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Abstract. The blockchain and cryptocurrency space has experienced
tremendous growth in the past few years. Covered by popular media, the
phenomenon of startups launching Initial Coin Offerings (ICOs) to raise
funds led to hundreds of virtual tokens being distributed and traded on
blockchains and exchanges. The trade of tokens among participants of the
network yields token networks, whose structure provides valuable insights
into the current state and usage of blockchain-based decentralized trading
systems. In this paper, we present a descriptive measurement study to
quantitatively characterize those networks. Based on the first 6.3 million
blocks of the Ethereum blockchain, we provide an overview on more than
64,000 ERC20 token networks and analyze the top 1,000 from a graph
perspective. Our results show that even though the entire network of token
transfers has been claimed to follow a power-law in its degree distribution,
many individual token networks do not: they are frequently dominated by
a single hub and spoke pattern. Furthermore, we generally observe very
small clustering coefficients and mostly disassortative networks. When
considering initial token recipients and path distances to exchanges, we
see that a large part of the activity is directed at these central instances,
but many owners never transfer their tokens at all. In conclusion, we
believe that our findings about the structure of token distributions on
the Ethereum platform may benefit the design of future decentralized
asset trade systems and can support and influence regulatory measures.

Keywords: Blockchain · Ethereum · Tokens · Network Analysis.

1 Introduction

In the past years, blockchains and in particular ICOs have seen increased attention,
with startups frequently selling tokens to obtain seed funding. Such tokens may
represent both digital and physical assets or utilities as entries on the distributed
ledger, similar to native digital currencies such as Bitcoin or Ether. They are
commonly enabled by ERC20-compliant smart contracts implemented on the
Ethereum blockchain. To date, their sale and trade are unregulated in most
countries. A lot of research was already dedicated to the analysis of content
and communication graphs on different blockchains. In contrast to these, which
focused on the trade of native currencies, we investigate the trade of tokens. We
define the network between addresses that reflects the distribution and trade
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of each token as its token network, in which each edge represents the transfer
of a specified amount of the respective token between two addresses. To the
best of our knowledge, no large-scale study of individual token networks on the
Ethereum blockchain has been provided yet. We advance approaches developed
in the area of network analysis to this new domain and analyze token networks
quantitatively from a graph perspective to capture their structure and topology.
This allows us to obtain a sound overview of the token landscape. An in-depth
understanding of graph structures and usage patterns in the decentralized and
unsupervised domain of cryptocurrencies and tokens is necessary to evaluate
current token trading systems and serves as a basis for further research.

The remainder of this paper is structured as follows: In Sections 2 and 3, we
provide an overview of the theoretical background, current research results and
related work on cryptocurrencies, blockchains and smart contracts. In Section
4, we describe our data collection methodology and provide a set of high-level
statistics of our data set, followed by an analysis of the token networks based
on graph theoretic measures in Section 5. Finally, we summarize our paper and
provide approaches for future work in Section 6.

2 Background

In recent years, the popularity of blockchain-based cryptocurrencies has grown
significantly. As of 2018, hundreds of different coins are in circulation, with a
large portion of them developed on top of the Ethereum blockchain in the form
of tokens, that have recently been the basis for many crowdfunded ventures. A
new type of token can be created by implementing a smart contract. While their
implementation often follows a standard, their behavior can be implemented
arbitrarily. With regulation currently still under development, questions have
been raised whether a certain token constitutes a security or a utility, and how
they should be treated. In either case, very little is known about the structure of
these networks.

2.1 Ethereum, the EVM and Smart Contracts

Similar to Bitcoin, Ethereum is an open-source, public, distributed, blockchain-
based platform with a Proof of Work-based consensus algorithm coupled with
rewards, which absolves the need for trusted intermediaries [6]. If popularity
were measured by market capitalization, it would be the second most popular
blockchain as of September 2018. Ethereum’s most significant feature is the
Ethereum Virtual Machine (EVM) - a stack-based runtime environment that can
execute programs known as smart contracts. A smart contract can be developed in
high-level languages such as Solidity and deployed on the blockchain as bytecode
by any participant of the network. Its state and immutable code are stored on
the ledger, reachable through a standard Ethereum address. Smart contracts
can act as autonomous entities, but their actions are always triggered by users
interacting with the contract through transactions [27].
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2.2 Tokens

The resilience of smart contracts to tampering makes them appealing for many
application scenarios - financial, notary, game, wallet, and library contracts were
identified by Bartoletti and Pompianu [4]. The authors further analyzed smart
contract design patterns and showed that many of the contracts in the financial
category use the token pattern, which is used for the representation of assets and
the distribution of fungible goods. In contrast to the native coins that typically
represent a (digital) currency, tokens may represent a variety of transferable and
countable goods such as digital and physical assets, shares, votes, memberships,
loyalty points and other utility. Any third party can create smart contracts and
develop, define and distribute their own named asset. A frequent approach to
distribute tokens and raise funds is an initial coin offering (ICO). The term leans
on Initial Public Offering, the stock market launch in the traditional economy.
In contrast, Airdrops distribute tokens without requiring prior investment.

2.3 The ERC20 Token Standard

To establish a common interface for fungible tokens, the ERC201 standard was
proposed in late 2015. To be compatible, a smart contract needs to implement a
set of functions, of which only the signatures, but not the implementations are
specified. Within a smart contract’s bytecode, these signatures can be identified
by their entrypoints, marked by the first 4-bytes of the Keccak hashes of the
high level function signature. Table 1 illustrates the signatures and hashes. Thus,
ERC20-compatible contracts can be identified by searching for the corresponding
hashes in the deployed contract bytecodes.

Table 1: ERC20 signatures and hashes

Classification Signature First 4-byte Keccak hash
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balanceOf(address) 70a08231

transfer(address,uint256) a9059cbb

transferFrom(address,address,uint256) 23b872dd

approve(address,uint256) 095ea7b3

allowance(address,address) dd62ed3e
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Approval(address,address,uint256) 8c5be1e5
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d name() 06fdde03

symbol() 95d89b41

decimals() 313ce567

1 https://github.com/ethereum/EIPs/blob/master/EIPS/

eip-20-token-standard.md
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Pos. Sender Receiver Function call

1 A X transfer(B, 3)

2 A X transfer(C, 7)

3 B X transfer(C, 2)

4 C X transfer(D, 4)

Table 2: Transactions to a token contract

Transactions           Transfers

Fig. 1: Graph perspective

To send tokens from address A to address B, the owner of address A sends a
transaction to a token contract X, calling its transfer function. If successful,
the balance of both addresses will be updated within the contract, constituting a
state change. As balances may also be affected by other functions included by the
smart contract developer, the ERC20 standard recommends to emit a Transfer

event log whenever a token transfer has occurred. Table 2 and Figure 1 illustrate
the relationship between transactions that call functions and emitted transfers.

These token transfers yield a graph, in which the nodes are addresses connected
by transfers. This graph may also contain addresses that never interacted with
the token contract: during deployment or with a special function, a common
way to associate tokens with particular addresses are initial balances, which the
contract creator allocates to certain addresses upon creating the contract. Some
developers have chosen to emit these allocations as transfer events, where the
source address is for example set to 0x0, but mostly, these balance allocations
are not emitted as transfer events. Later standard proposals such as ERC621
additionally introduced Mint and Burn events to increase or decrease balances
without requiring a transfer at all. Thus, these events change the total supply of
the respective token. Although not used widely yet, shortcomings of the ERC20
design that are beyond the scope of this paper are tackled with proposals ERC223,
ERC667 and ERC777.

3 Related Work

Several seminal works and studies in the area of graph theory and network
analysis, also including the analysis of social networks, as well as in digital
currencies and Ethereum smart contracts formed the basis of our research.

3.1 Cryptocurrencies and smart contracts

The literature on Bitcoin and other cryptocurrencies covers not only the under-
lying distributed ledger and consensus technologies and protocols, but also the
publicly available transactional data, which provides the unique opportunity to
analyze financial networks. Various aspects of Bitcoin have been discussed, such as
by Barber et al. [3], who were among the first to study and investigate its overall
success factors, design, history, strengths and weaknesses, and by Tschorsch and
Scheuermann [24], who provided a comprehensive survey on the technical aspects
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of decentralized digital currencies. Furthermore, Akcora et al. [1] presented a
holistic view on distributed ledgers with a focus on graph theoretical aspects.

Going beyond Bitcoin, Bonneau et al. [6] provided the first systematic exposi-
tion of the second generation of cryptocurrencies and analyzed altcoins that have
been implemented as alternate protocols. Similarly, Anderson et al. [2] explored
three representative, modern blockchains - Ethereum, Namecoin and Peercoin,
which have extended Bitcoin’s original mechanism, and focus on the features that
distinguish them from the pure currency use case. Research on smart contracts
frequently focuses on design patterns, applications and security issues [23]. In the
first methodic survey and quantitative investigation on their usage and program-
ming, Bartoletti and Pompianu [4] propose a taxonomy by classifying more than
800 smart contracts on Ethereum into application domain categories and identify
common programming and design patterns. With a focus on security, Nikolic et
al. [20] presented a novel characterization of trace vulnerabilities, which allow to
identify contracts as greedy, prodigal or suicidal.

3.2 Blockchain graph analysis

Each blockchain can be analyzed from a graph-centric perspective on two layers: as
communication graphs, which reflect the underlying peer-to-peer communication
on the network layer, and as content graphs, which reflect transfers of assets on
the application layer [1]. For example, Miller et al. [17] investigated the public
topology of the Bitcoin peer-to-peer network in a quantitative measurement and
analyzed the extent to which nodes participate and collaborate in mining pools.

In the analysis of content graphs, techniques from the area of social network
analysis are commonly used. For a general overview of social network analysis,
the reader is referred to fundamental works such as Newman [19]. Mislove et
al. [18] proposed a detailed comparison of the characteristics of multiple online
social network graphs at large scale and confirm the power-law, small-world and
scale-free properties of these social networks. A commonly used methodology to
detect and validate power laws was presented by Clauset, Shalizi and Newman [8].

Content graphs can be modelled on different levels. First, in transaction
graphs, the nodes represent transactions that happen on the distributed ledger
and the edges represent the flow of transferred assets. These graphs start from
the genesis block, each transaction can have incoming edges only and a DAG
(directed acyclic graph) emerges [1,12,21]. In address graphs, the nodes denote
addresses, and each edge represents a particular transaction between two of
them. Address graphs provide a useful abstraction for exploring and tracing flows
through the system and identifying recurrent patterns in transactions [12]. A
recent approach to investigate the whole address graph spanned up by the trade of
all ERC20-compliant tokens on the Ethereum blockchain was presented by Somin,
Gordon and Altshuler [23]. The authors consider all trading wallets as the nodes
of the network, construct the edges based on buy-sell trades and demonstrate
that the degree distribution of the resulting network displays strong power-law
properties. Finally, user or entity graphs reflect the flow of value between real-
world entities. In these graphs, each node represents a user or an entity, and
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each edge represents a transaction between source and target entity [1]. Building
these graphs requires to identify and associate public addresses that possibly
belong to the same real-world entity. Many approaches to cluster addresses on
the Bitcoin blockchain have been presented to date, along with discussions of
connected anonymity issues [10,16,21,22]. To the best of our knowledge, no such
heuristics exist for Ethereum’s account model yet.

Many of the approaches to analyze content graphs arising through the usage
of cryptocurrencies rely on methods and assumptions known from the area of
social network analysis. Yet, the network generation mechanisms are different.
To take into account that the Ethereum network combines aspects of social and
financial transaction networks, we also include approaches that focus on the
analysis of the latter. In this area, Ianoka et al. [13] investigated the network
structure of financial transactions on the basis of the logged data of the BOJ-Net.
Similarly, Kyriakopoulos et al. [15] analyzed the network of financial transactions
of major financial players within Austria and report the characteristic network
parameters. Some of their many empirical findings include the dependency of the
network topology on the time scales of observation and the existence of power
laws in the cumulative degree distributions.

3.3 Contribution

In summary, these different graph-theoretical approaches provide an intuition for
the flow and spread of assets on different blockchains. While previous analyses
took either the entire blockchain or the whole network of token trades into
consideration, we center our attention on a new kind of address graphs: token
networks, which we define as the network of addresses (nodes) that have owned
a specific type of token at any point in time, connected by the transfers of the
respective token. Since the tokens are not comparable, neither in their value,
which heavily fluctuates over time, nor in their respective total supply, which can
be influenced by Mint and Burn events, we omit the weight of the transfers, such
that we obtain a directed, unweighted graph. Further, due to a lack of approaches
for address clustering on Ethereum, we define nodes as addresses in these token
networks and assume that they represent different entities, which may be either
a user, an exchange, a miner, or another smart contract. A new token network
emerges for each newly published ERC20-compliant token contract. Each address
may be part of several token networks, and each analyzed token network is
essentially an overlay graph of the entire network of Ethereum addresses. These
individual token networks have not been studied yet, and we hope that our
measurement and evaluation inspires further research in this area.

4 Data

In this chapter, we describe how we identified ERC20-compatible smart contracts,
how we extracted and filtered the transfer events, and provide an overview of the
token network landscape in the form of summary statistics.
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4.1 Data Collection

The basis for generating token networks are token transfers emitted by ERC20-
compatible smart contracts. We used the Parity client2 for the set-up of a fully
synchronized Ethereum node and extracted all transactions, contract addresses
and the corresponding smart contract bytecodes from the first 6,300,000 blocks,
covering the period from July 30th, 2015 until September 9th, 2018. We identified
7,323,377 smart contract creations, including those that were created by other
contracts, of which 75,514 fulfill the criteria introduced in Section 2.3 and are
thus labeled as ERC20-compatible.

Next, we retrieved the token transfer events emitted by those ERC20-compat-
ible smart contracts. These events can be identified by the corresponding event
type and contain information about the source, the target and the amount
of tokens that were passed in the respective transfer. In total, we extracted
97,671,089 transfer events. It is noteworthy that the transfer events are only
related to 46,970 of the ERC20-compatible smart contracts (62.2%), such that
28,544 of the token contracts have never emitted any transfer events. This does
not necessarily imply that the tokens have never been traded on the Ethereum
blockchain, but there are no events that document their transfers.

Since it is up to the developer of the smart contract to decide when a transfer
event is emitted, not all actual token transfers are logged as such. To account
for initial balance allocations, which are only rarely emitted as transfer events
(Section 2), we added the initial balances as synthetic transfers to our dataset,
where the source address is the artificial address 0x0 and the target address
corresponds to the address mentioned in the contract bytecode. We could identify
the allocation of initial balances in 52,554 ERC20-compatible smart contracts,
where each smart contract that uses this method distributes the assets to 2.96
entities on average (median 1). These numbers are comprehensible, since the
smart contract developer has an interest so assign a certain amount of tokens to
himself and/or his team, which is usually a rather small set of users. These initial
balances add 142,673 new token transfers to our dataset, such that we capture a
total of 97,813,762 token transfers related to 64,393 ERC20 token contracts.

Figure 2 compares the amount of transactions that were initiated by externally
owned account (EOA) addresses to ERC20-compatible smart contracts (red) with
the corresponding amount of transactions to all other, non-ERC20-compatible
contracts (blue) and the resulting token transfers (black dots) emitted by the
ERC20-compatible contracts. All three numbers exhibit a significant increase
starting in the beginning of 2017, and the growth indicates an increasing pop-
ularity of ERC20-compatible token contracts in terms of contract interactions
initiated by regular (EOA) addresses. Since a single interaction with a token
contract may yield multiple transfer events, we observe in total more transfer
events than ERC20 contract transactions.

2 https://www.parity.io/
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4.2 Summary Statistics

The entire set of 64,393 ERC20 token networks captures 19,45 million unique
addresses, which corresponds to nearly 45, 9% of all addresses on the Ethereum
blockchain as of September 9, 2018.

The smallest 599 networks consist of only one node, which may have up to 5
self-edges associated to itself. In general, the size distribution is skewed towards
smaller values - while the median is 3 (mean 890), some of the networks capture
up to 1.52 million nodes (Tronix and An Etheal Promo). Other popular token
networks which stand out due to their size are VIU, Bitcoin EOS, and the Basic
Attention Token. On the other hand, 80.38 % of the token networks consist of
only 10 nodes or less.

In terms of edges per token network, we differentiate between simple, multiple
and self-edges, such that nsimple + nmulti + nself = nedges. Besides the networks
that consist of only one node, there are five others that have only self-edges -
the largest of them (Explore Coin) has 46 nodes which are only connected to
themselves. Similar to the size in terms of the amount of nodes, 80.33% of the
networks have 10 unique edges or less. On average, the networks contain only two
edges (median 1519), the largest network has 3,17 million edges in total (EOS
Token Contract). The five networks with the largest amount of edges further
include Tronix, OMG Token, An Etheal Promo, BeautyChain, and these are
also the networks with most unique edges, i.e. those with the most connections
between different addresses. Still, even in these networks, each node has on
average two adjacent edges, which might correspond to obtaining tokens from
the contract and then transferring them to an exchange.

In total, the ratio of total edges per node varies from 0.5 to 2631, where the
highest ratio is in the Ether Token. Removing self-edges and multiple edges, this
value drops to at most 8.69 (Consumer Activity Token), with a mean of 0.7315,
such that we have relatively sparse networks.
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5 Analysis

In this section, we present our data selection steps and analyze the structure of
the token networks with respect to distributions of degree, density, components,
clustering coefficients and assortativity. We then focus on how tokens are received
and transferred, with an emphasis on the role of exchanges – providing insight
into the activity within token trading networks.

5.1 Data Selection

As discussed in Section 4, the majority of token networks consists of only a few
transfers and nodes. To remove those from the analysis, since they may not exhibit
a concise graph structure comparable to the larger networks and might bias the
results, we assess the amount of transfers per token network. Figure 3 shows the
cumulative distribution function (CDF) of all transfers, respectively connections
between nodes, that the networks add to the total amount. We observe that the
top 1000 token networks capture more than 85% of both measures, such that
we limit our analysis to these, which account for 86,54 million transfers in total
(88.48% of the original amount).

5.2 Degree Distributions

A fundamental property of nodes in a directed graph are their in- and out-
degree. The frequency distribution of degrees, where pk is the fraction of nodes
with degree k, can provide insight into the network’s structure. Many real-
world networks exhibit highly right-skewed degree distributions with a heavy tail,
which indicates that a significant portion of observations is in their tails, and
demonstrates the existence of (several) high-degree hubs. Several networks have
been confirmed to follow power laws in their degree distribution [7, 14, 18, 19].
Power laws are distributions of the form pk = Ck−α, in which the dependent
variable, the probability that a node has degree k, varies inversely as a power of
the independent variable, the degree k. pk decreases monotonically [18,19] and
decays significantly slower than exponential decays in normal distributions. While
the nonnegative constant C is fixed by normalization, the parameter α is called
the coefficient of the power law [9,19] and typically is in the range 2 ≤ α ≤ 3.

Using the poweRlaw package in R [11], we estimate parameters for each token
network invidually. The fitting relies on maximum likelihood estimation and the
Kolmogorov-Smirnov statistic to quantify the distance between the observed
degree distribution and the estimated power law. We perform goodness-of-fit
tests via a bootstrapping to obtain a p value, following the approach of Clauset
et al [8].

Whereas Somin et al. [23] have shown that the full transfer graph consisting
of all token networks combined appears to follow a power-law in both in- and
outdegree, Figures 4 and 5 illustrate a different result for the individual token
networks. While we can fit a power law model to all of the networks, most of the
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p values obtained via bootstrapping have returned a value of 0, indicating that
they likely do not follow a power law.

For those where we cannot reject the power law hypothesis, we suppose that
if a network contains multiple exchanges, multiple high indegree addresses are
likely to be present. These same addresses frequently also have a high outdegree.
Considering that many networks additionally contain a large initial distribution
in the form of a star-shaped subgraph, one further address with high outdegree
is likely to exist. This may explain why about 10% of token networks appear to
follow a power law in their outdegree distribution.

Generally, the fitted power law exponents are very high, indicating quickly
decaying degree distributions. This is contraindicative to the power law hypothesis,
but adequate for the use case: in token networks, as opposed to social networks, the
amount of hubs, i.e. exchanges, is limited institutionally. While social networks
allow for an organic growth of ”popular” nodes, only a limited number of
exchanges are known for securely handling token trades. This reflects an issue of
trust - while any user can open an exchange on the basis of pre-defined protocols,
users only trust and trade their tokens on a few well-known ones.

Another aspect that might differentiate the full transfer graph from the
individual token networks in terms of power laws in their degree distributions, is
that initial token distributions, especially airdrops, frequently choose existing,
active addresses. This process, which follows the logic of preferential attachment,
leads to these nodes becoming connectors between individual token networks,
which adds smaller hubs to the full transfer graph.

5.3 Density and Components

The density d represents the fraction of existent to theoretically possible edges
in a network. In general, we observe that a larger number of nodes in a token
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network leads to a lower graph density (Figure 6). The network with the highest
density, also related to the number of nodes, is the NPXS Smart Token Relay.

Further, we investigate the number of weakly connected components, discon-
nected portions of the token networks. Given the common token distribution
modes mentioned above, we expect the tokens to be distributed starting from
the addresses with the initial balances, and assume that each network consists of
a single, large, weakly connected component. We observe that this holds for 75%
of the observed token networks when we take the initial balances into account
(cf. Section 4). Several components indicate that the tokens were not distributed
in an ICO, but based on another logic, such as Mint events, which credit an
arbitrary amount of tokens to a specified address, typically emitting a Mint event
instead of a transfer. We also find that 29 token networks have more than 100
components, and three consist of more than 3,000 components (blockwell.ai KYC
Casper Token, SanDianZhong and VGAMES ). This might indicate that many of
the nodes in the network received their tokens in a non-standard process, yielding
an anomalous graph structure.

5.4 Clustering Coefficients

To measure the clustering coefficient, which indicates the strength of local commu-
nity structure, two measures are common: (1) the global clustering coefficient Cg,
which measures the fraction of paths of length two in the network that are closed,
and (2) the average of the local clustering coefficients, Cavgl , which define for each
individual node the share of possible connections among the node’s neighbors that
actually exist in the network. In either case, the clustering coefficient indicates
how much more likely it is to connect to a neighbor’s neighbor than to a randomly
chosen node [19], and a large clustering coefficient is regarded as an indicator for
small-world networks. Values of Cg = 0.20 (film actor collaborations), Cg = 0.09
(biologist collaborations) and Cg = 0.16 (university email communication) are
high compared to estimates based on random connections, but typical values for
social networks [19]. Similarly, Baumann et al. [5] found that the average local
clustering coefficient (Cavgl) in the Bitcoin address graph is fluctuating around
0.1 and thus rather high over time, also indicating a small world network.

For the token networks, we need to take into account that there is, as discussed
in Section 4.2, a large fraction of nodes with degree one, for which the local
clustering coefficient should be set to Ci = 0 [19]. If there is a significant number of
such nodes, Cavgl would be dominated by these minimum-degree nodes, yielding
a poor picture of the overall network properties. Additionally, vertices with a low
degree of which 2 or 3 neighbors are connected raises Cavgl disproportionately
high. Thus, we rely on Cg, which measures the global cliquishness of the network
and provides evidence for a small-world network [26]. For the entire network of
token transfers, we observe Cg = 0.00001062 and Cl = 0.3042, which is higher
than the known measure for the entire network of Bitcoin addresses [5].

This might indicate that the network of token trades has a higher tendency
to form communities, maybe based on users who recommend or send tokens to
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●

●

● ●

●

●
●●

●

● ●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●● ●

●

●

●

● ●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

● ●

●
●

●

●

●
●

● ●●
●

●
●

●

●

●

●

● ●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●
●

●
●

●
●●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

● ●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

10−1

10−2

10−3

10−4

10−5

10−6

10−7

10−8

10−9

102 103 104 105 106

Number of nodes

V
al

ue

● Global clustering coefficient Density

Fig. 6: Distribution of density values and
global clustering coefficients vs. network
size.
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Fig. 7: Distribution of degree assortativity
coefficients. All but one token network are
disassortative.

each other. Similarly, airdrops tend to focus on existing active users, which could
further lead to the forming of communities.

For the individual token networks, we observe a mean global clustering
coefficient of 0.0008831 and a maximum value of 0.0941 for the NPXS Smart
Token Relay. This network is rather small, with only 24 nodes. Figure 6 illustrates
Cg related to the size of the network, showing a general decrease, and exhibits
another outstanding token: TEST POGO 1, which has, compared to its size, the
highest Cg (0.0324). Further, we observe that 707 of the networks in the sample
have a higher Cg than the network that connects them. Thus, related to their
size, it is more likely that two neighboring nodes are connected to the same third
node. On the opposite side, we identify 7 networks with Cg = 0, among them the
Funkey Coin and the NucleusVisionCore. Their ratio of simple edges to nodes
indicates that they are either very similar or correspond exactly to star schemas
- for example, the FunkeyCoin has 18106 nodes and 18105 simple edges.

5.5 Degree Assortativity.

The assortativity indicates how nodes are connected with respect to a given
property, such as the degree. If the degree correlation rdeg [25] of a network
is positive, nodes tend to connect to other nodes with a similar degree - a
network is said to be disassortative if this relationship is inverted, such that
high degree nodes tend to be connected to low degree nodes. We calculate the
degree assortativity for the simplified, undirected token networks (Figure 7) and
find that almost all of them are disassortative. Those networks that exhibit a
degree assortativity of close to rdeg = −1 resemble star shapes, where most nodes
have a connection to only one or a few high degree nodes. The only network
with rdeg > 0 is the blockwell.ai KYC Casper Token, potentially due to its high
number of small components.
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5.6 Network activity

To further quantify the activity inside a token network, we examine the initial
token recipients and determine whether they send their tokens onward. As many
tokens are listed on exchanges, and speculating with tokens is a common use
case, we also examine whether a token network contains an address that is known
to belong to an exchange. For this purpose we manually collected 113 exchange
addresses from blockchain explorers, such as Etherscan, and discussion forums.

Fig. 8: SoftChainCoin Token Network
with distributors (green), initial recipients
(black) and exchange (red).

Fig. 9: SoftChainCoin Token Network
with distribution and exchange addresses
removed.

To illustrate our approach, Figure 8 shows a very small token network named
SoftChainCoin3. The green nodes on the left distributed tokens to the black
nodes - the initial recipients (Ri). Some of these, the active initial recipients (Rai),
have transferred tokens to other addresses. The active recipients (Ra), including
both initial and secondary recipients, then transferred them to an exchange (red)
or to other nodes. We define for each token network:

a) The fraction of Ri (colored black in Figure 8) relative to all addresses (R)
b) The fraction of Rai (that have sent tokens) relative to Ri
c) The fraction of Rai where there exists a path to an exchange
d) The fraction of edges remaining, if distribution and exchange addresses are

removed (Figure 9), relative to the number of edges in the original network
e) The mean minimum path length to an exchange of those in c)

We obtain the set of initial distributing nodes by determining the two nodes
with the highest outdegree within the first 10% of transfers seen. We choose two,
because manual inspection shows that sometimes tokens are not distributed from
the first address itself, as can be seen in Figure 8. We find that in about 25%
of the token networks, the Ri account for 90-100% of all addresses (Figure 10).

3 Token address: 0x86696431d6aca9bae5ce6536ecf5d437f2e6dba2
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Fig. 10: In ≈25% of the networks (right
bar), almost 100% of all nodes are ini-
tial recipients. Similarly, in ≈25% of the
networks (left bar), nearly all addresses
received tokens by other means.
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Fig. 11: In more than 25% of the networks
(left bar), less than 10% of token recipi-
ents transferred their tokens. Conversely,
in ≈8% of the networks (right bar), almost
every address has issued a transfer.

These are likely airdrops that did not attract further users. On the other end,
also in about 25% of the networks, the Ri account for less than 10% of all
addresses, indicating that there are many addresses that joined the network after
the initial distribution, or that there has never been a large initial distribution
at all. Figure 11 illustrates how many of these Ri have ever sent tokens onward –
showed signs of activity (Rai). Here we observe that in more than 25% of the
networks, less than 10% of the initial recipients ever transferred their tokens.
While it could be argued that these are users simply holding their tokens, another
possibility is that these tokens are not wanted, and can be seen as a type of
spam. In ≈8% of the networks, this percentage is high, indicating that there exist
incentives to transfer the corresponding token.

Such an incentive could be the opportunity to sell the tokens at an exchange.
Figure 12 displays a scatter plot, where each cross represents one token network,
positioned by the fraction of Rai (cf. b)), and the fraction of how many of these
have an outgoing path to an identified exchange (cf. c)). This fraction is not
constant: as more initial recipients are active, more of them tend to send their
tokens to an exchange. However, it is worth noting that the mere fact that
an exchange offers to trade a certain token may also lead to increased activity
directed at exchanges. Nevertheless, very few token networks show active initial
recipients without paths to exchanges, indicating that the main utility of most
tokens is their trade on exchanges. If we remove distributing and exchange
addresses from the graph, the median fraction of edges remaining (cf. d)) is 42%,
indicating that large parts of the networks only exist for that purpose.

For those Rai with paths to exchanges, we determine for each token network
the shortest path to any identified exchange and compute the average shortest
path length between active initial recipients and exchanges. Figure 13 shows that
about half of the networks have a mean distance of two transfers. Given that
exchanges often create artificial addresses for each customer, this implies that
tokens are often sent directly to an exchange, indicating trading is a main use
case.
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Fig. 12: When more initial recipients are
active, more of them have a path to an
exchange.
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Fig. 13: In more than 50% of networks,
those addresses that have a path to an
exchange, their mean shortest path is ≤ 2.

6 Conclusion and Future Work

In this paper, we present a measurement study to analyze token networks, enabled
through smart contracts on the Ethereum blockchain, from a graph perspective.
We find that many of the networks follow either a star or a hub-and-spoke pattern.
The heavy tails in the degree distributions are not as pronounced as in social
networks - the networks tend to contain less and smaller hubs, such that they are
mostly dominated by emitting addresses with a large out-degree and exchanges
with a large in-degree. The number of exchanges is limited, only a few succeeded
to gain the trust of the users. Small values for density and clustering coefficient
embody the anonymity of those networks, as users don’t typically know each
other and tokens aren’t commonly sent to acquaintances. Finally, the main use
case of many tokens appears to be trading, and some token networks show barely
any activity after initial distribution. The presented approach is part of our
ongoing work on blockchain graph analysis, and we state that our results help to
understand current usage patterns of the system and to design future systems.

Further research may refine the common understanding of token networks.
While the currently presented approach focuses on analyzing the state of the
token network at the moment of data collection, observing the development of the
networks over time would be highly insightful. Similarly, the presented approach
is based on the assumption that each Ethereum address represents a single entity
- we have not yet taken into consideration that an entity might be represented
by several addresses. Furthermore, the forming of communities in the graph
could be investigated, and not yet quantitatively available features such as the
completeness and trustworthiness of whitepapers could be included. Bitcoin and
other cryptocurrencies offer a large field for criminals, while users show a large
trust in ICOs even though faced with a total lack of a central contact address in
case of a loss - knowledge about typical structures might lead to a differentiation
between normal structures and anomalies, which may help to identify potentially
fraudulent systems.
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