
Smart Contracts Make Bitcoin Mining Pools Vulnerable

Yaron Velner1, Jason Teutsch2, and Loi Luu3

1 The Hebrew University of Jerusalem
2 The University of Alabama at Birmingham

3 School of Computing, National University of Singapore

Abstract. Despite their incentive structure flaws, mining pools account for more
than 95% of Bitcoin’s computation power. This paper introduces an attack against
mining pools in which a malicious party pays pool members to withhold their so-
lutions from their pool operator. We show that an adversary with a tiny amount of
computing power and capital can execute this attack. Smart contracts enforce the
malicious party’s payments, and therefore miners need neither trust the attacker’s
intentions nor his ability to pay. Assuming pool members are rational, an adver-
sary with a single mining ASIC can, in theory, destroy all big mining pools without
losing any money (and even make some profit).

1 Introduction

Bitcoin and emerging cryptocurrencies offer trustless platforms for users to transact and
run decentralized applications. Each cryptocurrency maintains a peer-to-peer distributed
ledger of prior transactions that records all activities in the network. Network partici-
pants run a consensus protocol called Nakamoto consensus to agree on the state of the
ledger [1]. In every epoch, Nakamoto consensus probabilistically elects a leader who
demonstrates a solution to a computational puzzle (or a “proof-of- work” puzzle) [1]. The
leader proposes and broadcasts a “block” which includes set of new transactions to be ap-
pended to the ledger. The leader (or block finder) receives a reward (around 12.5 Bitcoin,
or 12, 000 USD at present) if his block is valid and accepted by the network.

Pooled mining. Finding a valid solution to a proof-of-work puzzle (or mining) is a proba-
bilistic process and requires massive computational resources. Normal miners with mod-
est computational power can have extremely high variance. For example, even a state of
the art AntMiner S9 mining hardware 4 would mine one Bitcoin block per year on aver-
age. To reduce variance, miners often join mining pools to mine blocks and share reward
together. In a mining pool, a designated pool operator is responsible for distributing com-
putation tasks to miners which have moderate difficulty, much lower than the difficulty
in solving the full PoW puzzle for a block. Each solution to the task has a probability
of yielding a solution to the full PoW puzzle. As a result, if enough miners solve tasks,
then some of these solutions are likely to yield blocks. When a miner’s submitted so-
lution yields a valid block, the pool operator submits it to the network and obtains the
block reward. The reward is fairly divided among all pool members proportional to their
contributed computation power.

4 https://www.bitmaintech.com/productDetail.htm?pid=
0002016052907243375530DcJIoK0654

https://www.bitmaintech.com/productDetail.htm?pid=0002016052907243375530DcJIoK0654
https://www.bitmaintech.com/productDetail.htm?pid=0002016052907243375530DcJIoK0654

Pools reward model vulnerability. Pools are susceptible to the classical block withholding
attack [2], where a miner sends only partial proof-of-work to the pool manager and dis-
cards full proof-of-work. As the structure of the block header is determined by the pool
operator, an attacker cannot claim the block reward for himself. On the surface, block
withholding attacks might not seem profitable, however, miners outside the victim pool
may benefit from block withholding. Dropped blocks increase outside miners’ computa-
tion power relative to the rest of the network [3], and in the long run, outside miners will
mine more blocks (see formal analysis in Section 3).

The attack. Smart contracts are unstoppable programs that live on the blockchains (e.g.
Bitcoin, Ethereum [4]) and have their own executable code and internal states, includ-
ing storage for variable values, and currency balance. In this paper we introduce smart
contracts that reward pool miners who withhold their blocks. We analyze the outcome of
such an attack under the assumption that miners are rational and their behavior aim to
maximize their short-term profit (we analyze the incentives of the miners in Section 3).
We show that when the attack is targeted towards big mining pools who employ the pay
per share scheme, the attack is profitable even for an attacker running a single hardware
unit. Moreover, such an attacker could in theory drain all of revenues and profit from a
big pool. We note that in practice, pool operators that witness significant decrease in their
revenues may have to close their operation before being drained out all of revenues and
profit. Hence, a successful deployment of our attack would undermine the entire pooled
mining model.

The use of smart contracts is crucial in order for the attack to be successful. Indeed,
it is unlikely that miners would collaborate with such an attack unless their payment is
guaranteed. Moreover, rewarding via smart contracts makes it possible for the attackers
to remain anonymous, and prevent other parties from targeting the attacker (e.g., with a
denial of service attack) and shutting him down.

Contributions. The contributions of our paper are as follows:

– We show how to mathematically prove block withholding and implement an Ether-
eum smart contract that rewards block withholding (Section 4).

– We show that under mild assumptions the smart contract could be implemented with
Bitcoin transactions (Section A) and we show how one can use an Ethereum smart
contract to enforce these assumptions (Section B). Bitcoin contracts are more desir-
able as they save the need to run a full Ethereum node.

– We show how the attacker can form a pool of block withholders in order to reduce the
withholders variance, and analyze the incentives for withholders to withhold a block
withholding proof (Section 5).

Comparison with classical block withholding attacks. Block withholding attacks are
known almost from the beginning of Bitcoin [2]. In recent years it has become apparent
that miners can profit from mining for two pools while withholding their full solutions
in one of them [5,6,3]. However, the profit from such an attack is relatively small and an
attacker would have to control big computation power, e.g., over 1%, of Bitcoin’s compu-
tation power, in order to make significant losses (e.g., over 5% decrease in revenues) for
large pools (e.g., see [3]).

In this work we propose to pay other miners to withhold blocks. In Section 3 we
show that an attacker with only 0.0000002% of Bitcoin’s computation power can reduce
the revenue of a big pool to zero without any financial losses on his side. In fact the
theoretical outcome of our attack (if miners are fully rational) is equivalent to a classical
block withholding attack in which a miner rents Bitcoin’s entire hash power and withholds
all the blocks that he finds.

Other cryptocurrencies. In this paper we focus on attacks on Bitcoin mining pools. Never-
theless, in principle, smart contracts undermine the pooled mining model of all cryptocur-
rencies. However some cryptocurrencies, e.g., Ethereum, might be currently resilient to
such an attack due to some technical issues that we describe in Section 4.

2 Background

2.1 Mining and Pool Mining

Bitcoin and popular cryptocurrencies like Ethereum [4] and Zcash [7] maintain a global
ledger between all participants in the networks. The network participants run a consen-
sus protocol called Nakamoto consensus to reach agreement on the state of the shared
ledger [8]. At a high level, Nakamoto consensus works by probabilistically electing a
leader in every 10 minute epoch. The leader will then propose a set of additions (e.g.,
transactions) to the ledger; other participants “apply” these additions after verifying that
these changes are valid. Then the next epoch begins. As of this writing, the election hap-
pens via a “mining” process in which network participants have to solve computationally
hard puzzles (i.e., proof-of-work) which probabilistically yields one solution per 10 min-
utes (epoch time in Bitcoin) on average. Technically, network participants, or miners, have
to find a valid nonce satisfying the following condition:

sha256(sha256(Block Template || Nonce)) ≤ D (1)

in which “Block Template” includes the miner’s proposed changes to the ledger, and D is
a global parameter which indicates the difficulty of finding a valid solution.

Solving a PoW puzzle, or finding a valid block, requires an enormous amount of com-
putation. For example, at the time of writing, D is a 256-bit integer with approximately
80 leading zero bits. Thus finding a valid PoW solution requires on average 280 sha256
calculations. A normal workstation which can perform a million sha256 calculations per
second will expect to spend millions of years to find a PoW solution. Thus, often miners
join forces and form “mining pools” to solve PoW puzzles together. The idea of pooled
mining is to ask everyone in the pool to find solutions (or shares) to easier PoW puzzles
where each share has some probability of being a valid solution for the main PoW puzzle.
Specifically, pool members find all nonce so that the result of the hash in Equation 1 is
less than d, where d is much larger than D. A solution of such puzzles is called a share,
and will have a probability D/d being less than D, i.e., being the valid solution for the
main puzzle. For example, if d were set to have 60 leading zero bits, then a share would
have a probability 2−20 of being a valid solution for the main PoW puzzle.

In pooled mining, a pool operator, or pool manager, keeps track of how many shares
each miner submits. If a share is indeed a valid PoW solution, the pool operator broadcasts
the block to the network and receives a block reward (12.5 bitcoin and the transaction

Field Size
(bytes) Name Data type

4 version int32 t
32 prev block char[32]
32 merkle root char[32]
4 timestamp uint32 t
4 bits uint32 t
4 nonce uint32 t
Table 1: Header of a Bitcoin block

fee as of this writing). This reward is then distributed to miners in the pools based on
their contributions (i.e. number of shares). By joining pools, miners receive more frequent
and stable reward, thus significantly reducing their income variance compared to mining
separately (or solo mining). Note that in pooled mining, the pool operator prepares the
block template in Equation 1, so even if a miner broadcasts a valid block himself, the
reward still goes to the pool.

Formal definitions and notations Bitcoin’s block consists of a block header and a list
of transactions 5. Table 1 depicts the block header format, which consists of 80 bytes.

A block is said to be a valid extension of the blockchain if (i) its difficulty matches
the network difficulty, i.e., the sha256(sha256(block header)) < D; and (ii) the previ-
ous block hash field in the block header corresponds to a valid block in the blockchain;
and (iii) the transactions of the block are valid. A publicaly known block that is a valid
extension but does not reside on the longest chain is called an orphan block or stale block.

A block is a full solution (or valid solution) if its header matches the difficulty D. A
block is a partial solution if its header matches the difficulty of the pool share difficulty
d. The hash power (or hash rate) of a miner (or a group of miners) is the relative fraction
of computation power he possesses relative to the entire Bitcoin network.

2.2 Smart Contracts

Bitcoin transactions are deemed valid only if their linked script condition holds. While
Bitcoin scripts have limited expressiveness, emerging cryptocurrencies support expres-
sive scripts that have enabled the development of a variety of powerful decentralized ap-
plications. Bitcoin’s scripts are stateless, that is, they do not maintain any internal states,
and their behavior depends only on their input.

The Ethereum cryptocurrency introduced smart contracts in which the contract code
is a Turing-complete program [9]. In addition to being more expressive, Ethereum smart
contracts can also maintain internal states which are shared among transactions. For ex-
ample, a smart contract can record the number of different addresses in all transactions
sent to its address. Users interact with a contract, i.e. modify the contract state, by sending
transactions with payloads (i.e. input data) to the contract address.

5 https://en.bitcoin.it/wiki/Block_hashing_algorithm

https://en.bitcoin.it/wiki/Block_hashing_algorithm

3 Block withholding incentives

In this section, we analyze the incentives for an attacker to pay pool miners for dropping
blocks. We recall that the actual block is worthless for the attacker, as the destination of
the block rewards is fixed as the pool’s address. Hence the attacker only benefits from
reducing the effective hash rate of the entire network. In order to maintain a consistent
block rate (e.g., one block per 10 minutes in Bitcoin), the network periodically adjusts the
difficulty of hashing puzzle based on the number of miners participating. In Bitcoin this
adjustment happens once every 2018 blocks.

To formally analyze the incentives, we denote the fraction of the network’s hash rate
controlled by the attacker as α (0 ≤ α ≤ 1), the block reward by r, and a miner’s reward
for submitting a full solution to the pool by s · r.

We first calculate the attacker’s expected net revenue increase from purchasing β frac-
tion of the blocks. In the absence of an attack, the attacker’s expected revenue is α · r· per
block epoch. When β fraction of the network’s valid blocks are discarded, the attacker’s
effective hash rate is a = α/(1 − β), and hence his expected revenue is a · r. Thus the
attacker’s extra revenue from purchasing the blocks is

a · r − α · r = αβ · r
1− β

. (2)

This quantity represents the attacker’s block purchasing budget.
On the other hand, in order to incentivize a pool member to withhold a block, the

attacker would have to offer at least the equivalent of the member’s reward for finding a
full solution. As β fraction the miners do not submit their blocks to the network, in the
long run network difficulty decreases by a multiplicative factor of (1 − β). Hence per
block epoch those miners would collectively expect to find β/(1− β) valid blocks and
would expect to be paid

β · s · r
1− β

(3)

for this work by the pool manager. Comparing the quantities (2) and (3), we see that the
attacker and participating pool members both profit when

α > s. (4)

We now analyze the share rewards of miners. The two most popular share rewards
schemes are the pay per share (PPS) and pay per last N shares (PPLNS) [10]. In addition,
some pools offer bonus payments for miners who submit full solutions.

PPS. In the pay-per-share scheme, every pool miner receives a reward for every share
(whether it constitutes a block or only a partial solution) he submits. Initially, the miner
sets a share difficulty d and receives (r · d)/D reward for every submitted share, whereD
is the difficulty level of the Bitcoin network As of November 1, 2016,D ≥ 253, 618, 246, 641
Gig 6. A pool member can set his own share difficulty for each of his ASIC hardwares,

6 https://blockchain.info/charts/difficulty

https://blockchain.info/charts/difficulty

however the recommended upper bound is currently d ≤ 4, 096 Gig 7 8. Hence, in PPS

s =
d

D
≈ 2 · 10−8, (5)

and a rational miner would, at the current block reward rate, agree to withhold his blocks
for r ·s ≈ (12.5 btc) ·s = 2.5 ·10−7 btc, which, as of November 1, 2016, is less than 0.02
cents of a USD 9. In practice, the attacker likely have to pay more than 0.02 cents in order
to motivate pool members to divert their standing loyalties away from pool managers
and to compensate them for the risk that the pool manager will run out funds and will
not be able to pay them for their previously submitted shares. To aid in this overcoming
this inertia, we introduce block withholding pools in Section 5. Combining Equations (4)
and (5) we find that the attacker could make a profit if his mining power fraction is at least
1/50, 000, 000 of the network (0.000002%). This mining power is currently equivalent to
4 TH/s mining power, which is obtainable by modern ASICs 10. Moreover, a miner with
N ASICs could offer a reward that is N times higher and still make a profit. We note that
all the large mining pools work in the PPS model 11. Hence, all of them are potentially
vulnerable to such an attack.

PPLNS. In the pay-per-last-N -shares model, at a high level overview, all miners share
the mining rewards proportionally to their relative hash power. In this model, block shares
and standard shares equally count towards proof-of-work, however withholding a block
would lower the total revenues of the pool and inevitably also the rewards of the single
miner. Hence, the effective block reward for a pool member is s = γ where γ is the
miner’s hash power divided by the entire pool’s hash power 12. Hence, the attacker would
profit only if α > γ. We speculate that in most common cases, γ � 1/50, 000, 000 and
thus the price of the attack is more expensive in the PPLNS model (see Table 2 as an
example). Nevertheless, the attack could still be profitable for big miners who possess a
percent or more of the entire network’s hash power. An instantiation of our mathematical
analysis can be derived from P2Pool publicly available statistics 13, which present the
hash power of every miner in the pool. Table 2 shows the damages that an attacker could
cause P2Pool, under the assumptions that P2Pool employs a pure PPLNS scheme and its
miners are rational.

Finally, some pools try to prevent block withholding by giving special bonuses for
miners who submit full solutions. These rewards must be limited to a few percent of a
block reward, as higher bonuses would significantly increase the variance of payouts to
pool members (e.g., in P2Pool the bonus is 0.5%). If a pool offers p fraction of a block
reward as a special bonus, then s = p · r and an attack is profitable only if α > p, that is,
only if the attacker hash power is greater than p.

7 https://slushpool.com/help/#!/first-aid/troubleshooting
8 Our analysis is valid even for much larger difficulty levels.
9 http://www.coindesk.com/price/

10 https://www.bitmaintech.com/
11 https://en.bitcoin.it/wiki/Comparison_of_mining_pools
12 The miner would also get the standard share reward, however, these are typically smaller by a

factor of over 109.
13 http://p2pool.org/stats/

https://slushpool.com/help/#!/first-aid/troubleshooting
http://www.coindesk.com/price/
https://www.bitmaintech.com/
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
http://p2pool.org/stats/

Attacker hash power Pool revenue loses Orphan blocks daily costs
0.1% 10% $4
2% 22% $80
4% 32% $160
6% 37% $240
13% 70% $520

Table 2: The revenue losses that an attacker can cause a pool while making the attack profitable
for himself. Attacker power is in percentages of the entire Bitcoin network hash power. Pool loses
are in percentages of the total pool revenue. For example, an attack with 0.1% hash power (i.e.,
0.001 fraction of entire Bitcoin’s hash power) can cause pools’ revenues to decrease by 10%. The
results are based on miner’s hash power distribution in P2Pool. The third column describe the daily
costs that an attacker would have to bare if he also pays for orphan blocks, under the assumption of
$12,000 block reward (see Section 4.3 for more details).

Remark 1. Our calculations hold also in the extreme case where β = 1 − α, i.e., when
all the network but the attacker are withholding their blocks. However, in reality, if the
attacker would manage to attract non-negligible fraction of miners, then PPS pools will
go bankrupt and PPLNS pools will suffer from massive abandonment rate, as it would
become more profitable to mine solo. Hence, the plausible outcome of a successful attack
is a change in the pool mining model (e.g., shift towards solo mining or private pools).

4 Proving Block Withholding

The attacker in Section 3 pays a withholder to refrain from broadcasting a valid block to
the blockchain. In order to convince the attacker that a block has been withheld, the with-
holder has to prove that (i) he found a valid block; and (ii) he (or his pool operator) did
not submit it to the rest of the network. We observe that even for the task for block veri-
fication, namely, to verify that 80 bytes data consists of a valid block header, one would
have to store the entire blockchain inside a smart contract, and ask for a 1 MB block’s
transactions data as a witness for the validity of the block. This approach is infeasible as
e.g., in Ethereum it would costs $76,000 to store 1 GB of data 14 (Bitcoin’s blockchain
size currently exceeds 100 GB 15).

Thus, we relax the requirement for block withholding proof and ask for a proof-of-
stale-work. Proof-of stale-work proves that a miner is performing sha256 operations over
some data without an intention of submitting full solutions to the blockchain. When the
withholder allocates his mining equipment for stale work, the effective hash power of the
network is reduced (see Section 4).

In the next two subsections we present two different approaches for proving stale
work. The non-interactive approach requires only a single submission from the with-
holder whereas the interactive approach requires the attacker to respond to the withholder
submission. The non-interactive scheme makes use of Ethereum’s expressive scripting
language. Under the non-interactive scheme the withholder can, in a single step, submit

14 http://ethereum.stackexchange.com/questions/872/
what-is-the-cost-to-store-1kb-10kb-100kb-worth-of-data-into-the-ethereum-block

15 https://blockchain.info/charts/blocks-size

http://ethereum.stackexchange.com/questions/872/what-is-the-cost-to-store-1kb-10kb-100kb-worth-of-data-into-the-ethereum-block
http://ethereum.stackexchange.com/questions/872/what-is-the-cost-to-store-1kb-10kb-100kb-worth-of-data-into-the-ethereum-block
https://blockchain.info/charts/blocks-size

his proof-of-stale-work to an Ethereum smart contract and get paid for it in ether without
trusting the attacker or vice versa. The more complex interactive scheme, while imple-
mentable in Bitcoin’s limited scripting language, leaves the attacker more vulnerable to
the withholders.

In Section 4.3 we discuss how to mitigate the submission of orphan blocks.

4.1 Non-interactive proof

A non-interactive proof-of-stale-work is a tuple (b1, b2, b
′
2, b3), where:

– b1, b2, b
′
2, b3 are block headers; and

– b2 and b′2 both extend b1; and
– b3 extends only b2.

Intuitively, b′2 is the withheld block, and the fact that b3 extends b2 implies that b2 is
in the blockchain. Formally, in order to prove stale work, we consider two distinct cases:

– In the first case the miner who found b′2 never intended to submit it to the blockchain.
In this case, the proof trivially follows.

– In the second case, the miner did submit it to the blockchain. In this case, the network
had no incentive to find an extension for b2 and therefore the withholder would have
to spend effort in computing b3 16. In this case, the withholder did stale work to find
b3, and the proof follows.

While it is possible to implement this scheme as an Ethereum smart contract (see Fig-
ure 1), one cannot implement it in the current Bitcoin script language as Bitcoin’s parsing
functionality is currently disabled 17. Indeed Bitcoin transactions cannot even extract the
previous block hash out of a block header.

Remark 2. It is possible to target the attack towards a specific pool. The block header
contains some information on the destination account of the block reward and it is pos-
sible to extract it if the withholder provides the leftmost branch of the block transaction
Merkle tree. The connection between the account and the pool operator is typically public
information. Hence the attacker could reward only blocks that are associated with certain
accounts.

4.2 Interactive proof

Let us recall that the header for a valid block, after two composed invocations of sha256,
has many leading zeros. The data B in the first step below corresponds to a single sha256(b′′)
for some valid block header b′′.

– Initially, the withholder submits a 32-byte of data B with sha256(B) that matches
Bitcoin difficulty level (i.e., has enough leading zeros).

– The attacker has time period T to find a block header b′ such that sha256(b′) = B.
– The attacker pays if and only if he did not find b′ after time period T .

16 To prevent cases where it would be profitable to find b3 for the purposes of selfish mining, we
could ask for a chain of blocks that extend b2 rather than only a single block.

17 https://en.bitcoin.it/wiki/Script

https://en.bitcoin.it/wiki/Script

1function verifyProofOfStaleWork(bytes b1, bytes b2, bytes b2_, bytes b3) returns(bool) {
2 uint prevB2 = 0;
3 uint prevB2_ = 0;
4 uint prevB3 = 0;
5 for(uint index = 4 ; index < 32 ; index++) {
6 prevB2 = b2[index] | (prevB2 * 256);
7 prevB2Prime = b2_[index] | (prevB2_ * 256);
8 prevB3 = b3[index] | (prevB3 * 256);
9 }

10 if(prevB2 != prevB2_) return false;
11 if(prevB2 != sha256(sha256(b1))) return false;
12 if(prevB3 != sha256(sha256(b2))) return false;
13 if(b2 == b2_) return false;
14 uint lowestDifficulty = sha256(sha256(b1)) | sha256(sha256(b2)) |
15 sha256(sha256(b2_)) | sha256(sha256(b3));
16 if(lowestDifficulty > difficulty) return false;
17
18 if(prevSubmissions[b2_]) return false;
19 prevSubmissions[b2_] = true;
20
21 return true;
22 }

Fig. 1: Solidity code that verifies proof-of-stale-work.

(i.e., sha256(sha256(b′′)) matches the difficulty level). If the valid block b′′ was submit-
ted to the blockchain 18, then the attacker could easily come up with b′ = b′′ say after
T = 1 day. Otherwise, finding the pre-image of sha256 is computationally infeasible,
and the attacker would not be able to find b′ in the time period T .

Formally, we first claim that finding B requires roughly the same amount of work
as finding a valid block header. Indeed, although technically only half of the sha256
operations are required in order to find B (as in block mining one would have to compute
the sha256 function twice for every candidate byte stream), we conjecture that using the
existing mining ASICs it is faster to find a block header and take B as its sha256, rather
than specifically looking only for B. Given the claim and the impossibility of finding a
sha256 pre-image, it is straightforward that if the withholder did the stale work, then he
will get paid, and his work was not stale, then he will not get paid.

The interactive scheme requires a script language that can (i) compute sha256; (ii) make
32-byte integer comparison; and (iii) store state (to store the withholder submission). Out
of the three, only the first is possible with Bitcoin script language. In Appendix A we
show how to perform this scheme over Bitcoin with several off-chain operations, and in
Appendix B we show how to use Ethereum smart contracts to force correctness of the
off-chain operations.

4.3 Mitigating orphan blocks

The two approaches we described above are not resilient to submission of orphan blocks.
In theory, an orphan block and a withheld block are not different. Hence, in this section we
focus on the practical implications (e.g., attacker’s losses) that orphan blocks introduce,
and suggest practical ways to mitigate them.

18 We make the assumption that orphan blocks are also publicly visible, e.g., see https://
blockchain.info/orphaned-blocks.

https://blockchain.info/orphaned-blocks
https://blockchain.info/orphaned-blocks

We first focus on the expected losses of the attacker due to orphan blocks. In the 365
days between March 2016 and March 2017, 129 orphan blocks were recored 19. Hence,
in our analysis we assume 0.35 orphan blocks to occur every day (on average). Hence,
ignoring orphan blocks will cost an attacker 0.35sr per day. The third column in Table 2
illustrates the daily loses of an attacker who attacks P2Pool. Our analysis suggests that an
attacker who could afford to pay for orphan blocks will bare loses of $4 per day, while
decreasing the victim pool’s revenue by 10% (which might be enough to make all miners
leave the pool). However, the costs could rise up to $520 per day, if the attacker wishes to
reduce the victim pool’s revenue by 70%. In order to evaluate the total costs of an attack,
one would have to speculate on the number of days a pool can successfully survive such
an attack. We leave this empirical evaluation to future research. We note that in networks
with lower block intervals like Ethereum who operates with the GHOST [11] protocol,
the rate of stale blocks is much higher. However, in Ethereum, stale blocks are rewarded
and are also included in the blockchain (as so called uncle blocks). Hence, our schemes
should be adjusted to verify that the blockchain do not contain the submitted block as
an uncle block. Finally, we conjecture that Bitcoin’s low orphan block rate might be the
result of highly centralized miners network, and if the network were truly decentralized
more orphans would occur.

We now suggest practical ways to mitigate the losses of the attacker.

The non-interactive scheme of Section 4.1 could reject orphan blocks by requiring
that the timestamps of b2 and b′2 to differ by at least one minute. The publicly available
orphaned blocks statistic in 20 for the period of January till March 2017 suggests that in
practice Sybil blocks (i.e., the orphan block and the accepted block) timestamp differ by
at most 40 seconds. Hence, our restriction will prevent the submission of orphan blocks,
but might deter withholders to withhold their blocks, as the contract will not accepted
it if a real block is mined in the following minute. For this purpose the attacker should
increase the offered reward sr by a factor of q = e0.1 ≈ 1.105. Now the withholder will
receive qsr provided that no additional block was mined in the following minute (and the
probability that 0 blocks are mined in a single minute is e−0.1), and will receive nothing
if additional block was mined. Hence, the expected reward is still sr, and our theoretical
mathematical analysis from Section 3 still holds. A further empirical study is needed to
evaluate the motivation of big pools to skew their timestamps to mitigate our attack and
the reaction of withholders to the increase in the variance of their reward.

The interactive scheme of Section 4.2 can mitigate orphaned blocks either by assum-
ing that the attacker is always aware of orphaned blocks (e.g., via public blockchain ex-
plorers like blockchain.info or by becoming a peer of all major pools), or by giving in-
centives to the rest of the network to report that a submitted block is an orphaned block.
The latter solution would require the submitter to deposit some collateral along with his
submission of B. If a preimage of B is submitted by a peer in the network then half of the
collateral is given to this peer (and other half is slashed). An empirical research is needed
to evaluate the number of orphaned blocks that are not presented in blockchain.info and
the affect of collateral (and collateral size) on the willingness of withholders to participate
and of peers to report on a preimage.

19 https://blockchain.info/charts/n-orphaned-blocks?timespan=1year
20 https://blockchain.info/orphaned-blocks

https://blockchain.info/charts/n-orphaned-blocks?timespan=1year
https://blockchain.info/orphaned-blocks

5 Block Withholders Pool

We discuss two factors that could deter a miner from participating in the withholding
scheme from Section 4.

– Ethical and long-run considerations. Participating as a withholder might violate some
agreements with the pool operator. In addition, if such attacks were to become com-
mon, miners might face the risk that all pools will cease to operate. In the absence of
pools, miners’ income variance would become undesirably high.

– Complicated setup for a rare chance to profit. On the one hand, collaborating with
the attacker requires the miner to install a special patch for his mining software. On
the other hand, a miner could only withhold a block after he finds at least one valid
block, which is not even a once in a lifetime event for most small miners. Even if the
attacker offers high reward, most small miners would likely not be willing to make
the effort and update their software for an event that is unlikely to happen.

In this section, we describe how to mitigate the second issue by forming a pool of block
withholders, which reduce the variance of the reward and incentives small miners to par-
ticipate in the attack. Intuitively, in a withholders pool miners submit proof-of-work shares
to demonstrate their hash power and share attacker rewards for withholding blocks. The
withholders pool distributes block withholding rewards among miners in proportion to
their relative hash power.

In order to make the scheme profitable, the block withholder pool’s proof-of-work
should correlate with the work the miners do for their legitimate pool operator. Otherwise
the additional proof-of-work would lead to financial losses. In classical mining pool mod-
els, shares must include the pool operator’s data in order to ensure that profit from valid
blocks gets distributed among pool members. By analogy, in order to ensure fair reward
distribution in a withholder pool, the attacker,who distributes all withholding rewards,
must serve as the operator. To be precise, the attacker should form exactly one withhold-
ing pool and declare that all rewards are routed via that pool. As the attacker may not be
trusted, he should form a smart contract that collects proof-of-work and distributes the
reward once a proof of block withholding is submitted (as described in Section 4).

Ironically, such withholder pool is vulnerable to a block-withholding-withholding at-
tack, where miners could avoid submitting the withholding proof to the attacker and in-
stead submit them to their legitimate pool operator. Thus the attacker’s payments to with-
holder pool members must suffice not only to convince miners to install the mining soft-
ware patch for dropping valid blocks but must also directly and fairly compensate pool
members who actually perform withholding. The payment to the member who performs
a withholding must exceed what he would have received for submitting his same share
to the legitimate pool operator instead. Moreover, the attacker must distribute additional
funds to the remaining pool members via some PPLNS scheme in order to motivate min-
ers to install the software patch which includes instructions for diverting valid blocks. In
short, while running a withholding pool increases chances that miners will participate in
an attack, it also increases the attacker’s execution costs.

6 Related Work

Recent literature has pointed incentive structure flaws in pooled mining [12,3] as well as
Nakamoto consensus itself [13,14,15]. In many of these instances, as in this work, the

attacker benefits by withholding publication of a live block. References [5,6,3] showed
that a miner who mines in multiple pools simultaneously and withholds publication in
one of them can, on average, increase his expected net mining profit while decreasing
the revenues of the attacked pool. However, in all of these works the attacker must have
substantial mining power in order to make a significant attack. For example, a miner who
wishes to attack a big pool like F2Pool (for example), which currently posses 20% for the
network hash power 21, should initially possess 6.7% [3] hash power in order to not lose
money during the attack. In our work, in theory, a mining power of 0.000002% is enough
to cause losses to the victim pool. On the other hand, our attack requires cooperation of
other parties and guarantees success only if the other parties are rational with respect to
their short-term revenues.

Recently Luu et al. propose a new efficient decentralized pooled mining protocol us-
ing Ethereum smart contracts [16]. Such a protocol, if is deployed at a cryptocurrency’s
protocol level to build the only mining pool in the network, can prevent block withholding
attack to pooled miners.

Teutsch, Jain, and Saxena recently proposed to attack blockchain miners by pay-
ing them to use their mining equipment for non-mining purposes (e.g., to solve non-
blockchain PoW puzzles) [15]. Bonneau suggested to bribe miners [17] or equivalently
rent their equipment, and instruct them how to mine. In both of these options, the attacker
can benefit by working on a private chain that will eventually exceed the public chain
length, and thus could collect all block mining rewards. However the initial mining power
to make the first such attack profitable in Bitcoin is 38.2% [15], while the latter attack
relies on exotic rationality assumptions. Our attack is inspired by these attacks as it con-
ceptually pays pool miners to perform certain work (i.e., stale work). It exploits the fact
that the pool operator pays for most of the miners work, and thus we can make a profitable
attack with very small initial hash power. On the other hand, the above attacks directly af-
fect the core blockchain protocol and demonstrate vulnerabilites in Nakamoto consensus
itself. Our attack affects only the pool mining protocol, which is not part of Nakamoto
consensus.

Sometimes by sheer luck a miner who controls a significant portion of the network’s
mining power can win two or more blocks in rapid succession. In this case the miner can,
on average, increase his profit by withholding a block as the basis for a longer private
chain and mining on top of it. Just before the public chain catches up to the private one,
the attacker releases his block, making the private chain both public and valid, and wasting
the efforts of other miners who were mining on top of the former public chain. This attack
is known as selfish mining [13], and has been recently optimized [18] and combined [19]
with the network-layer eclipse attack [20].

Finally, we note that not all exploitable incentive structure flaws found in Nakamoto
consensus necessarily manifest themselves as block withholding attacks. Miners who ben-
efited from the recent denial-of-service attacks in Ethereum [21] made use of a “verifier’s
dilemma” [14] to waste others’ time, while publishing their own blocks quickly.

Acknowledgments. We thank our shepherd, Iddo Bentov, for useful discussions and the
anonymous reviewers of an earlier draft of this paper for helpful feedback.

21 https://en.bitcoin.it/wiki/Comparison_of_mining_pools

https://en.bitcoin.it/wiki/Comparison_of_mining_pools

References

1. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. bitcoin.org, 2009.
2. Meni Rosenfeld. Analysis of Bitcoin pooled mining reward systems. CoRR, abs/1112.4980,

2011.
3. Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek Saxena, and Aquinas Hobor. On power

splitting games in distributed computation: The case of Bitcoin pooled mining. In 2015 IEEE
28th Computer Security Foundations Symposium, pages 397–411, July 2015.

4. Ethereum Foundation. Ethereum’s white paper. https://github.com/ethereum/
wiki/wiki/White-Paper, 2014.

5. Nicolas T. Courtois and Lear Bahack. On subversive miner strategies and block withholding
attack in Bitcoin digital currency. CoRR, abs/1402.1718, 2014.

6. I. Eyal. The miner’s dilemma. In SP, 2015.
7. Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran

Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from Bitcoin. In
Proceedings of the 2014 IEEE Symposium on Security and Privacy, SP ’14, 2014.

8. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. bitcoin.org, 2009.
9. G. Wood. Ethereum: A secure decentralised generalised transaction ledger. http://

gavwood.com/paper.pdf, 2014.
10. Bitcoin Wiki. Pool mining’s payout schemes. https://en.bitcoin.it/wiki/

Comparison_of_mining_pools.
11. Yonatan Sompolinsky and Aviv Zohar. Secure high-rate transaction processing in bitcoin. In

Financial Cryptography and Data Security - 19th International Conference, FC 2015, San
Juan, Puerto Rico, January 26-30, 2015, Revised Selected Papers, pages 507–527, 2015.

12. Ittay Eyal. The miner’s dilemma. In IEEE Symposium on Security and Privacy (SP 2015),
pages 89–103, May 2015.

13. Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Nicolas
Christin and Reihaneh Safavi-Naini, editors, Financial Cryptography and Data Security, vol-
ume 8437 of Lecture Notes in Computer Science, pages 436–454. Springer Berlin Heidelberg,
2014.

14. Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying incentives in the
consensus computer. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS 2015), pages 706–719, New York, NY, USA, 2015. ACM.

15. Jason Teutsch, Sanjay Jain, and Prateek Saxena. When cryptocurrencies mine their own busi-
ness. (to appear in Financial Cryptography and Data Security (FC 2016)).

16. Loi Luu, Yaron Velner, Jason Teutsch, and Prateek Saxena. Smart pool : Practical de-
centralized pooled mining. Cryptology ePrint Archive, Report 2017/019, 2017. http:
//eprint.iacr.org/2017/019.

17. Joseph Bonneau. Why buy when you can rent? - bribery attacks on bitcoin-style consensus.
In Financial Cryptography and Data Security - FC 2016 International Workshops, BITCOIN,
VOTING, and WAHC, Christ Church, Barbados, February 26, 2016, Revised Selected Papers,
pages 19–26, 2016.

18. Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. Optimal selfish mining strategies
in bitcoin. (to appear in Financial Cryptography and Data Security (FC 2016)).

19. Kartik Nayak, Srijan Kumar, Andrew Miller, and Elaine Shi. Stubborn mining: Generalizing
selfish mining and combining with an eclipse attack. In 2016 IEEE European Symposium on
Security and Privacy (EuroS P), pages 305–320, March 2016.

20. Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on Bitcoin’s
peer-to-peer network. In 24th USENIX Security Symposium (USENIX 2015), pages 129–144,
Washington, D.C., August 2015. USENIX Association.

21. https://www.reddit.com/r/ethereum/comments/55xh2w/i_thikn_the_
attacker_is_this_miner_today_he_made/.

https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
https://en.bitcoin.it/wiki/Comparison_of_mining_pools
http://eprint.iacr.org/2017/019
http://eprint.iacr.org/2017/019
https://www.reddit.com/r/ethereum/comments/55xh2w/i_thikn_the_attacker_is_this_miner_today_he_made/
https://www.reddit.com/r/ethereum/comments/55xh2w/i_thikn_the_attacker_is_this_miner_today_he_made/

22. Ghassan Karame, Elli Androulaki, and Srdjan Capkun. Two bitcoins at the price of one?
double-spending attacks on fast payments in bitcoin. IACR Cryptology ePrint Archive,
2012:248, 2012.

23. blockcypher.com. Confidence factor. http://dev.blockcypher.com/
#confidence-factor.

24. Bitcoin Wiki. Transaction malleability. https://en.bitcoin.it/wiki/
Transaction_Malleability.

A Bitcoin Implementation

In this section, we refine the interactive protocol from Section 4.2 for use in Bitcoin. The
security of our Bitcoin protocol relies on the following two assumptions which we will
later relax in Section B:

– The attacker always wants to attack. That is, he is always willing to pay a predefined
amount for a valid proof of block withholding.

– The withholder is willing to withhold the block in return for a Bitcoin zero-
confirmation payment.

The first assumption is reasonable as the attack is profitable. However, it is not trivial,
as malicious parties could dishonestly declare their intentions to make such an attack but
never collaborate with the withholder. Such behavior might be expected, e.g., by pool
operators who wish to undermine trust between attackers and withholders. The second
assumption could be justified as zero confirmation double spending is not trivial to per-
form [22]. Our protocol would allow the withholder to wait for a short period of time
before deciding on his actions. In this period of time the transaction would propagate to
the majority of the network, and the odds for double spending could be evaluated and
bounded from above, e.g., via [23]. If odds are, for example, less than 50%, then it is
enough to double the offered reward in order to incentives the withholder. In Section B
we will introduce Ethereum smart contracts that enforce our assumptions. That is, the
contracts would compensate the withholder (in ether currency) if the attacker does not
collaborate with the protocol or performs double spending.

We are now ready to introduce the protocol.

– Initially, the withholder submits (off-chain) a 32-byte chunk of data b and his Bitcoin
public key.

– The attacker computes sha256(b) and rejects the submission if: (i) the difficulty level
is not sufficient; or (ii) sha256(b) corresponds to a block in the public blockchain; or
(iii) b was already submitted in the past.

– (Otherwise) The attacker signs and sends the withholder a Bitcoin transaction t such
that:
• The attacker can redeem t with an input string b′ that satisfies sha256(b′) = b.
• The withholder can redeem t after T block epochs (provided that it was not al-

ready redeemed).
– The withholder submits t to the network, waits for it to propagate, withholds his

block, and redeems t after T block epochs.

The correctness of the scheme follows by our two assumptions and by the arguments
of the correctness proof of the protocol in Section 4.2. We note that in the last phase

http://dev.blockcypher.com/#confidence-factor
http://dev.blockcypher.com/#confidence-factor
https://en.bitcoin.it/wiki/Transaction_Malleability
https://en.bitcoin.it/wiki/Transaction_Malleability

of the protocol, the withholder cannot afford to wait for a block confirmation. Indeed,
a block confirmation occurs only after a new block is mined, and when this happens the
withholder’s block becomes worthless as he can no longer submit it to his pool operator 22.

An implementation of transaction t as a Bitcoin script is illustrated bellow.
Implementation with bitcoin script. Transaction t locking script is:

1OP_IF
2 OP_HASH256
3
4 OP_EQUALVERIFY
5 <buyer_public_key>
6OP_ELSE
7 <time_lock> OP_CHECKLOCKTIMEVERIFY OP_DROP
8 <seller_public_key>
9OP_ENDIF

10OP_CHECKSIG

The buyer can redeem t with this unlocking script:

1<signature>
2<b’>
3OP_1

The seller can redeem t after sufficient enough time with this unlocking script:

1<signature>
2OP_0

We note that in order to make these transaction standard we use pay to script hash trans-
actions 23.

B Ethereum Contracts as Insurance

In this section, we describe two Ethereum smart contracts that eliminates the need for the
assumptions we made in Section A. The contracts provides the following guarantee:

The withholder is either payed the promised amount in bitcoin or payed dispro-
portional high value in ether currency.

Such guarantee should mitigate any concern from the withholder side, even if he has
strong preference towards bitcoin payments. Indeed, either he gets payed with bitcoin or
he receive high ether payment that compensates for his bitcoin preference.

We first describe how to mitigate the assumption that the attacker always wants to at-
tack, and then describe an Ethereum insurance contract against Bitcoin double-spending.
For the rest of the section we assume that 1, 000 ether (currently worth around $10, 000
USD 24) are enough to compensate for any preference towards Bitcoin payment.

22 E.g., see line 110 in https://raw.githubusercontent.com/slush0/
stratum-mining/38637575c8c253aba18f95dffd25c49ca6d0434b/lib/
block_template.py

23 https://en.bitcoin.it/wiki/Pay_to_script_hash
24 https://www.coingecko.com/en/price_charts/ethereum/usd

https://raw.githubusercontent.com/slush0/stratum-mining/38637575c8c253aba18f95dffd25c49ca6d0434b/lib/block_template.py
https://raw.githubusercontent.com/slush0/stratum-mining/38637575c8c253aba18f95dffd25c49ca6d0434b/lib/block_template.py
https://raw.githubusercontent.com/slush0/stratum-mining/38637575c8c253aba18f95dffd25c49ca6d0434b/lib/block_template.py
https://en.bitcoin.it/wiki/Pay_to_script_hash
https://www.coingecko.com/en/price_charts/ethereum/usd

B.1 Forcing the attacker to attack

In this section we describe how an Ethereum contract (published by the attacker) can en-
force the attacker to honestly execute his part in the protocol. We recall that the attacker
role in the protocol is to publish a signed transaction t when a valid block withholding
witness b is submitted, i.e., when a never before submitted block header with sufficient
difficulty is submitted. The contract has four functions, namely, depositCollateral, sub-
mitWitness, submitTx and seizeCollateral.

– depositCollateral: in this function the attacker deposits 1, 000 ether.
– submitWitness: in this function the withholder submits the witness b and his Bitcoin

public key. The function checks that b was never submitted before and its difficulty is
sufficient (i.e., sha256(b) is small enough), and records the current time.

– submitTx: in this function the attacker submits a signed tranasction t and the contract
verifies that the transaction is properly signed in the format as described in Section A.

– seizeCollateral: in this function the withholder can withdraw the 1, 000 ether if the
attacker did not respond in time (or responded with invalid transaction).

See Figure 2 for partial implementation of the contract. Intuitively, the contract enforce the

1 function submitWitness(bytes b, uint publicKey) {
2 if(sha256(b) < difficulty) {
3 witnessSubmissionTime = now;
4 withholderPublicKey = publicKey;
5 }
6 }
7
8 function submitTx(bytes t) {
9 if(isSigned(t, attackerPublicKey) && isInRightFormat(t, b, withholderPublicKey)) {

10 txSubmitted = true;
11 }
12 }
13
14 function seizeCollateral() {
15 if(! txSubmitted && (witnessSubmissionTime + T < now)) {
16 msg.sender.send(1000 ether);
17 }
18 }

Fig. 2: Solidity code that force the attacker to attack.

attacker to post a signed Bitcoin transaction to the Ethereum blockchain (within a given
time period T). Once published, the withholder can post it to the Bitcoin network and
claim his payment in bitcoin currency. If the attacker decides not to post the transaction,
then the withholder collects the collateral that serves as a compensation for the block
withholding and for getting paid in ether.

We note that the contract can serve as an insurance only when the balance is sufficient
(i.e., when a collateral is deposited). Hence, the withholder should check the balance
before participating in the scheme 25.

25 To mitigate the incentive for the attacker to seize the collaterals and give it to a sibyl identity, we
can change the contract so it would give only half of the collateral and the other half would be
destroyed (e.g., would be sent to address 0x000...000).

B.2 Insurance against double-spending

In this section, we introduce an Ethereum contract that serves as an insurance against Bit-
coin double-spending scenarios. We use it to mitigate the zero-confirmation assumption
for our Bitcoin implementation of the block withholding attack. The contract provides
an insurance for up to simultaneous N double-spending operations of a single Bitcoin
address.

Formally, we say that a transaction tx is double-spent by address a if tx is signed by
a and there exists another signed transaction tx′ such that tx and tx′ share at least one
common input and differ by at least one output 26.

The contract is illustrated in Figure 3. In createInsurance function the owner of the
bitcoin account deposits 1, 000 ether for every insured double-spending operation. In
claimCompensation function, the victim submits the witness for double-spending and
unlocking script for the controversial output, as a witness for being eligible for com-
pensation. To prevent a sibyl attack, where the owner of the insured account claim N
compensation units to himself, we could half the compensation and destroy the rest of the
500 ether.

1 function createInsurance(uint publicKey, uint N) {
2 # check if there are enough funds
3 if(msg.value != N * 1000 ether) throw;
4 insuredAccount = publicKey;
5 }
6
7 function claimCompensation(bytes tx, bytes txPrime, uint inputIndex,
8 uint outputIndex, bytes unlockScript) {
9 if(isSigned(tx, insuredAccount) && isSigned(txPrime, insuredAccount))

10 if(inputTx(tx, inputIndex) in txPrime)
11 if(outputTx(tx, outputIndex) not in txPrime)
12 if(runBTCScript(outputTx(tx, outputIndex), unlockScript))
13 msg.sender.send(1000 ether);
14 }

Fig. 3: Insurance for bitcoin double-spending.

26 A naive approach that only search for common inputs and check that tx 6= tx′ would fail due to
Bitcoin’s transaction malleability issue [24].

	Smart Contracts Make Bitcoin Mining Pools Vulnerable

