
The Limit of Blockchains: Infeasibility of a Smart Obama-Trump
Contract*

Yongge Wang
Department of SIS, UNC Charlotte, USA

and
Qutaibah m. Malluhi

Department of Computer Science and Engineering, Qatar University, Qatar.

March 25, 2018

Abstract

Blockchains have become a buzzword and many blockchain proponents believe that smart contract is a panacea to
redefine the digital economy. The community has a misconception that any kind of contracts could be implemented
as a blockchain smart contract. There is no doubt that Turing-complete scripting languages in blockchain techniques
such as Ethereum can be used to draft many important smart contracts. However, digital economy is much more than
Turing-complete smart contracts. Many protocols/contracts in our daily life could not be implemented using Turing-
complete smart contracts. As an example, we formulate an Obama-Trump contract and show that this kind of contract
could not be implemented using blockchain smart contract techniques. It is straightforward to observe that many
contracts in our daily life could be described in terms of an Obama-Trump contract. As a background discussion, we
also give a comprehensive review of historical cryptographic currency techniques, bitcoin smart contract techniques,
and Turing-complete smart contract techniques in modern blockchains.

1 Cryptographic currency
When Internet becomes more and more invasive in our daily life, it will be convenient to have a digital payment system
or to design a digital currency for our society. Generally it is easy to design an electronic cash system using Public
Key Infrastructure (PKI) systems. However, PKI based electronic cash is easy to trace. Though bank notes could be
traced using sequence numbers, there is no convenient infrastructure to trace bank note sequence numbers back to
users. Thus bank notes maintain sufficient anonymity.

For an electronic cash system, it must avoid double spending and it is preferred to be non-traceable. Also it is
preferred to be able to make small payments of a few cents on line. Such kind of electronic cash systems could be
designed using Chaum’s blind signatures for untraceable payments [3] that was invented in 1983. Assume that the
bank has an RSA public key (e,N) and a private key d. In order for Alice to withdraw $10 from her bank account and
convert it to a digital coin m of $10, they carry out the following protocol.

• Alice chooses a random number r and computes m′ = m · re(mod N).

• The bank generates a signature s′ = (m′)d on m′.

• Alice calculates a signature s on m as s = s′ · r−1 = (m · re)d · r−1 = md.

• Alice spends (m, s) as $10 on line while bank cannot link this coin m to Alice’s account.

There are various challenges to the above blind signature based electronic cash system. The first challenge is what
happens if Alice asks the bank to sign m′ = 100 · re(mod N) instead of m′ = 10 · re(mod N)? This challenge could
be resolved by either requiring that all coins have the same value or by using the following probabilistic approach:

*The work reported in this paper is supported by Qatar Foundation Grant NPRP X-063-1-014

1

• Alice generates 100 blind coins: m′i = mi · rei (mod N) for i = 1, · · · , 100.

• The bank randomly selects m′j1 , · · · ,m
′
j99

.

• Alice reveals the values mji , rji to the bank for i = 1, · · · , 99.

• The bank issues a signature on the remaining m′ only if the mji = 10 and m′ji = mji · reji(mod N) for
i = 1, · · · , 99.

The second challenge for Chaum’s blind signature based electronic cash system is that a seller must contact the
bank to make sure that the coin m has not been spent yet before accepting this coin m from Alice. This requires that
the bank remains online all the time. Chaum, Fiat, and Naor [4] constructed an electronic cash that does not need the
bank to be online. Let H1, H2 be hash functions and k be a given integer. Assume that Alice has an account u with
bank and bank keeps a counter number v for Alice. In order for Alice to get a digital coin from the bank, the following
steps are carried out:

• Alice chooses random ai, ci, di and ri for 1 ≤ i ≤ k.

• Alice sends k blind candidates to the bank: Bi = rei ·H1(H2(ai, ci), H2(ai ⊕ (u‖(v + i)), di))).

• The bank chooses a random subset R ∈ {1, · · · k} of k/2 blinded candidates and sends it back to Alice.

• Alice reveals ri, ai, ci and di for the chosen k/2 candidates i ∈ R.

• Bank signs S =
∏

i/∈R Bd
i , deducts the dollar from Alice account, and increases v by k.

• Alice extracts coin C = S ·
(∏

i/∈R ri
)−1

.

It should be noted that C =
∏

i/∈R (H1(xi, yi))
d where xi = H2(ai, ci) and yi = H2(ai ⊕ (u‖(v + i), di)). When

Alice wants to make a payment to Bob, Alice sends C to Bob. Bob chooses random bits z1, · · · , zk/2 and Alice
responds as follows:

1. if zi = 0, then Alice sends Bob ai, ci and yi

2. if zi = 1, then Alice sends Bob xi, ai ⊕ (u‖(v + i)), and di

It should be noted that in the above transaction process, Alice’s bank does not need to be online. In order for Bob to
cash the coin C from Alice’s bank, Bob sends the coin C together with Alice’s response to Alice’s bank. One may
wonder if Alice’s bank is not online, how can we avoid double spending? It should be noted that if Alice spends the
same coin both at Bob’s shop and at Charlie’s shop, then the challenge sequences z1, · · · , zk/2 from Bob and Charlie
are different with high probability. Thus Alice’s identity will be revealed. Assume that the challenge bit zi0 = 0 for
Bob and zi0 = 1 for Charlie. Then Alice has revealed ai0 , ci0 , yi0 , xi0 , ai0 ⊕ (u‖(v+ i0)), and di0 . Thus the bank can
trace this coin back to the account u which is held by Alice.

Many other non-PKI based digital cash systems have been proposed in the literature also. For example, Rivest
and Shamir [15] proposed the PayWord and MicroMint payment schemes. In the PawWord scheme, Alice computes a
sequence of binary strings w1, w2, · · · , wn such that wi = H(wi+1) where H is a secure cryptographic hash function.
Alice then commits w0 to bank which cannot be spent. Assume that each payment is one cent, then the i-th cent
is spent as (i, wi). In the MicroMint scheme, there is a central broker to mint the coins. For example, in order for
the broker to mint 230 coins, it will use an array of 230. The broker will repeatedly hash randomly selected binary
strings r and put the pair (r,H(r)) in the bin labeled with H(r). The mint process is finished when each of these
bins contains 4 entries. Each bin is considered as one coin. That is, each coin is a tuple (x1, x2, x3, x4) such that
H(x1) = H(x2) = H(x3) = H(x4).

2

Figure 1: Merkle hash tree

2 Bitcoin
The cryptographic currencies in the preceding section have never been used in practice. The world changed after the
cryptographic currency Bitcoin was introduced in the paper [12] by a pseudonym “Satoshi Nakamoto”. Since 2009,
the implementation of bitcoin has been in operation and it has been widely adopted as one of the major cryptographic
currency on the market now. The cryptography behind bitcoin is quite simple. The start coinbase by Satoshi Nakamoto
is a binary string w0. In order to mine the first bitcoin BTC, one needs to find a random number r0 such that the first
two bits of w1 = H(w0, r0) is 00. Anyone who finds this r1 is rewarded with one BTC. The next person who finds
another r2 such that the first two bits of w2 = H(w1, r2) is 00 will be rewarded with the second BTC. This process
continues until a new BTC is mined in less than 10 minutes by the community. If the frequency of finding a BTC is
less than 10 minutes, the community initiates a voting process to extend the required prefix of 0s in the hash outputs.

The bitcoin is a chain w0, w1, · · · , wn where wn is the current bitcoin head that everyone works on it. The bitcoin
network is a peer to peer (P2P) network and all participants work on the longest chain. There is no benefit for one to
work on a shorter chain since it is a waste of time and the transaction included in these chains will not be valid. The
transactions of bitcoins are included in the hash inputs so that they could be verified later. Specifically, we have

wi+1 = H(wi,TR, ri)

where TR is the Merkle hash output of the transactions that one wants to include and ri is a random number that one
finds to make wi+1 have a certain number 0’s in its prefix. The Merkle hash tree is illustrated in Figure 1.

In the bitcoin system, a user is identified by a public key and a transaction is in the format of “Alice pays x BTC to
Bob”. A transaction is achieved by Alice signing the message “reference number, Bob’s pub key, BTC amount” where
“reference number” should be contained in some block of the current BTC chain w0, w1, · · · , wn. For example, the
block wi includes a transaction with this given reference number showing that Alice received certain amount of BTCs.
Bitcoin transactions are described using Forth-like Scripts. The scripts enable smart contract such as “the transaction
will be valid two days after all three persons have signed the contract”. The Forth-like Scripts is a stack based script
language and was mainly used in calculators. For example, in order to compute 25× 10 + 50, one needs to initialize
the stack as “[top] 25, 10, ∗, 50,+ [bottom]”.

Though it is argued [12] that if the majority of the users are honest then the bitcoin protocol should be reliable,
Eyal and Sirer [6] showed that this may not be true. In Eyal and Sirer’s attack, the adversary controls 1/3 computing
powers of the entire bitcoin community and will not reveal the block it mined if it leads. The other 2/3 users will waste
their time on a chain that will be abandoned at some time when the adversary reveals its own leading chain. Since
users could choose arbitrary public keys for bitcoins, it is claimed in [12] that user privacy is preserved in bitcoins at
certain degree. There have been significant efforts to analyze the privacy issues in bitcoin systems. Reid an Harrigan
[14] defined transaction network graphs and user network graphs to analyze the coin flows in bitcoin networks. In
particular, the authors in [14] proposed techniques to collaps several public keys to one user node if these public keys
are used as the input for a single transaction. The authors in [14] also proposed to map users to IP address based
on Kaminsky [8]. Since then, transaction graphs have been used by Ron and Shamir [16] and Fleder et al. [7] to

3

analyze the bitcoin transaction chain. In particular, the authors [7] used Google’s page rank algorithm to identify
relatively “important” data from transaction networks. Furthermore, Spagnuolo[17] designed the BitIodine tool to
label and cluster users in user network graphs. In particular, Spagnuolo[17] designed some web crawler to map BTC
addresses to real world users and used tag data from [2] to obtain BTC addresses for gambling, online wallet, mining
pool, and BTC addresses under seizure. These information were used for user clustering in user network graphs and
the resulting graphs were used to analyze bitcoin transactions related to Silk Road. CryptoLoker were then analyzed
based on these results. Meiklejohn et al [9] used marked coins to trace certain BTCs. That is, the authors made small
transactions with many merchants to get BTC keys for these merchants. These keys are then used to cluster the user
nodes in user network graphs. Meiklejohn et al [9] also used a second heuristic to cluster user nodes: change address
or shadow address. In particular, the authors assume that if the output bitcoin key in a transaction has never been
used before, this should be a shadow (or change address) belonging to the input user. However, this heuristic is not
effective in practice since most merchants provide a newly generated bitcoin key for each transaction. There have
been many proposals on privacy preserving solutions in bitcoin networks. Androulaki et al [1] tried to give a privacy
definition in bitcoin networks based on traditional privacy definition in computer networks. Based on these definitions,
Androulaki et al [1] implemented a simulated bitcoin network and observed that 40% user profile could be identified
in the simulated environments. Ober et al [13] analyzed some global properties of bitcoin networks and their impacts
on user privacy. Möser [11] analyzed three mixing services for bitcoin networks: BTC Fog, BitLaundry, Shared Wallet
from Blockchain.info. Möser [11] observed that among these three services, BTC Fog and Shared Wallet has good
privacy protection and tainted analysis could be used to trace bitcoins in BitLaundtry due to its lower volume per day.
Moore and Christin [10] analyzed forty bitcoin exchange centers and observed that the smaller the volume, the shorter
lifetime of the exchange center.

3 Ethereum
Though Forth-like Scripts in the bitcoin are sufficient for designing various kinds of smart contracts, it has a limited
capability. One of the underlying philosophy in Ethereum is to include a Turing-complete programming language
within the blockchain system so that any kinds of smart contracts can be supported in the blockchain. Ethereum was
designed as an Internet Service Platform with the goals that anybody can upload programs to the Ethereum World
Computer and anybody can request that a program that has been uploaded be executed. There are mainly two new
functions in Ethereum compared with bitcoin:

• Ethereum is a blockchain with a built-in Turing-complete programming language, allowing anyone to write
smart contracts and decentralized applications where they can create their own arbitrary rules for ownership,
transaction formats and state transition functions.

• Bitcoin only supports “proof of work” while Ethereum supports both “proof of stake” and “proof of work”
where “proof of stake” calculates the weight of a node as being proportional to its currency holdings and not its
computational resources.

The runtime environment for smart contracts in Ethereum is based on the Ethereum Virtual Machine (EVM). The
EVM can run any operations that are created by the user using the Turing-complete Ethereum scripting language
Solidity. An Ethereum account is a 20 bytes string with four fields: nonce, ether balance, contract code (optional),
and storage (empty by default). There are two kinds of Ethereum accounts: Ethereum Externally Owned Accounts
(EOAs) and contract accounts. An EOA is linked to a private key and a contract account can only be “activated” by an
EOA. A contract account is governed by its internal smart contract code which is programmed to be controlled by an
EOA with a certain address. A smart contract program within a contract account executes when a transaction is sent to
that account. The sender of a transaction must pay for each step of the “program” that they activate. This will include
both computation and memory storage costs. Users can create new contracts by deploying code to the blockchain.

4 Infeasibility of a smart Obama-Trump contract
Since blockchains use Turing-complete script languages to draft smart contracts, people has a misconception that any
kind of contracts could be implemented in blockchains. Though most financial based contracts could be implemented

4

using Turing-complete script languages, there are challenges in implementing other kinds of contracts with private
inputs. In this section, we analyze the limit of smart contracts that could be implemented in blockchains. In particular,
we show that it is theoretically impossible to implement the so-called Obama-Trump contract.

In the legal system, there are four types of classifications of contracts with various basis: formation, nature of
consideration, execution and validity. On the basis of formation, there are three types of contracts: express, implied,
and quasi contracts. For an express contracts, there is an expression or conversation. For an implied contract, there is
no expression. For example, sitting on an airplane incurs an implied contract between the passenger and the airline. For
a quasi contract, there is no contractual relations between the partners. This kind of contract is created by virtue of law.
On the basis of nature of consideration, there are two types of contracts: bilateral contracts and unilateral contracts. A
bilateral contract requires considerations in both directions to be moved after the contract while a unilateral contract
requires considerations to be moved only in one direction after the contract. An example of a bilateral contract is that
“Alice delivers goods to Bob on January 1st and Bob pays Alice on January 15th”. On the basis of execution, there are
two types of contracts: executed and executory contracts. In an executed contract, the performance is completed. In
a executory contracts, the contractual obligations are to be performed in future. On the basis of validity, there are five
types of contracts: valid, void, voidable, illegal and unenforceable contracts. A contract that is enforceable in a court
of law is called a valid contract and a contract that is not enforceable in a court of law is called a void contract. For
example, a contract between Alice and Bob where Bob is a minor who has no capacity to contract is a void contract.
A voidable contract is contract that is deficient in only free consent. For example, the contract between Alice and Bob
where Bob has forcibly made Alice involved in the contract is a voidable contract at the option of Alice. An illegal
contract contains unlawful object. An unenforceable contract has not properly fulfilled legal formalities.

With the classification of these contract types, it is important to design validation systems to check the validity of
smart contracts. The following is a list of validation systems that we would like to see.

• Check whether one transaction is an implied contract.

• Check whether one transaction follows a qusai contract.

• Check whether a contract is valid, void, voidable, illegal or unenforceable?

Unfortunately, it is infeasible to design efficient validation systems to carry out these tasks due to the non-decidability
of the universal Turing machine halting problem.

Furthermore, not all of these contracts are feasible in blockchain smart contracts. In particular, when private inputs
are involved. As an example, we show that a bilateral contract is hard to implement if the second consideration is
not digital cash (e.g., ether). In April 2011, Donald Trump made the comment [18] in an interview with ABC’s
George Stephanopoulos: “Maybe I’m going to do the tax returns when Obama does his birth certificate... I’d love to
give my tax returns. I may tie my tax returns into Obama’s birth certificate”. Based on this comment, we formulate
the following Obama-Trump contract and show that this kind of bilateral contract is impossible to implement as a
blockchain smart contract.

Obama-Trump Contract: Donald Trump releases his tax return forms as soon as Barack Obama releases his
birth certificate.

The infeasibility of implementing Obama-Trump Contract as a blockchain smart contract can be mathematically
proved using the infeasibility results in secure multi-party computations. We first review Cleve’s result [5] on the limits
of coin flips when half participants are faulty: If at least half of the participants is faulty, then there is no protocol to
allow an asynchronous network of participants to agree on a random (unbiased) bits.

Cleve [5] defines a 2-processor bit selection scheme as a sequence of pairs of processors {(An, Bn)}∞n=1 with
the following properties. For each n, An and Bn each have access to a private supply of random bits and they can
communicate with each other. If the system is executed then An and Bn will output bits a and b respectively within a
polynomial time. Assume that the system consists of r(n) rounds where each round consists of the following events:
An performs some computations and then sends a message to Bn and then Bn performs some computations and sends
a message to An. The 2-processor bit selection scheme is said to be correct if after the scheme is run we have a 6= b
with a negligible probability. The 2-processor bit selection scheme is said to be random if after the scheme is run
we have a = b and

∣∣Prob[a = 0]− 1
2

∣∣ is negligible. If one of the two processors is faulty then it is unrealistic to
expect the correctness of the scheme since the faulty processor could output a bit that is independent of the scheme
run. However, it is desirable that the output of the honest processor is still random. Cleve [5] defines a 2-processor bit
selection scheme to be secure if the following holds: For all n, if one of An, Bn is faulty, then

∣∣Prob[c = 0]− 1
2

∣∣ is
5

negligible where c is the output of the honest processor. Cleve shows that no secure 2-processor bit selection scheme
exists when one of the processors is faulty.

Assume that there is a blockchain smart contract to implement the Obama-Trump contract, then we can use this
smart contract to design a secure 2-processor bit selection scheme with one faulty processors which contradicts Cleve’s
result. For each n, An checks the smart contract transaction, if the smart contract releases Obama’s birth certificate,
it outputs 1, otherwise, it outputs 0. For each n, Bn also checks the smart contract transaction. If the smart contract
releases Trump’s tax return form, it outputs 1, otherwise, it outputs 0. If we assume that Obama releases his birth
certificate with 50% probability, then the above 2-processor bit selection scheme is secure if the smart contract is
enforced. This reduction shows that theoretically it is impossible to implement an enforceable smart Obama-Trump
contract in the blockchain.

5 Smart contract scenarios
The results in the preceding section show that not all contracts could be implemented as a blockchain smart contract.
However, blockchain smart contracts could do better than other technologies in many practical contract scenarios when
the contract execution process takes a significant amount of time. For example, the insurance claim process involves
many manual operations and requires a lot of human action. Blockchain smart contracts could help to reduce these
manual steps by including some measurable parameters such as earthquake magnitude within the smart contracts.
When there is an insured event, the accident information is converted to smart contract input parameters and the claim
process is triggered immediately.

Smart contracts can also be used in many other scenarios where a lot of paperwork and coordination are required.
For example, in the trade finance, the process of Letter of Credit issuance requires tons of physical documents. As
another example, in the property rental application process, the applicant needs to submit a lot of documents such as
income certificates, rental credit reports, eviction history, and other related documents to the landlord. It is noted that
the user may need to submit some same documents to both trade finance vendor and to landlord at different times if the
user will be involved in both of these processes. Thus it is preferred for a user to keep all these documents in a central
blockchain account and only submit appropriate reference numbers to the documents for each application. The system
should be designed in such a way that the user only needs to disclose minimal mandatory information to each vendor
for a specific application. For example, for a user to apply for an apartment, the system should only disclose user
income, rental credit reports, and eviction reports to the landlord. While the system should not disclose user eviction
reports to the trade finance organization.

Since information stored in the blockchain is publicly accessible, it is necessary to encrypt user documents in the
user account. We may assume that each document in a user profile has been certified by a related agency which is also
a user account in the blockchain. As an example, the user Alice’s master profile may look like this:

Alice Profile: DOC1,DOC2, · · ·

where each document DOCi is in the following format:

DOCi = S.EncK(F, SignAgency.pk(F)), P.EncAlice.pk(K), Agency.pk

where the document F is certified by the agency with a digital signature SignAgency.pk(F) using the agency public key
Agency.pk. The certified document (F, SignAgency.pk(F)) is then encrypted using a symmetric encryption scheme
S.EncK(·) with a key K. The symmetric key K is encrypted using a public encryption scheme P.EncAlice.pk(·) with Al-
ice’s public key Alice.pk. In order for Alice to disclose the certified document (F, SignAgency.pk(F)) to the landlord,
Alice needs to provide the document reference number DOCi and the symmetric key K to the landlord.

6 Other sophisticated smart contracts
A blockchain smart contract is normally written using a blockchain scripting language such as Solidity. Thus the
algorithms within the smart contract are available for public review. In some applications such as the insurance
industry, the vendor may not want the public to know the internal algorithms within the smart contract for claiming
process. Software obfuscation techniques may be used by smart contracts to hide the internal algorithms. Indeed, it is

6

preferred to use re-usable garble circuit techniques or fully homomorphic encryption (FHE) techniques to write smart
contracts in these scenarios. However, there are challenges in employing garbled circuits or FHE techniques in these
scenarios since it difficult to convert plaintext inputs into garbled inputs for garbled circuits or into encrypted inputs
for FHE schemes.

Public key infrastructure (PKI) is the core component for the secure Internet infrastructure. It is noted that a PKI
system based on blockchain smart contract systems may be established to replace the current certificate authority
(CA) based PKI systems for Internet infrastructure. It normally depends on the corresponding cost and security
characteristics for one to consider whether to use the current CA based PKI system or to use blockchain based PKI
system for the Internet infrastructure.

References
[1] E. Androulaki, G.O. Karame, M. Roeschlin, T. Scherer, and S. Capkun. Evaluating user privacy in bitcoin. In

International Conference on Financial Cryptography and Data Security, pages 34–51. Springer, 2013.

[2] Blockchain. Address tags. https://blockchain.info/tags.

[3] D. Chaum. Blind signatures for untraceable payments. In Proc. CRYPTO, pages 199–203. Springer, 1983.

[4] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In Proc. CRYPTO, pages 319–327. Springer-Verlag
New York, Inc., 1990.

[5] R. Cleve. Limits on the security of coin flips when half the processors are faulty. In Proc. 18th ACM STOC,
pages 364–369. ACM, 1986.

[6] I. Eyal and E.G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In International conference on
financial cryptography and data security, pages 436–454. Springer, 2014.

[7] M. Fleder, M.S. Kester, and S. Pillai. Bitcoin transaction graph analysis. arXiv preprint arXiv:1502.01657, 2015.

[8] D. Kaminsky. Black Ops of TCP/IP 2011. Black Hat USA, page 44, 2011.

[9] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G.M. Voelker, and S. Savage. A fistful of
bitcoins: characterizing payments among men with no names. In Proceedings of the 2013 conference on Internet
measurement conference, pages 127–140. ACM, 2013.

[10] T. Moore and N. Christin. Beware the middleman: Empirical analysis of bitcoin-exchange risk. In International
Conference on Financial Cryptography and Data Security, pages 25–33. Springer, 2013.

[11] M. Moser, R. Bohme, and D. Breuker. An inquiry into money laundering tools in the bitcoin ecosystem. In
eCrime Researchers Summit (eCRS), 2013, pages 1–14. IEEE, 2013.

[12] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[13] M. Ober, S. Katzenbeisser, and K. Hamacher. Structure and anonymity of the bitcoin transaction graph. Future
internet, 5(2):237–250, 2013.

[14] F. Reid and M. Harrigan. An analysis of anonymity in the bitcoin system. In Privacy, Security, Risk and Trust
(PASSAT) and IEEE Third Inernational Conference on Social Computing (SocialCom), pages 1318–1326. IEEE,
2011.

[15] R.L. Rivest and A. Shamir. PayWord and MicroMint: Two simple micropayment schemes. In International
Workshop on Security Protocols, pages 69–87. Springer, 1996.

[16] D. Ron and A. Shamir. Quantitative analysis of the full bitcoin transaction graph. In International Conference
on Financial Cryptography and Data Security, pages 6–24. Springer, 2013.

7

https://blockchain.info/tags

[17] M. Spagnuolo, F. Maggi, and S. Zanero. Bitiodine: Extracting intelligence from the bitcoin network. In Interna-
tional Conference on Financial Cryptography and Data Security, pages 457–468. Springer, 2014.

[18] Donald Trump. I will release my tax returns when Obama re-
leases his birth certificate. http://www.businessinsider.com/
donald-trump-tax-returns-obama-birth-certificate-2011-4, 2011.

8

http://www.businessinsider.com/donald-trump-tax-returns-obama-birth-certificate-2011-4
http://www.businessinsider.com/donald-trump-tax-returns-obama-birth-certificate-2011-4

	Cryptographic currency
	Bitcoin
	Ethereum
	Infeasibility of a smart Obama-Trump contract
	Smart contract scenarios
	Other sophisticated smart contracts

