWei, this accumulates to 0.01152 Ether or approximately 0.13 e per kByte
[72]. This calculation does not include additional costs for setting up a message and other
operations involved in executing the contract. Therefore, a real contract would be much more
expensive. Another advantage is the possibility to write contracts with more complex methods,
which may enable rich querying of data. On the downside, the added complexity can lead
to unintended changes to the data in storage. One major disadvantage, in terms of tamper-
resistance and reliability, is the possibility to destruct accounts by sending a prepared message
from an external owner account. In consequence, the storage went inaccessible. In the current
version of Ethereum, the history of deleted accounts will not be dropped from the database, but
this may be possible in the future [63]. Similar to other blockchains, data that is written to the
contract storage can be read out by everyone who stores the data in its copy of the blockchain
[67].

1 contract ClientReceipt {

2 event Deposit(address indexed _from , bytes32 indexed _id , uint

_value);

3 function deposit(bytes32 _id) {

4 Deposit(msg.sender , _id , msg.value);

5 }

6 }

Listing 2.4: Solidity Script for simple Storage using Events [73, 70]
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The second approach to store data in Ethereum is the use of the log storage, also known as
events [63, 67]. Its intended use is to send return values or logging events to a specific account.
As depicted on line 3, sending a message which calls the deposit function to an account holding
the contract, will cause a subsequent message returned to the sender (Listing 2.4) [69]. This
message will include the value associated with id given in the received message.

One disadvantage compared to the storage approach is that data once stored in the log
can only be accessed from external accounts, or application with access to the blockchain data
structure [63]. Subsequently, later queries are more difficult to handle than in the storage
solution. One advantage is that all messages are stored in the transaction database. Therefore,
they will never get dropped from the blockchain and can be considered more reliable and tamper-
resistant. In addition, the information about successful storage operation may be useful in some
applications. Another advantage is that log storage is less expensive than normal storage.
Storing 1 kByte of data in the given example will consume 8942 GAS, which accumulates to
0.000160956 Ether or 0.0019 e [72]. As in the previous example, this does not include additional
fees.
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Figure 2.6: Properties of BigchainDB [74]

2.5.2 BigchainDB

BigchainDB was founded by Ascribe in 2016, following the goal to provide owners of digital
assets with a system that guarantees a reliable proof of ownership in terms of copyright and
licensing [75]. Since BigchainDB is open source software it can be used in private and public
networks. BigchainDB focusses on a fast and query rich blockchain-like database that is capable
of storing huge amounts of assets, but also includes features that are attributed to blockchains
(Figure 2.6) [74]. Consequently, BigchainDB utilizes the chaining concept of transactions and
time-stamping of blocks from blockchains. In contrast to other blockchains, BigchainDB does
not implement its own peer-to-peer network. Instead, distributed databases like RethinkDB
and MongoDB are used to relay transactions and blocks to other nodes. A node either connects
to an existing database cluster or sets up its own database, which in turn connects to other
instances. Similar to Bitcoin new transactions are validated by nodes and collected into blocks,
which are written into the blockchain table. These blocks are linked together by the hash of the
previous block. Instead of securing the blockchain by PoW, each node votes on each block by
signing it with its digital signature (2.5). A node signs a block as valid, if each transaction in
that block is valid, based on the consensus rules of the nodes. According to the development
reference the validation process can be changed by applying a new set of rules by using plugins
[76].

Like in Bitcoin, a user can easily create a new cryptographic key pair which identifies his
account. In contrast to other blockchains, accounts connected to BigchainDB nodes cannot re-
ceive messages about votes on blocks due to the handling in the database backend [74, 76]. This
concept is different from generic blockchains, were each client receives messages about new valid
blocks from the network. Therefore, accounts must trust in the nodes they are connected to
without being able to prove the valid state of the blockchain by themselves. Since BigchainDB
focus on assets as valuable content of the chain, accounts can issue a special transaction, which
starts a new chain of transactions by introducing a new asset. This concept replaces the gener-
ation of new coins in the PoW of currency-based blockchains.

Similar to other blockchains, accounts can prove the ownership of assets by signing the
appropriated transactions outputs with their private key. If an account wants to transfer the
ownership to another account a new transaction must be created and send to a node.

In its current beta state, BigchainDB must be stated less tamper-resistant compared to other
blockchains, because of the concept of handling blocks and connecting clients. Two other major
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{

"block": {

"node_pubkey": "JCPMWqz8QB6PfkeKn8xSVG2NPDu4qEgR8iBAZM2rgnPk",

"timestamp": "1489771157",

"transactions": [],

"voters": ["JCPMWqz8QB6PfkeKn8xSVG2NPDu4qEgR8iBAZM2rgnPk"]

},

"id":

"515243eab600e6415eb414d7a3707bebf849465d2f0e1060d5ff3e1e2512e239",↪→

"signature":

"3xZJZBgPYSzuZqdMKQZjsmqUDfQZPmuwksAE3DUt2M7t1dSfRKJiK9..."↪→

}

Listing 2.5: Basic block data structure in BigchainDB

facts also adding to this conclusion. First, the public peer-to-peer network of nodes is smaller
compared to other networks. Second, external databases does allow access by administrative
users, who can read and write to the main database. By dropping all tables this may result in a
complete loss of all data. However, due to the chaining and signing of transactions and blocks
an alternation of single entries is still very unlikely [74].

Storage Capabilities

As explained above, transactions in BigchainDB can hold information about assets they describe.
According to the developer documentation a transaction does include an explicit field asset to
store information about it [76]. The field operation contains a string indicating the transaction
type (2.6). These types are CREATE, TRANSFER, and GENESIS. In case of a CREATE
transaction, the field asset can hold a dictionary with the key data and an arbitrary JavaScript
Object Notation (JSON) document as value. Consequently, this can be utilized to store data.

If the asset is transferred to another account, the id of the transaction holding the asset
data is placed in the value of the asset field. In order to indicate the transaction as ownership
transfer, the field operation must be filled with the value TRANSFER. In addition, of putting
data into the asset, data can be attached to the metadata field for encoding information related
to the transaction itself. Therefore, the metadata can hold arbitrary in any transaction type.

Since BigchainDB does not include a currency, one advantage is that transactions do not
generate any extra costs [74]. In addition, the asset or data size is not limited in any way. One
disadvantage is the large network overhead due to HyperText Transfer Protocol (HTTP), which
is used for communication with the node [76].
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{

"id": "<hash of transaction, excluding signatures>",

"version": "<version number of the transaction model>",

"inputs": ["<list of inputs>"],

"outputs": ["<list of outputs>"],

"operation": "<string>",

"asset": "<digital asset description>",

"metadata": "<any JSON document>"

}

Listing 2.6: CREATE Transaction in BigchainDB [76]
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Chapter 3

Related Work

To the best knowledge of the author, there is as of yet no direct approach to store provenance
data in blockchains or blockchain-like databases. This is especially true when encoded with the
PROV standard. Other works have used the blockchains to store native assets or metadata.
More recently, studies have utilized the time-stamping of blocks to generate provenance about
documents and provide better tamper-resistance for them.

Representatives of the first use case are Open Assets and Colored-Coins, which use the
OP RETURN opcode to append data [77, 78]. Since the amount of space is limited, both
approaches depend on binary sub-protocols. They are intended for storing a derived hash of an
external document along with a quantity and metadata. The ownership transfer is represented
by a transaction to the address of a new owner. The more complex protocol of Colored Coins
also utilizes multi-signature addresses to associate multiple transactions, including unspendable
UTXOs with one asset. Consequently, the protocol allows for storing more than 80 Bytes.

A similar concept for digital assets, which aims on securing legals and controlling intellectual
property was proposed by Ascribe in the work Towards An Ownership Layer for the Internet in
June 2015 [79]. As stated in the white paper, Ascribe mentions the possibility of tracking assets
due to the implicit provenance the blockchain provides. In contrast to other concepts, Ascribe
describes the concept of using a unique owner address as id for derived multiple editions of an
asset.

Another approach was proposed by Irving and Holden in the article “How blockchain-
timestamped protocols could improve the trustworthiness of medical science [version 2; referees:
3 approved]” to improve the trustworthiness of data in medical science [80]. It describes the
possibility of hashing data or a document into a SHA256 digest, which in turn is used to create
a key-pair. Subsequently, a Bitcoin address is derived from the public key and used to set up a
single transaction, which serves as ”proof-of-existence”. However, as mentioned by the author,
anyone who owns the original document can easily recalculate the key-pair and claiming the
Bitcoin address. A major disadvantage of all approaches is the lack of storage capabilities for
larger data sets. But the development of a dedicated protocol may offer further possibilities for
storing provenance natively in the blockchain.

A more complex concept was proposed by Nugent, Upton, and Cimpoesu in the article
“Improving data transparency in clinical trials using blockchain smart contracts [version 1;
referees: 1 approved]” [81]. By setting up contracts in a private hosted Ethereum blockchain,
the author describes a system which manages all related data from subjects of clinical trials. The
system consists of several accounts which are generated with the contract code from a central
account. Subjects and subsequent data is added or retrieved by calling special functions on the
trial contract from other generated accounts. Larger documents are stored in a InterPlanetary
File System (IPFS) and referenced in the corresponding data set. By using a private Ethereum

29



30 3. Related Work

blockchain, the author showed the capabilities of more complex systems which require additional
logic and permissions. Since all metadata about trials is stored in the blockchain the system
provides a strong proof-of-existence but also a complex trial history.



Chapter 4

Storage Concepts

4.1 Introduction

As discussed in the previous chapters, blockchains do offer possibilities to store data. The follow-
ing three concepts were designed to be applicable to all observed currency-based blockchains, and
alternative chains, like Ethereum or BigchainDB. Therefore, features like multi-signature trans-
action were not used in these concepts. Instead, mapping provenance information represented
in PROV records to multiple transactions were focused on. Respectively, linking information
between transactions was the second major focus of the concepts. In addition, the ownership
concept and the possibility of ownership transfers provided by blockchains were included in the
concepts. In order to allow more flexibility in each concept, the assumption was made that each
account has direct access to all transactions and blocks within the blockchain network. This
does not necessarily mean that accounts must run a dedicated full node, but at least access to
all past transactions within the used address space is guaranteed.

Every concept is based upon different views on Provenance in its PROV representation.
Since the PROV standard offers serialisation of provenance data in formats like PROV-XML or
PROV-JSON, many related applications are able to import or export these documents. Exchang-
ing provenance in this way implies a document-based view on the data where each serialisation
represents a valid set of provenance records about a given subject. Therefore, the first concept
focuses on how to store these serialized documents directly into blockchains. As explained above,
most currency-based blockchain have limited space to store data. As a result, the second and
third concepts focus on lowering the space needed to store provenance documents by scatter the
data across multiple transactions. Since the main model of PROV was designed around types
which are linked together by relations, another representation of such provenance is a graph. As
such, the second concepts utilises this view on provenance to split up the document. Another
common view on provenance data in PROV-DM is the agent-centred view [20]. The relations
which represent the responsibility of agents on other types can be used to split up provenance
records accordingly; the third concept is designed using this initial idea.

4.2 Document-based Concept

Storing As previously outlined, the goal of the document-based concept is to avoid previous
transformation or splitting of the provenance document. No direct linking between transactions
is needed thus, all information is included in a single transaction. Consequently, transactions
with attached provenance data are created using a single account in the blockchain (Figure 4.1).

The algorithm illustrates that all records form a given provenance documents need to be
serialized into an asset which can be stored into the selected blockchain (Algorithm 1, Line 2).
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Figure 4.1: Document-based concept - A document is stored in a single transaction

Afterwards a new transaction including the asset is created and signed by the account (Line
3). In order to achieve compatibility with all observed blockchains and to improve the proof
of ownership and tamper-resistance, the transaction should be transferred to the same account
(Line 4). After waiting for the transaction to get incorporated into a valid block, the transaction
id is returned for later use or query’s (Line 5-8).

Input: prov records, account
Output: transaction id

1 begin
2 asset ← serialise records(prov records);
3 fulfilled transaction ← create and fulfil transaction(account.private key, asset));
4 transaction ← transfer transaction(account.public key, fulfilled transaction);
5 repeat
6 status ← get status(transaction.id);
7 until status = ”valid”;
8 return transaction.id;

9 end
Algorithm 1: Write PROV records into the blockchain using the document-based concept

Querying To query documents form the blockchain one account must receive the transaction
by its id (Algorithm 2, Line 2). In case of ownership transfers, further transactions following the
chain must be requested until the transaction with the asset is received. Thereafter, the asset
is deserialized into the original provenance records and returned (Line 3-4).

Input: transaction id
Output: prov records

1 begin
2 transaction ← get transaction(transaction id);
3 prov records ← deserialise records(transaction.asset);
4 return prov records;

5 end
Algorithm 2: Get PROV records from blockchain using the document-based concept
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Concept properties The major advantage of the document-based concept is its simplicity.
This is due to a single account that must interact with the blockchain. By knowing the used
account and owning all of its transactions, querying of documents is very efficient and easy to
implement. However, storing PROV documents with addresses associated to a single account
also simplifies potential attacks. Due to this single point of failure and the fact that a document
is stored within one transaction, the concept should be considered less tamper-resistant and
reliable. Additionally, a huge payload per transaction leads to further problems in currency-
based blockchains. Firstly the fee to pay to successfully include a transaction into a block will
proportionately increase; secondly, the usual limititation in byte size does not allow storing of
big data sets. Therefore, complexity must be added in order to save space. In this case a similar
approach as in Open Assets can be utilized if a blockchain like Bitcoin is used. The last problem
in particular, implies the use of alternative blockchains for the document-based concept. In
particular, BigchainDB could be used to create a file store with blockchain capabilities.

Use Cases The concept can be used to implement a simple document store for independent
users. On these grounds, the concept is similar to the ProvStore, which was proposed and im-
plemented by Huynh and Moreau [82]. Another use case for the concept might be transparent
Application Programming Interface (API) for automated storage of PROV documents by mul-
tiple components of more complex systems. In both cases a single account can be used for each
user or component, in order to manage the documents and provide faster access.

4.3 Graph-based Concept

Storing Instead of store provenance records in one transaction, the graph-based concept uti-
lizes ownership transfers to represent PROV relations between all types within the PROV-DM.
Therefore, each agent, activity or entity must be represented with an account in order to create
new transactions and initialise ownership transfers. To find all types in the provenance records
from the input, the document is split up into three sets (Algorithm 3, Line 4-5). These are a set
with types, and sets including relations with and without identifiers as the first attribute. Next,
the accounts are created or otherwise queried from a local database, using the set of types (Line
7-14). Subsequently, each account serializes the record to an asset (7-14). As implied in the
transactions 1 to 4, this is the declaration of the types and their attributes (Figure 4.3). The
serialized provenance data is then incorporated into a new transaction and announced to the
blockchain network to get incorporated into a block. To quickly determine the ownership, the
transaction is sent and received by the same account, as depicted in the mapping figure below
(Figure 4.2).

After this step, each account must create all relations from the sets containing them (Line
19-29). Therefore, each relation which is related to the type the account stand for, is taken from
the sets. Subsequently, the receiving account is inferred from the relation itself. After serialising
the PROV records to an asset it is included in a new transaction signed, and transferred to
the other account (Figure 4.2). For example, the used relation at activity A2 is transferred in
transaction 7 to entity E1 (Figure 4.4). Since the activity is already described in the initial
transaction and the ownership is clear due to address of the account, the information can be
left out in the attached data. For the same reason no further description about the entity is
needed, since the transfer can be used to infer this information from the blockchain. To query
additional provenance about the involved types faster, their transactions ids can be included in
the mapping inside of the transaction. Lastly, all transaction ids collected form total transfers
are returned for later query’s.
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Figure 4.2: Graph-based concept - Transactions sent between blockchain accounts. Coloured in
ownership after successful transfer.

prefix: {
    "ex": "https://example.org/"}

agent: {
    "ag": "ex:Ag2",
    "attr": [
       "prov:type": "prov:Organization",
       "prov:label": "DLR"
    ]}

TX-ID: 1

Ownership: Ag2

Asset

prefix: {
    "ex": "https://example.org/"}

activity: {
    "a": "ex:A2",
    "st": "",
    "et": "",
    "attr": [
       "prov:label": "Activity-2"
    ]}

TX-ID: 3

Ownership: A2

Asset

Ownership: E2

prefix: {
    "ex": "https://example.org/"}

entity: {
    "e": "ex:E2",
    "attr": [
       "prov:label": "Entity-2"
    ]}

TX-ID: 4

Asset

Ownership: E1

prefix: {
    "ex": "https://example.org/"}

entity: {
    "e": "ex:E1",
    "attr": [
       "prov:label": "Entity-1"
    ]}

TX-ID: 2

Asset

Figure 4.3: Graph-based concept - Transactions, describing the types
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prefix : {
    "ex": "https://example.org/",
}

wasGeneratedBy : {
    "t": "",
    "attr": []
}

map: {}

TX-ID: 8

Ownership: A2

Asset

TX-ID: 7

Ownership: E1

prefix : {
    "ex": "https://example.org/",
}

used : {
    "t": "",
    "attr": []
}

map: {}

Asset

Ownership: Ag2

TX-ID: 6

Asset

prefix: {
    "ex": "https://example.org/"}

wasAssociatedWith: {
    "pl": ""
    "attr": []}

map: {}

Ownership: Ag2

TX-ID: 5

Asset

prefix: {
    "ex": "https://example.org/"}

wasAttributedTo: {
    "attr": []
}

map: {}

Figure 4.4: Graph-based concept - Transactions, describing relations between types
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Figure 4.5: Graph-based concept - Ids used in wasDerivedFrom() forces transactions to be in
specific order

The concept so far does not allow a complete description of relations like wasDerivedFrom(id;
e2, e1, a, g1, u1, [attr]) or wasAssociatedWith(id; a, ag, pl, [attrs]), because of
references to additional types and relations in the arguments (Figure 4.5). Thus, a mapping
between the referenced relations and types to their corresponding transaction ids must be in-
cluded into the transactions. Therefore, all transactions which describe relations with a defined
identifier must be created first to ensure valid mappings. As shown in the figure, this means
that the transactions 4 and 5 with the identifiers ex:g1 and ex:u1 must be prior to transaction 6
(Figure 4.5). In case of the example the transaction ids of the referenced relations g1 and u1 as
well as the activity A1 are needed to set up a valid transaction for the wasDerivedFrom relation.
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Input: prov records
Output: transaction ids

1 begin
2 transactions ids ← {};
3 accounts ← {};
4 elements ← {record ∈ prov records|type(record) = prov element};
5 all relations with id ←

{record ∈ prov records|type(record) = prov relation ∧ has id(record) = True};
6 all relations without id ←

{record ∈ prov records|type(record) = prov relation ∧ has id(record) = False};
7 foreach element in elements do
8 account ← create or reuse account(element);
9 if !account.txid then

10 transaction id ← create asset(account.private key, account.public key,
element);

11 account.txid ← transaction id;

12 end
13 transactions ids ∪ {account.txid};
14 accounts ∪ {account};
15 end
16 foreach account in accounts do
17 relations with id ←

{relation ∈ all relationss with id|is out edge(relation, account) = True};
18 foreach relation in relations with id do
19 recipient ← get recipient account(relation);
20 transaction id ← create asset(account.private key, recipient.public key,

relation);
21 transactions ids ∪ {transaction id};
22 end

23 end
24 foreach account in accounts do
25 relations without id ←

{relation ∈ all relations without id|is out edge(relation, account) = True};
26 foreach relation in relations without id do
27 recipient ← get recipient account(relation);
28 transaction id ← create asset(account.private key, recipient.public key,

relation);
29 transactions ids ∪ {transaction id};
30 end

31 end
32 return transactions ids;

33 end
Algorithm 3: Write PROV records into the blockchain using the graph-based concept
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Input: element, private key, public key
Output: transaction id

1 Function create asset(element, private key, public key):
2 asset ← serialise records(element);
3 fulfilled transaction ← create and fulfil transaction(private key, asset));
4 transaction ← transfer transaction(public key, fulfilled transaction);
5 repeat
6 status ← get status(transaction.id);
7 until status = ”valid”;
8 return transaction.id;

Algorithm 4: Algorithm for create asset() function

Querying To query data from the blockchain the desired data must be requested by the trans-
action id. By knowing all accounts, transactions can be directly requested from the blockchain
using their ids (Algorithm 5). By having prior knowledge it is possible to rebuild the complete
graph by first creating all records of all involved types, using the initial or first transaction of
each accounts. Afterwards all transactions with relations are used to set up the links between
the types.

Input: transaction ids
Output: prov records

1 begin
2 prov records ← {};
3 foreach transaction id in transaction ids do
4 transaction ← get transaction(transaction id);
5 prov record ← deserialise records(transaction.asset);
6 prov records ∪ {prov record};
7 end
8 return prov records;

9 end
Algorithm 5: Get PROV records from blockchain using the graph-based concept

Concept properties The major advantage of the graph-based concept is the large amount of
transactions needed to build the graph, which guarantees a difficult to tamper data structure.
A potential attacker must double-spend multiple transactions in order to successfully alter the
provenance data. Since multiple addresses are involved in building the graph, double-spending
becomes even more unlikely. Compared to the document-based concept another advantage is the
smaller payload size in each transaction, which potentially allows operators to use the concept
in currency-based blockchains. The concept also offers easy querying of information about a
particular type, due to its representation as account with a unique address in the blockchain. By
querying all owned transactions of one account its is possible to investigate every asset pointing
to this account. Therefore, it’s easy to determine which entities were created by a specific
activity. Another advantage is the possibility that other applications are able to extended the
graph as needed. Since each application knows its own address space by knowing all accounts,
every transaction from an external address can be considered untrusted; as such, no harmful
additions are possible. Querying the graph from the example involves more requests to nodes in
the peer-to-peer network due to the distributed information. The fact that multiple addresses
are maintaining the whole set of transactions and the processing needed to reassemble the
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graph leads to significantly slower query performance, as in the previous approach. Another
possible disadvantage is the need for a more complex upper layer, which supplies all addresses
with a sufficient amount of coins in order to pay the fees for each transaction in a currency-
based blockchain. In addition, the strongly linked data structure of PROV and the resulting
amount of transactions will lead to higher costs compared to the document-based concept. The
last disadvantage entails the transaction ids which are needed in some PROV relations and
for querying data. To provide valid transaction ids for the mappings, a local data structure
must be maintained. To guarantee only valid transaction ids as references in transactions the
local mapping must be updated if the previous transaction was successfully included into the
blockchain. As mentioned, referencing types and relations with transaction ids also require some
transactions be transferred before others in order to complete the mapping. Therefore, storing
of large provenance graphs will be less performant.

Because of the overall added complexity, the graph-based concept is easier to deploy on
alternative blockchains. Especially contracts in Ethereum may help to solve the problem of
the required ordering of transactions, due to possible account creation and internal logic. The
unlimited storage capacity in Ethereum and BigchainDB also allows additional information to
each transaction, which may solve the problem of external references represented by transaction
ids. However, compared to generic blockchains the use of alternative blockchains will lower the
reliability and tamper-resistance due the missing PoW in BigchainDB and the possibility of
contract deletion in Ethereum.

Use Cases One appropriate use case of the graph-based concept are systems, which are more
likely to add single relations between types rather than storing documents at once. For example,
this is useful for a larger set of applications, which participate in extending the same provenance
graph by sharing its address space.

4.4 Role-based Concept

Storing The role-based concept emphasizes the role of agents by directly ascribing the owner-
ship of all related entities and activities to them. Therefore, the PROV records are first split up
into three sets (Algorithm 6, Line 5-6). The first set holds every element typed agent in PROV,
while the second set holds all other types. The third set holds the relations. Following on line 7
to 18, the accounts are created from the set containing the agents where afterwards an asset is
created that first holds all provenance information about the agent. In addition, all out going
relations from the agent are filtered from the global set and added to the asset (Figure 4.7). As
shown in transaction 1 and 2 the asset is then transferred to the same account (Figure 4.6).

After each account is created, the types with association or attribution to the agent are
filtered from the set respectively (Algorithm 6, Line 19-30). For each type an asset is created
which holds the provenance information about that type and all out going relations from it;
the asset is then transferred to the same account. In the example figures, this is depicted in
transactions with ids 3 and 4. Similar to the previous concept, the transaction is then announced
into the network using the same account as sender and recipient.
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Figure 4.6: Role-based concept - Transferred transactions between accounts

prefix: {
    "ex": "https://example.org/"}

agent: {
    "ag": "ex:Ag1",
    "attr": [
       "prov:type": "prov:Organization",
       "prov:label": "DLR"
    ]}

map: {}

TX-ID: 1

Ownership: Ag1

Asset

TX-ID: 2

Ownership: Ag2

prefix: {
    "ex": "https://example.org/"}

agent{
    "ag": ex:Ag2,
    "attr": [
       "prov:type": "prov:SoftwareAgent",
       "prov:label": "Client-1"
    ]}

map: {}

Asset

prefix: {
    "ex": "https://example.org/"}

activity: {
    "a": "ex:A2",
    "attr": ["prov:label": "Activity-1"]}

used: {
    "e": "ex:E1", "t": "", "attr":[]}

wasAssociatedWith: {
    "ag": "ex:Ag2", "pl": "", "attr": []}

map: {"ex:Ag2": 2,"ex:E1": 3}

TX-ID: 4

Ownership: Ag2

Asset

TX-ID: 3

Ownership: Ag1

prefix: {
    "ex": "https://example.org/"}

entity: {
    "e": "ex:E1",
    "attr": ["prov:label": "Entity-1"]}

wasAttributedTo: {
    "ag": "ex:Ag1", "attr": []}

map: {"ex:Ag1": 1}

Asset

Figure 4.7: Role-based concept - Transactions, describing types with all outgoing relations to
other types
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Figure 4.8: Role-based concept - Mapping of Id in actedOnBehlafOf() relations

In order to allow queries by external blockchain accounts, the concept also uses a mapping to
reference types and relations in transactions by transaction id. Consequently, the elements must
be created in a specific order such as in the graph-based concept. By virtue of the concept design,
this leads to a problem regarding the actedOnBehalfOf relation, if such a relation incorporates
an activity as third attribute (Figure 4.8). Since the concept requires that agents must be
created first, it is not possible to reference the activity in the mapping of the actedOnBehalfOf

relation with its transaction id. In the example this would be the case for the transaction, which
creates agent Ag2 who acted on behalf of agent Ag1 but also bears responsibility for activity
A1 .

Querying The query of records does work like in the graph-based concept. By requesting
all transaction by id, it is possible to rebuild the provenance records using the same algorithm
(Algorithm 5, Line 19-30).

Concept properties One advantage of this concept is that all necessary information about
specific activities or entities is included in one transaction. By knowing the account related to
an agent, defining a query that returns all types and instances one agent was responsible for is
simpler. But queries that should include information about instances referenced in the mapping
might be slower, since additional transactions must be read from the blockchain. Another ad-
vantage is that fewer accounts are needed, such as in the previous concept, to store the same
provenance data in the blockchain - this lowers the complexity. Since the average size of transac-
tions is smaller compared to the document-based concept, fees in currency-based blockchains are
expected to be smaller for one transaction. In addition, the less complex transaction structure
of the concept, compared to graph-based concept, also leads to fewer transaction in general.
Being an advantage from the cost perspective, fewer transactions and participants are lowering
the reliability and tamper-resistance compared to the previous concept.
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Input: prov records
Output: transaction ids

1 begin
2 transactions ids ← {};
3 accounts ← {};
4 agents ← {record ∈ prov records|type(record) = prov agent};
5 all elements ←

{record ∈ prov records|type(record) = prov entity ∨ type(record) = prov activity};
6 all relations ← {record ∈ prov records|type(record) = prov relation};
7 foreach agent in agents do
8 account ← create or reuse account(agent);
9 if !account.txid then

10 asset ← {agent};
11 relations ← {relation ∈ all relations|in out edge(relation, agent) = True};
12 asset ∪ relations;
13 transaction id ← create asset(account.private key, account.public key, asset);
14 account.txid ← transaction id;

15 end
16 transactions ids ∪ {account.txid};
17 accounts ∪ {account};
18 end
19 foreach account in accounts do
20 elements ← {element ∈ all elements|has relation to(element, account) = True};
21 foreach element in elements do
22 asset ← {element};
23 relations ← {relation ∈ all relations|is out edge(relation, element) = True};
24 foreach relation in relations do
25 asset ∪ {relation};
26 end
27 transaction id ← create asset(account.private key, acount.public key, asset);
28 transactions ids ∪ {transaction id};
29 end

30 end
31 return transactions ids;

32 end

33 Function create asset(element, private key, public key):
34 asset ← serialise records(element);
35 fulfilled transaction ← create and fulfil transaction(private key, asset));
36 transaction ← transfer transaction(public key, fulfilled transaction);
37 repeat
38 status ← get status(transaction.id);
39 until status = ”valid”;
40 return transaction.id;

Algorithm 6: Write PROV records into the blockchain using the role-based concept



42 4. Storage Concepts

Another disadvantage is that the concept is not intended for use with provenance data that
does not include agents. This may lead to misinterpreted or even invalid provenance data for
other blockchain accounts, which expect a valid PROV agent behind every address. Another
pitfall related to the same problem is based upon the PROV standard itself, which allows
multiple agents to be attributed or associated with entities or activities. Subsequently, two
transactions including the same type and relations are created if two agents are attributed or
associated with the same type. The problem can be avoided with two possible solutions. First,
the implementation defines a rule to determine the agent who is responsible for creation of the
transaction. Second, the implementation is able to merge duplicated information from different
transactions. As a result of the last two problems, the concept is only applicable in specialised
environments with well defined provenance concept.

Due to its larger transaction size compared to the graph-based concept, the concept does not
allow the use of generic blockchains without additional optimization on the payload. Therefore,
the role-based concept is a candidate for alternative blockchains like Ethereum and BigchainDB,
taking similar problems in terms of complexity compared to the graph-based concept into ac-
count.

Use Cases Due to the agent centric view, one usage example might be a distributed sys-
tem with a set of workers, which work on behalf of external agents. By collecting provenance
about the execution of tasks and related data in a process, such systems could provide helpful
information for understanding the reasons of a failed process. Another example are software
applications, which collect provenance about activities and entities from independent users or
agents. Storing the provenance with the role-base concept would then allow for easier queries
of specific activity or entities within the responsibility of a particular agent.

4.5 Concept Comparison

As explained above, each concept has varying advantages and disadvantages in terms of tamper-
resistance, payload size, flexibility and their complexity in storing and querying. Regarding the
focus on trustworthy provenance in this work, the graph-based concept is the most appropriate
for achieving this goal. As depicted it presents the best tamper-resistance and reliability of all
concepts (Table 4.1). By having the smallest payload size, implementations in all blockchains
and altchains mentioned in the background chapter are possible. In addition, the flexibility
yield by the graph-based concept allows a usage in wide variety of applications. In particular,
the possibility of independently extending the graph with multiple applications could be useful
if information should be shared between several stakeholders. The drawback is the complexity
needed to store and query provenance data. Therefore, the concept is not applicable when
fast storage or querying is required. The requirement could be adhered to with the document-
based concept by accepting the downside of a less tamper-resistant storage. This is especially
true if alternative blockchains are used in order to compensate the overall bigger payload size.
In terms of the observed parameters, the role-based concept does offer average results. The
concept is more likely to be used in specialised system with a strong provenance concept, due
to its complexity in storing new provenance data and the strong focus on agents. Provenance
data with multiple attributions or associations to one instance need special treatment in order
to go along with the constraints of the PROV-DM.
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Table 4.1: Concept Comparison

Document-based Graph-based Role-based

Storing + - -
Querying + - o
Write Performance + - - o
Payload Size per TX - + o
Usage flexibility - + o
PROV compatibility + + -
Tamper-Resistance - + o
Reliability - + o
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Chapter 5

Software Prototype

5.1 Requirements and Definitions

To demonstrate and test the capabilities of the proposed concepts a software prototype was
developed. In order to define a suitable concept, a set of requirements and definitions were
constituted. In terms of the general software prototype the following requirements were defined:

P.1 The prototype implements all proposed concepts.

P.2 The prototype accepts provenance data in PROV-JSON and PROV-XML.

P.3 The prototype offers the same API for each concept.

P.4 The prototype is modular extendable by additional concepts.

To have a common base in functionality and allow comparison of the concept in the analysis,
the following requirements were made for each concept:

C.1 Each concept ensures that all transactions to the blockchain are incorporated into blocks.

C.2 Each concept is capable to retrieve stored documents.

C.3 Each concept ensures that retrieved documents are only rebuilt from valid transactions.

C.4 Each concept is independently testable in terms of performance and tamper-resistance.

First a decision on the used blockchain application was made in order to fulfil the requirement
P.1 based upon the following reasons. According to the previous sections, public currency-based
blockchains are offering the best tamper-resistance to protect provenance data from changes
but, due to their limited payload size and the subsequent need to invent a meta protocol for
provenance, the proposed concepts are difficult to apply. Additionally, fees in these blockchains
are strongly bound to the transaction size which would raise the costs of storing provenance
information in publicly running examples. Furthermore, the fee system requires additional logic
to ensure a constant coin supply for each account. The same problems also occur in Ethereum
blockchains. Since fees in Ethereum are dependent on transaction size and executed contract
code, and new contracts can be created by other contracts, an even more complex logic is
required to ensure the coin supply would be needed. Therefore, the blockchain-like database
BigchainDB in version 0.9.1 was selected for use in the prototype. This will lead to a reduced
tamper-resistance, which can be compensated by running the prototype in a private environment.
However, by having a strong focus on storing and querying assets, BigchainDB fits the needs for

45
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handling even large data sets with provenance information. In addition, the blockchain database
can be accessed by a Representational State Transfer (ReST) service, which offers functionalities
that are similar to APIs in other blockchains. Consequently, the implemented prototype will be
close to implementation in other blockchains.

Since BigchainDB only provides a python driver compatible with Python 3.5 and to avoid
the overhead of developing an interface for accessing BigchainDB, the decision was made to
implement the prototype in Python. By offering methods to create, transfer, requests and
validate transactions, the driver can help to fulfil the requirements C.1 to C.3. Due to the
ReST service of BigchainDB and the data format used in RethinkDB, the driver is also capable
of serializing python dictionaries into valid JSON. Therefore, it’s possible to directly attach
provenance data in its PROV-JSON representation to assets in transactions.

In order to fulfil the requirement P.2 the python package prov, developed by Huynh, is
used. By having the capabilities of reading and writing external documents in PROV-JSON
and PROV-XML serializations, it can fulfil this requirement. In addition, the package offers the
possibility to create new provenance documents and records as objects according to the PROV
standard. These objects can than be used to exchange provenance information in the prototype
itself. In addition, it is possible to convert these objects into a graph representation, which can
be used to filter the document as described in the algorithms of the concepts.

Using Python also yields the capabilities to create a prototype by using the concept of object
oriented programming. By setting up a base class for the concepts, its is possible to fulfil the
requirement P.3 of having a generalized API for all concepts. Subsequently, deriving the concepts
from the base class leads to a code structure, which fulfils requirement P.4. In combination with
internal unittest framework of Python, each concept can be tested independently, ensuring valid
measurements on different subjects, such as performance.

5.2 Software Architecture

5.2.1 Packages

According to the definitions described above and with respect to the concept algorithms, a
package structure for the prototype was specified. The core package consists of five subsequent
packages, which are separated by their functions (Figure 5.1). The most important one is the
clients package, which holds all classes representing the three concepts and the base class they
are derived from. Since the accounts are acting differently on the blockchain in each concept,
a second package is specified. It holds the base class and the derived classes, which respresent
the more specialised accounts from the concepts To reuse already introduced accounts, a local
database is needed to manage the attributed public/private keys and associated transaction ids.
Since various databases are possible, the separate package local stores was specified. Lastly, a
utils and exception package was specified to outsource common functionalities and exceptions
needed in each concept. Beside the core package structure, a second package for tests was defined
which holds all unit tests for each class in the core package.

prov2bigchaindb.core

prov2bigchaindb.core.accounts prov2bigchaindb.core.clients

prov2bigchaindb.core.exceptions

prov2bigchaindb.core.local_stores prov2bigchaindb.core.utils

Figure 5.1: Package structure in prov2bigchaindb
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5.2.2 Basic Classes

After setting up the overall package structure, all basic classes were defined in more detail
(Figure 5.2). These classes are later used to derive the specialised classes for each concept.

SqliteStore First the class SqliteStore was introduced to provide a common interface to write
and read account data from a single account table in a Sqlite database. By offering the methods
write account(), get account() and write tx id() , and due to the prototype character of
the application, the class was kept as simple as possible. Each object with access to an instance
of this class can read or write new data to or from the table. Since the table contains the key
pair and the transaction id of each account the class must be implemented in a more secure way,
when used in a real application.

BaseAccount According to the algorithms, each concept requires one or more accounts to
interact with the same kind of node. Therefore, the BaseAccount class was designed to contain
all common attributes. These are a unique account id, a public/private key pair, an optional
transaction id as well as a reference to the account database. Since all accounts need to cre-
ate and transfer assets to a BigchainDB node, the two private methods create asset() and
transfer asset() are placed in this class. The BaseAccount class also bears responsibility to

create a new account in the database, if necessary. Due to different approaches of how accounts
are handled by the concepts and which data is associated with an account, no further attributes
or methods are defined in the base class

BaseClient In order to define public methods, which each derived client must re-implement
to provide a consistent API, the BaseClient class was specified These are the abstract methods
save document() and get document(). The method test transaction was introduced to
enable the clients to validate received transaction against BigchainDB. In addition, the class
contains attributes for the account database and a connection pool. The decision to put both
attributes into the base class was made for the reasons outline hereafter. Due to the concept
design, the number of accounts with connections to a BigchainDB node cannot be estimated
before parsing the provided provenance records. To avoid a large amount of parallel connections
in worst cases, and to offer the possibility of easier parallelisation, the connection handling was
centralized. This is also the case for connections with the local database.
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BaseAccount
account_id
private_key
public_key
store
tx_id : str
__init__()
__str__()
_create_asset()
_transfer_asset()
get_id()
get_public_key()

BaseClient
connection_pool : Pool
connections : list
node : str
store
__init__()
_get_bigchain_connection()
get_document()
save_document()
test_transaction()

DocumentConceptAccount

__init__()
save_asset()

DocumentConceptClient
account
__init__()
get_document()
save_document()

account

GraphConceptAccount
id_mapping
prov_element
prov_namespaces
prov_relations_with_id
prov_relations_without_id
tx_id
__create_instance_document()
__create_relation()
__init__()
__str__()
get_tx_id()
has_relations_with_id()
has_relations_without_id()
save_instance_asset()
save_relations_with_ids()
save_relations_without_ids()

GraphConceptClient
accounts : list
__init__()
calculate_account_data()
get_document()
save_document()

accounts

RoleConceptAccount
id_mapping
prov_agent
prov_agent_relations
prov_elements
prov_namespaces
tx_id
__create_document()
__init__()
__str__()
get_tx_id()
save_elements()
save_instance_asset()

RoleConceptClient
accounts : list
__init__()
calculate_account_data()
get_document()
save_document()

accounts

SqliteStore
conn
__init__()
clean_tables()
get_account()
write_account()
write_tx_id()

store

Figure 5.2: Class diagram for prov2bigchaindb
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5.3 Implementation Details

5.3.1 Create and Transfer Assets

Creating and transferring assets between accounts via transactions is important in each concept.
Therefore, this section will give an overview of how transactions are created and transferred using
the python BigchainDB driver.

Create For creating an assets the method create asset(), defined in the BaseAccount class,
was used throughout the prototypye. As depicted in line 1, the methods take three parameters
(Listing 5.1). The first parameter is the connection to a BigchainDB node. The second and third
parameters are python dictionaries containing the asset and optional metadata. By passing the
public key, asset, metadata and the transaction type to the methods on line 5, a prepared trans-
actions dictionary with the desired type is generated by the driver. Afterwards the transaction
is fullfilled with the accounts private key. This step involves the generation of the transaction
hash, which is used as id in the following process and subsequently the transaction is sent to
a BigchchainDB node. The returned transaction can than be checked for any changes during
the transmission to the node. Since the send methods are implemented as non-blocking, the
returned transaction must not be successfully included in a block at this point. If the check on
line 10 returns true, a dictionary with the transaction is returned.

1 def _create_asset(self, bdb_connection: BigchainDB, asset: dict, metadata: dict = None) ->

dict:↪→
2 if metadata is None:

3 metadata = {}

4 prepared_creation_tx =

bdb_connection.transactions.prepare(operation=’CREATE’,signers=self.public_key, asset=asset,

metadata=metadata)

↪→
↪→

5

6 fulfilled_creation_tx = bdb_connection.transactions.fulfill(prepared_creation_tx,

private_keys=self.private_key)↪→
7

8 sent_creation_tx = bdb_connection.transactions.send(fulfilled_creation_tx)

9 if fulfilled_creation_tx != sent_creation_tx:

10 raise exceptions.CreateRecordException()

11 return sent_creation_tx

Listing 5.1: Method create asset() function in BaseAccount class

As shown in the example transaction from line 2 to 10, the asset dictionary was placed under
the key asset (Listing 5.2). In this case the key prov contains the serialized provenance about
the PROV relation wasAttributedTo, as it gets written to BigchainDB in the graph-based
concept. The transactions with provenance about the attributed types are referenced under the
key map by their transaction ids. The id field contains the transaction id, which identifies the
transaction. As expected input dictionary on line 12 contains the signature and the public of
the account who created the transaction. Since the asset is owned by the same account in the
first place, the outputs dictonary contains the same public key.

Transfer The BaseAccount class also implements the transfer asset() method, which al-
lows the transfer of an asset to another account (Listing 5.3). As depicted on line 1, the methods
takes four parameters. These are the connection to the node, the public key of the receiving
account, the transactions to transfer and an optional dictionary containing metadata. First the
asset is created and filled with the transaction id from the passed transaction (Line 5). Sub-
sequently, the transaction input is configured by using the transaction output from the prior
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1 {

2 "asset": {

3 "data": {

4 "map": {

5 "ex:Ag2": "e25e59c734245c817fbf6da44a70cb30c1b86a0d9d09eb4ec587b10ec7810106",

6 "ex:E2": "969c83e4b9377e97b771d28748b0250015af60d3e9539ab8676fac8b579f0b1b"

7 },

8 "prov": "{\"wasAttributedTo\": {\"_:id1\": {\"prov:entity\": \"ex:E2\", \"prov:agent\":

\"ex:Ag2\"}}, \"prefix\": {\"pre_0\": \"https://www.w3.org/ns/prov#\", \"ex\":

\"https://example.org/\"}}"

↪→
↪→

9 }

10 },

11 "id": "50cb5bbfb5a4abdfaa4e4a9f927d23c462650bcac94bd34fc0bed53d1934e9d3",

12 "inputs": [

13 {

14 "fulfillment": "cf:4:ZgxWoxuyXkM1nVcVdYfejJy_AN0FJ1OjpJ8dqoxiEHT52e-GOCLLZSM...",

15 "fulfills": null,

16 "owners_before": [

17 "7sMVr3hXEtYrmThypr2MK5fHnZhGA366zXS1kXvrLu5M"

18 ]

19 }

20 ],

21 "metadata": {

22 "relation": "ex:E2->ex:Ag2"

23 },

24 "operation": "CREATE",

25 "outputs": [

26 {

27 "amount": 1,

28 "condition": {

29 "details": {

30 "bitmask": 32,

31 "public_key": "7sMVr3hXEtYrmThypr2MK5fHnZhGA366zXS1kXvrLu5M",

32 "signature": null,

33 "type": "fulfillment",

34 "type_id": 4

35 },

36 "uri": "cc:4:20:ZgxWoxuyXkM1nVcVdYfejJy_AN0FJ1OjpJ8dqoxiEHQ:96"

37 },

38 "public_keys": [

39 "7sMVr3hXEtYrmThypr2MK5fHnZhGA366zXS1kXvrLu5M"

40 ]

41 }

42 ],

43 "version": "0.9"

44 }

Listing 5.2: Create transaction taken from a block in RethinkDB

transaction (Line 6-15). Afterwards the transaction should be assembled with help of the prepare
function from the bigchaindb driver (Line 17-22). To create the desired transaction type the
parameter operation is set to TRANSFER. The public key of the recipient is passed together
with asset, metadata and prepared inputs. After signing the transaction with private key of the
account, the transaction is send to a BigchainDB node (Line 24-26). If the transmission was
successfull, the method returns a dictionary including the transaction.

After transferring the transaction to a BigchainDB node, the transaction is included into
a block. The following listing shows the input section now contains the previous transaction
id and the index of the output it refers to (Listing 5.4). The fulfilment or signature on line 8
changed in order to prove the ownership of the previous output. To transfer the ownership of
the asset to the next owner, the public key is placed in the output section on line 28.
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1 def _transfer_asset(self, bdb_connection: BigchainDB, recipient_pub_key: str, tx: dict,

metadata: dict = None) -> dict:↪→
2 if metadata is None:

3 metadata = {}

4 transfer_asset = {’id’: tx[’id’]}

5 output_index = 0

6 output = tx[’outputs’][output_index]

7 transfer_input = {

8 ’fulfillment’: output[’condition’][’details’],

9 ’fulfills’: {

10 ’output’: output_index,

11 ’txid’: tx[’id’]

12 },

13 ’owners_before’: output[’public_keys’]

14 }

15

16 prepared_transfer_tx = bdb_connection.transactions.prepare(

17 operation=’TRANSFER’,

18 asset=transfer_asset,

19 metadata=metadata,

20 inputs=transfer_input,

21 recipients=recipient_pub_key)

22

23 fulfilled_transfer_tx = bdb_connection.transactions.fulfill(prepared_transfer_tx,

24 private_keys=self.private_key)

25

26 sent_transfer_tx = bdb_connection.transactions.send(fulfilled_transfer_tx)

27 if fulfilled_transfer_tx != sent_transfer_tx:

28 raise exceptions.CreateRecordException()

29 return sent_transfer_tx

Listing 5.3: Method transfer asset() function in BaseAccount class

5.3.2 Document-based Concept

For implementing the document-based concept the classes DocumentConceptClient and Docu-
mentConceptAccount were derived from the base classes. By instantiating a new Document-
ConceptClient, a single DocumentConceptAccount object is created or loaded from the sqlilte
database based on the given account id.

To store a PROV document the method save document() is called. First the passed doc-
ument gets converted into a ProvDocument object with help of the prov package, if needed.
Afterwards the object is serialized to PROV-JSON and put into an asset dictionary by using
its serialized method. This approach ensures valid representations of provenance data in every
transaction and provides the ability to deserialize the information without prior calculations.
Subsequently, the asset dictionary is provided to the account object by calling its save asset()

method. Since, no further processing is need the create asset() method from the base class
is called. After the transaction id is returned, the function wait until valid from the utils
package is called. The purpose of this method is to request the status of a transaction from
BigChainDB until the status has changed to valid and the transaction is included into a block.
The method throws an exception after a maximum of requests are reached, in order to prevent
an infinite loop. Because of the following call to the transfer asset() method, it is necessary
to wait for the previous transaction to get incorporated into a block. If this method is called with
an invalid transaction, it will fail due to the consensus rules of BigchainDB. The transaction id
return, by the successful transfer method, is then return to the DocumentConceptClient, which
in turn returns the id.

In order to query a document from BigchainDB the method get document() on the client
object is called with a transaction id. Since queries on BigchainDB do not require an account,
the id is immediately used to retrieve the corresponding transaction with the BigchainDB driver
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1 {

2 "asset": {

3 "id": "50cb5bbfb5a4abdfaa4e4a9f927d23c462650bcac94bd34fc0bed53d1934e9d3"

4 },

5 "id": "12d5f4902ce83fcfc7e06d0e211201b480c586a5d1c34ad82053474fefd1bc31",

6 "inputs": [

7 {

8 "fulfillment": "cf:4:ZgxWoxuyXkM1nVcVdYfejJy_AN0FJ1OjpJ8dqoxiEHTViJBrLQ2...",

9 "fulfills": {

10 "output": 0,

11 "txid": "50cb5bbfb5a4abdfaa4e4a9f927d23c462650bcac94bd34fc0bed53d1934e9d3"

12 },

13 "owners_before": [

14 "7sMVr3hXEtYrmThypr2MK5fHnZhGA366zXS1kXvrLu5M"

15 ]

16 }

17 ],

18 "metadata": {

19 "relation": "ex:E2->ex:Ag2",

20 },

21 "operation": "TRANSFER",

22 "outputs": [

23 {

24 "amount": 1,

25 "condition": {

26 "details": {

27 "bitmask": 32,

28 "public_key": "Heow8xCwCPEnedBGdBSiWyvyrnLYXac4FM5T3oAHyetc",

29 "signature": null,

30 "type": "fulfillment",

31 "type_id": 4

32 },

33 "uri": "cc:4:20:92qMa88eyT6MWR8yW3GIdEnyUHHIQ5vRj5cKYpw8JMU:96"

34 },

35 "public_keys": [

36 "Heow8xCwCPEnedBGdBSiWyvyrnLYXac4FM5T3oAHyetc"

37 ]

38 }

39 ],

40 "version": "0.9"

41 }

Listing 5.4: Transfer transaction taken from a block in RethinkDB

method retrieve(). Because the returned transaction was not checked in the save method, it is
checked against BigchainDB to prove the block and transaction as valid. The step ensures that
only trustworthy provenance is returned regardless of the storing process. Due to the implemen-
tation of the save document() method, the first transaction returned is of type TRANSFER
and does not include the provenance data. Therefore, another request with the transaction id
referenced in the previous asset is needed to retrieve the provenance. Afterwards the returned
transaction is validated and the contained provenance is deserialized into a ProvDocument object
and returned.

5.3.3 Graph-based Concept

Similar to the previous implementation, the graph-based concept derived the classes Graph-

ConceptClient and GraphConceptAccount from their base classes. Since accounts are generated
based upon the provided provenance document, an empty list is created when the GraphConcept-
Client object is instantiated.

In order to store new PROV statements the public method save document() is called. First
the provided document is transformed into a ProvDocument object. According to the algorithm
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the object is than used to extract the PROV elements and all related relations by calling the
static method calculate account data(). The method returns a list of triples, which contain
the ProvElement object, a dictionary with ProvRelation objects and a list of namespaces. Af-
terwards, a dictionary containing a mapping between identifiers of relations and transaction ids
is created from it. Subsequently, the list of triples is used to create an account object for each
entry by passing the triple and the references to the mapping and the database object to the
constructor of the GraphConceptAccount class. Within the initialization of the account object,
the constructor of the base class is called with the identifier from the ProvElement object. This
ensures that each account is represented by a unique PROV identifier. The account object is
then put into a list and the method save instance asset() is called on the account object,
creating a transaction holding the provenance about the ProvElement. A ProvDocument ob-
ject including all PROV namespaces and the ProvElement is thus generated. Subsequently,
the object is serialized to PROV-JSON and sent to the BigChainDB node. The asset is cre-
ated and transferred, as in the previous concept. In contrast to the proposed algorithm, the
transaction is not optimized in size due to the capabilities of BigchainDB After the successful
inclusion of the transaction, its id is used to update the account entry in the local database
and returned to the caller. The client finally appends the transaction id to a list, containing
all id that together represent the document in the database. Following this step, the method
save relations with ids() is called on each account having relations with identifiers. For
each relation the mapping used in the transaction and a ProvDocument object are generated.
The mapping is assembled using the identifier mapping and the mapping provided by the local
database. The mapping and serialized ProvDocument are put into the asset and send to the
node using the usual methods from the base class hereafter. The returned transaction id is
then set as value in the shared identifier mapping for later use. In addition, the transaction
id is put into a list, which collects all ids generated in the loop. After all relations are cre-
ated, the list is returned to the client object and appended to transaction list. The next step
according to the algorithm is to create all relation without identifier. Therefore, the method
save relations without ids() is called to store all other relations with a similar approach as
explained above. Lastly, all transaction ids are returned to caller using a list.

In order to retrieve a document from a BigchainDB node, a list of transaction ids must be
passed to the method get document() , defined in the GraphConceptClient class. This method
works similarly to the method in DocumentConceptClient, but loops over each transaction id.
All retrieved assets are deserialized to a temporary ProvDocument object, which in turn is used
to collect all records into one ProvDocument. This Document is then returned to the calling
method.

5.3.4 Role-based Concept

To implement the role-based concept the classes RoleConceptClient and RoleConceptAccount

were derived from their base classes. As in the previous concept, an empty list for the ac-
counts is created when an object of the RoleConceptClient class is instantiated. By calling its
save document() method, the given provenance statements are transformed into a ProvDocu-
ment object

As in the graph-based concept implementation, its static method calculate account data()

is called to transform the ProvDocument into a data structure which can be used to create the
needed accounts. In contrast to the method of the previous implementation, the method returns
a list of quadruplet. Each quadruplet contains an ProvAgent object, a list of all its outgoing
ProvRelations objects, a dictionary with all ProvElements objects associated or attributed to the
Agent including all their outgoing ProvRelation objects, and a list of PROV namespaces. The
method itself converts the ProcDocument object into a graph representation containing nodes
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and edges. The nodes are than split up in two lists. The first list contains all ProvAgent objects
where the second list contains all other ProvElement objects. Afterwards all the ProvElements
are checked to see whether a relation to one of the ProvAgent’s exists. If this is not the case for
one of the ProvElements, the method will throw an exception since these ProvDocuments can’t
be stored according to the concept’s design. Next, the method assembles the dictionary with
the ProvElement object for each ProvAgent. This is done by directly using methods provided
by networkx package, which is used by the prov package to represent the graph. Subsequently,
the returned list of quadruplets is iterated to instantiate account objects using the RoleCon-
ceptAccount class. Thereafter, each account creates its initial transaction by getting called on
the method. save instance asset(). This methods creates a ProvDocument object using the
ProvAgent and its ProvRelations. The transaction is then issued to a BigchainDB node using
the same technique as in the graph-based concept. The resulting id is returned to the client
instance and included in a list of transactions. The final step is to create all other ProvElements
calling the method save elements(), which works similar to the previous method. The only
difference is that more than one ProvElement might be processed in the method. Therefore, the
method returns a list of transactions. After all ProvElements are successfully included into a
BigchainDB node, the clients returns a list of transaction ids.

The current implementation lacks the features of a direct mapping between PROV identifiers
and external transaction ids, as proposed in the concept section. It was ommited due to difficul-
ties and complexity which come with the ordering of elements and relations prior to the creation
of the transaction. Since all transaction ids are known, ids and all provenance is stored in its
valid PROV-JSON representation, and querying of assets is still possible. the implementation
of the method get document() is equal to the method defined in the GraphConceptClient class.

5.3.5 System Level Unit Tests

To test all components of each concept together, three system level test cases were implemented
beside others. These tests were used during the development process and for use later, in tests
on performance. To illustrate how the system level test cases are designed, the test case of the
graph-based concept is explained (Listing 5.5). By executing the test case, a specific ProvDoc-
ument object is created from a string containing PROV statements. In this case the document
simple2 is used, which corresponds to the file test-example.json from the asset directory. The file
contains provenance that is similar to the examples used throughout the concept design chapter.
Additional relations were added, in order to represent edge cases. Afterwards, a client object is
initialised and the method save document() is called with the ProvDocument. If the document
is successfully saved, the get document() method is called with the returned transaction ids.
As explained, this method returns a ProvDocument object. To test the result the given object
is compared with the returned object. In addition, the amount of records stored in the objects
is compared.

1 def test_simple2_prov_doc(self):

2 prov_document = utils.to_prov_document(content=self.test_prov_files["simple2"])

3 graph_client = clients.GraphConceptClient(host=self.host, port=self.port)

4 tx_ids = graph_client.save_document(prov_document)

5 doc = graph_client.get_document(tx_ids)

6 self.assertEqual(len(prov_document.get_records()), len(doc.get_records()))

7 self.assertEqual(prov_document, doc)

Listing 5.5: System Level Unit Test for GraphConceptClient
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Test and Analysis

6.1 Environment

To execute the tests in an realistic and independent environment, a dedicated network of
BigchainDB nodes was created. Since the decision on valid block in BigchainDB is based upon
majority votes, a network of 2n+ 1 nodes must be guaranteed. Therefore, five BigchainDB and
RethinkDB nodes were deployed on five virtual machines on a single VMWare host (Figure 6.1).
Each machine was provided with two virtual Intel Xeon E5520 cores and 4GB RAM. As stated
in the introduction under the section BigchainDB, Ubuntu 16.04 LTS x86 64 Release 2 was
installed. The same operating system was used on a virtual machine running with eight Intel
i7-3720QM cores and 8GB RAM. This machine was utilized as host for the software under test
and connected to one of the nodes during a test run.

On each server, the RethinkDB nodes was first configured to interconnect with other nodes
by using the RethinkDB’s cluster protocol. Afterwards, each BigchainDB node was provided
with a public and private key, and the keyring was filled with the public keys of all other nodes.
(Listing 6.1). To have access to the RethinkDB cluster, each node was configured to connect
with the local RethinkDB instance. In addition, the BigchainDB HTTP-API was made public
on port 9984.

1 {

2 "backlog_reassign_delay": 120,

3 "database": {

4 "backend": "rethinkdb",

5 "host": "localhost",

6 "name": "bigchain1",

7 "port": 28015

8 },

9 "keypair": {

10 "public": "Bb9gCjgtz84uFhS9DXsGue2657WrraibfdeGE7BRRi2a",

11 "private": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx"

12 },

13 "keyring": ["GkjPgiyWWhuewhExuubpt4rnMWMMPorQKsgF5aJihZku",

14 "4ihZoxhtT8kg2NZ3jMsYPgpFWnNbuy54GYwSeL1k6wQz",

15 "Bui1CMuNzFFosu1C5cCx7EuoLm9z6BhiNYDMBZ6ySWoe",

16 "HLSB55kmSJPiTEeRsz1n5QdnsiNuEtnU5dbcPsUMAUgg"],

17 "server": {

18 "workers": null,

19 "threads": null,

20 "bind": "0.0.0.0:9984"

21 }

22 }

Listing 6.1: BigchainDB Configuration File

55
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Figure 6.1: Test Environment with software under test

6.2 Test Procedure

Based upon the environment above, a test procedure was created to reduce side effects and
ensure comparable test results. Prior to the test setup, all RethinkDB nodes were started once.
The following procedure put forward was executed four times for each concept, with a system
level test case.

Setup First, the database with all tables was created in RethinkDB by a BigchainDB task.
Subsequently, the RethinkDB cluster was configured to split the database in five shards across all
nodes. In addition, the replication factor was set to three, which ensured a working RethinkDB
failover. After all RethinkDB nodes were synchronised their database, all BigchainDB nodes
were started. After the BigchainDB nodes voted the block with the genesis transaction valid,
the test itself was executed.

Execution To measure the performance and behaviour the concepts, the unit test framework
was started with the desired test case from within the Pycharm IDE using the profiling option.
This option activated a profiler from Pythons cProfile package to collects statistics during the
runtime of the test, including information about function calls and measurements about their
execution time. After completion of the test the collected measurements were saved to a pstat
file for later analysis.

Tear Down To ensure the same starting point for each test run, all BigchainDB nodes were
shutdown and the database in the RethinkDB cluster was deleted.

6.3 Results

The following section will present an analysis about the results gained from the collected mea-
surement in the performance tests. First, all concepts will be discussed in detail to point out
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Figure 6.2: Testrun 1 – Document-based Concept

their behaviour and provide a comparison to some aspects made in the concept introduction.
The discussion is followed by a general comparison of all concepts, covering the differences in
performance.

6.3.1 Document-based Concept

All tests of the document based concept showed a measured runtime between 34.8 and 43.4
seconds and were able to save and retrieve the document in each run. As illustrated in the ex-
ample of the first test run, with its accumulated 21.70 seconds, the function wait until valid()

used up the majority of the total execution time (Figure 6.2). After sending the initial asset
in the method save account(), it took 5.06 seconds to incorporate the first transaction into
the blockchain table. Consequently, transferring both transactions and creating the asset took
about 3.3 seconds. But after sending the second transaction, the incorporation took about
16.64 seconds, which is significantly longer than expected. Since only one transaction was sent
to the test environment beforehand and no other transaction was processed in between, it is
assumed that the RethinkDB cluster may cause the delay. Variation in timing because of the
wait until valid() method, was recognised in all tests of the concept. Being executed for
approximately 10 seconds, the method get document() was almost constant during all tests.
The same is true for the method save document(), which was also executed in approximately
10 seconds. Excluding the test on validity, the retrieving of both transactions needed about 3
seconds, which results in 1.5 seconds per transaction.

6.3.2 Graph-based Concept

During all tests the graph-based concept showed its capability to store and retrieve documents
as intended. The measurements showed an overall runtime of the graph-based concept between
714 and 1290 seconds. This is the largest difference in runtime compared to all other concepts.
On the one hand, the long runtime in general can be explained by the amount of transactions;
on the other hand, this does not explain the huge difference in runtime between the tests. Due to
the concept algorithm and used graph, the test stored 40 transactions into the blockchain table
of RethinkDB. By having a total runtime of 546 seconds, the method save document() in the
fourth test does wait about 75 Percent of the time to receive a response from the BigchainDB
node (Figure 6.3). As a result, each transaction waited more than 10 seconds to get included
into the blockchain table. Therefore, the four seconds needed to create and transfer one as-
set stayed almost the same as in the document concept. Since, the measurements are limited
to the accumulated time that was spent in a method or function, no detailed information is
available about the time spent in methods called in loops. Consequently, it is not possible
to detect if the time spent in the method wait until valid() is distributed equally or fol-
lows the same pattern as in the previous concept. The methods save instance asset() and
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Figure 6.3: Testrun 4 – Graph-based concept

save relations without ids() spend about 75 Percent of their execution time waiting until
all transactions were processed. Since, the methods are called after another and the time to
return from the wait until valid() method isn’t significantly longer in the second method,
its likely that the time to include a transaction in a block does not extend over the process.
This assumption is underpinned by the measurements of the other test, which showed a similar
pattern, but a significant difference in the overall time needed to store all transactions. In addi-
tion, the almost stable runtime between 154 and 206 seconds of the get document() method in
all tests showed that only the inclusion of assets seems to affect the time needed for the whole
process. Since, the implementation of writing an asset to the blockchain table is identical in all
concepts, the prior assumptions also point to problems with the RethinkDB cluster. But due
to the significant difference of the time needed, it is possible that a process in BigchainDB may
contribute to this problem.

6.3.3 Role-based Concept

Similar to the measurements of the previous concepts, the role-based concept proved its capabil-
ity to store and retrieve documents to and from the blockchain table. With a runtime between
306 and 545 seconds due to only 16 transactions, the concept showed average results in perfor-
mance, as expected. With approximately 3.4 seconds to create and transfer an asset, excluding
the waiting process, the concept is comparable with those previously mentioned. This is also
true for retrieving transactions from the blockchain. With an average of about two seconds,
the measured time was close to the other concepts. As illustrated in the diagram of test 1,
the concept showed similar behaviour regarding the wait until valid() method (Figure 6.4).
The time consumed in waiting until all transactions were included into the blockchain table
accumulated to about 70 Percent of the total time, on average over all tests. Therefore, the
same assumption regarding the RethinkDB cluster must be made.

6.3.4 Problem Analysis

As already mentioned, the tests in all concepts were slowed down by waiting on transactions to
get included into the blockchain. Therefore, the log files of the BigchainDB nodes were analysed
during a test run with the following result. As soon as a new transaction arrived in the backlog
table of the RethinkDB cluster, the transaction was picked by a random BigchainDB node
and incorporated into a block. Subsequently, all others nodes were voting on the new block.
Multiple reasons may lead to the rejection of a new block by a node. One out of these reasons
is a signature error, which can occur if a node can’t verify the signature of a block. In this case
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Figure 6.4: Testrun 1 – Role-based Concept

the transaction is put back into the backlog. The logs showed, that exactly this warning, about
the error, occurred multiple times during the voting process on one block (Listing 6.2). The
error itself can happen in two instances: First, a node does not know the public key of a node
that created a new block; second, a node does not have access to the complete data set and
therefore calculates the wrong hash values. Since all public keys were verified to be corrected
on all nodes, only the second case might be plausible. Due to the shards and replica options
set to the RethinkDB cluster, the data is distributed across all available nodes. Since only one
node holds the primary shard, a piece of data must be requested by other nodes if needed. In
some cases this might lead to a node that can’t decide if a block is valid until the needed data is
available. Another problem is that due to the design of software, exactly one block is created for
each transaction. Additionally, the long voting process for one block might amplify the problem.
Another possible but unlikely factor might be the strongly connected RethinkDB cluster, which
can cause additional problems. For example, inefficient routing in specific network configurations
can lead to additional delays. To prove this particular assumption, further research is required.

In conclusion, it must be stated that BigchainDB seems to cause the problem by initialising
its voting process. Since BigchainDB is still in development, these problems may be solved in
future versions. Therefore, the problem can be treated as side effect of the early software state.

1 WARNING:bigchaindb.consensus: Vote failed signature verification:

2 {"signature":

"wb6o8Rh4rS2EuuuZYeGf6dnByH1QGutX6jNBgnEETkpeiwLxRmfqRCCyYFu2FTz2MT4TD3t44xcZKntLwYxEsPh",↪→
3 "vote": {

4 "voting_for_block": "81710eb630a5c2313d028ef8057a5a7c3cd74464384b7ee4602cbff082ec6a84",

5 "invalid_reason": None,

6 "previous block": "20b006689dfc6516a70c5b47994a6fca4747b9b11324a56c1edfb3e5a769c957",

7 "is_block_valid": True,

8 "timestamp": "1490199519"},

9 "node pubkey":"6gaZbU9hMzHzxmSysHgNrG6gqG6wJRenM5ytCWkNXa8T"}

10 with voters:

11 ["Bb9gCjgtz84uFhS9DXsGue2657WrraibfdeGE7BRRi2a",

12 "GkjPgiyWWhuewhExuubpt4rnMWMMPorQKsgF5aJihZku",

13 "4ihZoxhtT8kg2NZ3jMsYPgpFWnNbuy54GYwSeL1k6wQz",

14 "HLSB55kmSJPiTEeRsz1n5QdnsiNuEtnU5dbcPsUMAUgg",

15 "Bui1CMuNzFFosu1C5cCx7EuoLm9z6BhiNYDMBZ6ySWoe"]

Listing 6.2: BigchainDB Configuration File
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Figure 6.5: Measured performance of all tests combined split up by save and read methods

6.3.5 Summary

All concepts could prove their capability to store and retrieve provenance documents from the
blockchain in general. As expected in the concept design, each concept showed different results in
its performance. The measurement from all tests proved that the difference is strongly influenced
by the amount of transactions transferred to the blockchain. This can be made clear if the run
time of all three concept implementation is directly compared to each other (Figure 6.5). As
depicted, the simple document based concept shows the most stable behaviour in writing and
reading provenance. Due to the single transaction it is also the fastest way to store provenace in
BigchainDB. By having a mean run time of about 280 seconds in storing provenance, the role-
based concept showed an average result due to the fewer transactions required. The same is true
for reading provenace from the blockchain. The graph-based concept showed the longest run
time due to the amount of transactions needed. However, by using the same implementation
for reading provenance from the blockchain, in the role-based implementation, a comparable
performance was shown.
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Conclusion

Due to their variety of use cases and several concepts to prove the validity of blocks, blockchains
offer different levels of resistance against tampering. As experienced by the author of this
work, this was difficult to answer for blockchains implemented by private companies, which
claim tamper-resistance or large file storage but does not provide any further documentation
beside a high level with paper. Therefore, this work first analysed the different parameters
which influence the tamper-resistance of open source currency-based blockchains and alterna-
tive blockchains. This allows for the selection of a suitable blockchain for an application with
respect to the provided trustworthiness, security and performance. The current project proposed
a solution for a wide variety of blockchains, utilizing three generalized concepts for storing prove-
nance in its PROV representation into a blockchain. Consequently, the concepts are usable for
the development of various applications based on the blockchain technology with focus on prove-
nance. Since provenance deals with huge data sets and is mostly stored in private environments,
the author of this work utilized the blockchain-like BigchainDB as a software prototype. Due to
the flexibility of BigchainDB it was possible to implement each concept and prove its capability,
advantages and disadvantages. In addition, use cases for each concepts were provided to the
reader.

During the process of writing this thesis further possibilities for future research were discov-
ered. The problems experienced by using RethinkDB in combination with BigchainDB suggests
an implementation with the optional MongoDB should be considered in order to prove the mea-
surements of the thesis. Further, both databases should be explicitly tested against tampering
by altering the blockchains using the capabilities of the database. This would allow a more pre-
cise evaluation of the tamper-resistance BigchainDB must provide in order to offer trustworthy
storage of provenance data. Since the role-based concept is limited to a subset of the PROV
standard, further research is required to solve this problem. This is also true for the unsolved
problem of finding a deterministic ordering, which is needed for a valid mapping between trans-
actions. Regrading the current prototype, the database to store account data must be considered
unsafe. Therefore, a secure solution must be implemented to prevent stealing of private keys.

Another possible research topic that arose is the implementation of the concepts using
Ethereum. From the authors point of view, the graph-based concept should be used in this
approach. By moving the program logic into contracts, additional security and control mecha-
nisms as well as new types of automated queries are possible. Of special interest, is an analysis
on the tamper-resistance influenced by Ethereum’s turing-complete programming language.
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Appendix A

PROV Data Model

Table A.1: Overview PROV Components [11]

Type or Relation Representation in the PROV-N notation Component

Entity (id, [ attr1=val1, ...])

Component 1:
Entities,
Activities

Activity (id, st, et, [ attr1=val1, ...])
Generation wasGeneratedBy(id;e,a,t,attrs)
Usage used(id;a,e,t,attrs)
Communication wasInformedBy(id;a2,a1,attrs)
Start wasStartedBy(id;a2,e,a1,t,attrs)
End wasEndedBy(id;a2,e,a1,t,attrs)
Invalidation wasInvalidatedBy(id;e,a,t,attrs)

Derivation wasDerivedFrom(id; e2, e1, a, g2, u1, attrs)
Component 2:
Derivations

Revision ... prov:type=’prov:Revision’ ...
Quotation ... prov:type=’prov:Quotation’ ...
Primary Source ... prov:type=’prov:PrimarySource’ ...

Agent (id, [ attr1=val1, ...])

Component 3:
Agents,
Responsibility,
Influence

Attribution wasAttributedTo(id;e,ag,attr)
Association wasAssociatedWith(id;a,ag,pl,attrs)
Delegation actedOnBehalfOf(id;ag2,ag1,a,attrs)
Plan ... prov:type=’prov:Plan’ ...
Person ... prov:type=’prov:Person’ ...
Organization ... prov:type=’prov:Organization’ ...
SoftwareAgent ... prov:type=’prov:SoftwareAgent’ ...
Influence wasInfluencedBy(id;e2,e1,attrs)

Bundle constructor bundle id description 1 ... description n endBundle Component 4:
BundlesBundle type ... prov:type=’prov:Bundle’ ...

Alternate alternateOf(alt1, alt2) Component 5:
AlternateSpecialization specializationOf(infra, supra)

Collection ... prov:type=’prov:Collection’ ...
Component 6:
Collections

EmptyCollection ... prov:type=’prov:EmptyCollection’ ...
Membership hadMember(c,e)

XV



Figure A.1: UML Representation of Component 1 [11]

Figure A.2: UML Representation of Component 2 [11]



Figure A.3: UML Representation of Component 3a [11]

Figure A.4: UML Representation of Component 3b [11]



Figure A.5: UML Representation of Component 4 [11]

Figure A.6: UML Representation of Component 5 [11]

Figure A.7: UML Representation of Component 6 [11]



1 document

2 // Namespaces

3 default <https :// example.org/0/>

4 prefix ex <https :// example.org/1/>

5 prefix prov <https :// www.w3.org/ns/prov#>

6 prefix ul <https ://uni -leipzig.de/prov/>

7 prefix dlr <https :// dlr.de/prov/>

8 prefix tr <https :// www.w3.org/TR/2013/ >

9

10 // Component 4

11 entity(ul:master -thesis -stoffers , [ prov:type=’prov:Bundle ’ ])

12 bundle ul:master -thesis -stoffers

13

14 // Types

15 entity(ul:thesis -stoffers -finished , [ prov:type="ul:

mastersthesis "])

16 entity(ul:thesis -stoffers -20170316 , [ ul:title=" Trustworthy

Provenance ..." ])

17 entity(ul:thesis -stoffers -20170310)

18 entity(ul:milestone -1, [ prov:type="Plan" ])

19 entity(tr:REC -prov -dm -20130430 , [ prov:label="The PROV Data

Model" ])

20

21 activity(ul:worked -on -thesis , 2017 -10 -03 T09 :00:00 ,

2016 -10 -03 T09 :30:00 , [ prov:type=’ul:edit ’ ])

22 activity(ex:print -thesis , -, -, [ prov:type=’ex:print ’ ])

23

24 agent(ul:martin -stoffers , [ul:regno ="3748896" , ul:name="

Martin Stoffers", prov:type=’prov:Person ’ ])

25 agent(ul:michael -martin , [ul:name=" Michael Martin", prov:

type=’prov:Person ’ ])

26 agent(ul:university -leipzig , [prov:type=’prov:Organisation ’

])

27 agent(dlr:andreas -schreiber , [ul:name=" Andreas Schreiber",

prov:type=’prov:Person ’ ])

28 agent(dlr:dlr , [prov:type=’prov:Organisation ’ ])

29 agent(ex:print -shop , [prov:type=’prov:Organisation ’ ])

30

31 // Relations

32 // Component 1

33 wasGeneratedBy(ul:thesis -stoffers -20170316 , ul:worked -on -

thesis , -)

34 wasGeneratedBy(ul:thesis -stoffers -finished , ex:print -thesis

, -)

35 used(tr:REC -prov -dm -20130430 , ul:worked -on -thesis ,

2017 -03 -16 T09 :10:00)

36 used(ul:thesis -stoffers -20170316 , ex:print -thesis , -)

37 wasInformedBy(ex:print -thesis , ul:worked -on -thesis)

38 wasStartedBy(ex:print -thesis , ul:thesis -stoffers -20170316 ,

ul:worked -on-thesis , 2017 -03 -17 T10 :00:00)

39 wasEndedBy(ex:print -thesis , ul:thesis -stoffers -20170316 , ul

:worked -on-thesis , 2017 -03 -17 T10 :10:00)

Listing A.1: Full PROV-N Example (Part a)



1 // Component 2

2 wasInvalidatedBy(ul:thesis -stoffers -20170316 , ex:print -

thesis , -)

3 wasDerivedFrom(ul:thesis -stoffers -20170316 , ul:thesis -

stoffers -20170310 , -, -, -, [ prov:type="prov:Revision"

])

4

5 // Component 3

6 wasAttributedTo(ul:thesis -stoffers -20170316 , ul:martin -

stoffers)

7 wasAttributedTo(ul:master -thesis -stoffers , ul:university -

leipzig , -)

8 wasAssociatedWith(ul:worked -on -thesis , ul:martin -stoffers ,

ul:milestone -1)

9 wasAssociatedWith(ex:print -thesis , ex:print -shop , -)

10 actedOnBehalfOf(ex:print -shop , ul:martin -stoffers , ex:print

-thesis)

11 actedOnBehalfOf(ul:michael -martin , ul:university -leipzig)

12 wasInfluencedBy(ul:master -thesis -stoffers , ul:michael -

martin , [prov:role="ul:Supervisior "])

13 actedOnBehalfOf(dlr:andreas -schreiber , dlr:dlr)

14 wasInfluencedBy(ul:master -thesis -stoffers , dlr:andreas -

schreiber , [prov:role="ul:Supervisior "])

15

16 // Component 5

17 specializationOf(ul:thesis -stoffers -20170316 , ul:thesis -

stoffers -finished)

18 specializationOf(ul:thesis -stoffers -20170310 , ul:thesis -

stoffers -finished)

19 alternateOf(ul:thesis -stoffers -20170316 , ul:thesis -stoffers

-20170310)

20

21 // Component 6

22 entity(ul:thesis -stoffers -versions , [prov:type=’prov:

Collection ’])

23 hadMember(ul:thesis -stoffers -versions , ul:thesis -stoffers

-20170316)

24 hadMember(ul:thesis -stoffers -versions , ul:thesis -stoffers

-20170310)

25 endBundle

26 endDocument

Listing A.2: Full PROV-N Example (Part b)
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Appendix B

Blockchains

Triple-Entry Bookkeeping (Transaction-To-Transaction Payments) As Used By Bitcoin

Transaction 0
(TX 0)

TX 1

TX 2

TX 3

TX 4

TX 5

TX 6

input0

output0

input0

40k

output1
input0

50k

output0 input0
30k

output0 input0
20k

output1

input0

20k

output0

20k Unspent TX
Output (UTXO)

output0

input0
10k

output0

input1
10k

output0

10k
UTXO

100,000
(100k)

satoshis

Figure B.1: Transaction Propagation [32]

Creating A P2PKH Public Key Hash To Receive Payment

Bob's Computer Alice's Computer TX 1

Private
Key

Full
Public Key

Public Key
Hash

Copy Of
Public Key

Hash

Copy Of
Public Key

Hash

Figure B.2: Creating Public Key Hash [32]
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