
Proof-of-Stake Longest Chain Protocols:
Security vs Predictability

Vivek Bagaria?, Amir Dembo?, Sreeram Kannan‡, Sewoong Oh‡, David Tse?,
Pramod Viswanath†, Xuechao Wang†, Ofer Zeitouni+

†University of Illinois Urbana-Champaign, ?Stanford University,
‡University of Washington, +Weizmann Institute of Science

Abstract. The Nakamoto longest chain protocol is remarkably simple
and has been proven to provide security against any adversary with less
than 50% of the total hashing power. Proof-of-stake (PoS) protocols
are an energy efficient alternative; however existing protocols adopting
Nakamoto’s longest chain design achieve provable security only by al-
lowing long-term predictability, subjecting the system to serious bribery
attacks. In this paper, we prove that a natural longest chain PoS protocol
with similar predictability as Nakamoto’s PoW protocol can achieve se-
curity against any adversary with less than 1/(1+e) fraction of the total
stake. Moreover we propose a new family of longest chain PoS protocols
that achieve security against a 50% adversary, while only requiring short-
term predictability. Our proofs present a new approach to analyzing the
formal security of blockchains, based on a notion of adversary-proof con-
vergence.

1 Introduction

Bitcoin is the original blockchain, invented by Nakamoto. At the core is the
permissionless consensus problem, which Nakamoto solved with a remarkably
simple but powerful scheme known as the longest chain protocol. It uses only
basic cryptographic primitives (hash functions and digital signatures). In the
seminal paper [23] that introduced the original Bitcoin protocol, Nakamoto also
showed that the protocol is secure against one specific attack, a private double-
spend attack, if the fraction of adversarial hashing power, β, is less than half the
hashing power of the network. This attack is mounted by the adversary trying
to grow a long chain over a long duration in private to replace the public chain.
Subsequently, the security of Bitcoin against all possible attacks is proven in [15],
and further extended to a more realistic network delay model in [25].

The authors are listed alphabetically. Email: vbagaria@stanford.edu,
amir@math.stanford.edu, ksreeram@uw.edu, sewoong@cs.washington.edu,
dntse@stanford.edu, pramodv@illinois.edu, xuechao2@illinois.edu,
ofer.zeitouni@weizmann.ac.il. Amir Dembo and Ofer Zeitouni were partially
supported by a US-Israel BSF grant.

ar
X

iv
:1

91
0.

02
21

8v
3

 [
cs

.C
R

]
 2

3
Fe

b
20

20

2 Bagaria et al.

The permissionless design (robustness to Sybil attacks) of Bitcoin is achieved
via a proof-of-work (PoW) mining process, but comes at the cost of large en-
ergy consumption. Recently proof-of-stake (PoS) protocols have emerged as an
energy-efficient alternative. When running a lottery to win the right to propose
the next valid block on the blockchain, each node wins with probability pro-
portional its stake in the total pool. This replaces the resource intense mining
process of PoW, while ensuring fair chances to contribute and claim rewards.

There are broadly two families of PoS protocols: those derived from decades
of research in Byzantine Fault Tolerant (BFT) protocols and those inspired by
the Nakamoto longest chain protocol. Attempts at blockchain design via the BFT
approach include Algorand [9,16] and Hotstuff [32]. The adaptation of these new
protocols into blockchains is an active area of research and engineering [4, 16],
with large scale permissionless deployment as yet untested.

Motivated and inspired by the time-tested Nakamoto longest chain protocol
are the PoS designs of Snow White [6] and the Ouroboros family of protocols
[2,10,19]. The inherent energy efficiency of the PoS setting comes with the cost of
enlarging the space of adversarial actions. In particular, the attacker can “grind”
on the various sources of the randomness, i.e., attempt multiple samples from
the sources of randomness to find a favorable one. Since these multiple attempts
are without any cost to the attacker this strategy is also known as a nothing-at-
stake (NaS) attack. One way to prevent an NaS attack is to rely on a source of
randomness on which a consensus has been reached. In Snow White [6] and the
Ouroboros family [2, 10, 19], this agreed upon randomness is derived from the
stabilized segment of the blockchain from a few epochs before. Each epoch is a
fixed set of consecutive PoS lottery slots that use the same source of agreed upon
randomness. However, this comes at a price of allowing each individual node to
simulate and predict in advance whether it is going to win the PoS lottery at a
given slot and add a new block to the chain. Further, as the size of each epoch
is proportional to the security parameter κ (specifically, a block is confirmed
if and only if it is more than κ blocks deep in the blockchain), higher security
necessarily implies that the nodes can predict further ahead into the future.
This is a serious security concern, as predictability makes a protocol vulnerable
against other types of attacks driven by incentives, such as predictable selfish
mining or bribing attacks [7].

Nakamoto-PoS. A straightforward PoS adoption of Nakamoto protocol,
which in contrast to Ouroboros and Snow White can update randomness every
block, runs as follows; we term the protocol as Nakamoto-PoS. The protocol pro-
ceeds in discrete time units called slots, during which each node runs the “PoS
lottery”, a leader election with a winning probability proportional to the stake
owned by the node – winners get to propose new blocks. Each node computes
hash = H(time, secret key,parentBk.hash), where the hash function H is a ver-
ifiable random function (VRF) (formally defined in §C), which enables the nodes
to run leader elections with their secret keys (the output hash is verified with
the corresponding public key). The node n is elected a leader if hash is smaller
than a threshold ρ × staken, that is proportional to its stake staken, then the

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 3

node n proposes a new block consisting of time, parentBk.hash, public key and
hash, and appends it to the parent block. A detailed algorithmic description of
this protocol is in §G (with c = 1). Following Nakamoto’s protocol, each honest
node runs only one election, appending to the last block in the longest chain in
its local view. Having the hash function depend on parentBk.hash ensures that
every appended block provides a fresh source of randomness, for the following
elections. However, there is no consensus on the randomness used and the ran-
domness is block dependent, giving opportunities for the adversary to mount a
NaS attack by trying its luck at many different blocks.

The analysis of the security of the Nakamoto-PoS protocol is first attempted
in [14]. Just like Nakamoto’s original analysis, their analysis is on the security
against a specific attack: the private double-spend attack. Due to the NaS phe-
nomenon, they showed the adversary can grow a private chain faster than just
growing at the tip, as though its stake increases by a factor of e. This shows
that the PoS longest chain protocol is secure against the private double spend
against if the adversarial fraction of stake β < 1/(1+e). The question of whether
the protocol is secure against all attacks, or there are attacks more serious than
the private double spend attack, remains open. This is not only an academic
question, as well-known blockchain protocols like GHOST [29] had been shown
to be secure against the private attack, only to be shown not secure later [20,24].

Methodological Contribution. In this paper, we show that, under a for-
mal security model (§3), the Nakamoto-PoS protocol is indeed secure against all
attacks, i.e., it has persistence and liveness whenever β < 1/(1 + e). One can
view our result as analogous to what [15] proved for Nakamoto’s PoW protocol.
However, how we prove the result is based on an entirely different approach.
Specifically, the security proofs of [15] are based on counting the number of
blocks that can be mined by the adversary over a long enough duration (see
Fig. 1), and showing that the longest chain is secure because the number of such
adversarial blocks is less than the number of honest blocks whenever β < 0.5.
This proof approach does not give non-trivial security results for the PoS proto-
col in question, because the number of adversarial blocks is exponentially larger
than the number of honest blocks, due to the NaS phenomenon. Rather, our
proof takes a dynamic view of the evolution of the blockchain, and shows that,
whenever β < 1/(1 + e), there are infinite many time instances, which we call
adversary-proof convergence times, in which no chains that the adversary can
grow from the past can ever catch up to the longest chain any time in the fu-
ture (see Fig. 1).1 Whenever such an event occurs, the current longest chain will
remain as a prefix of any future longest chain.

Although the adversary can propose an exponentially large number of blocks,
perhaps surprisingly, the protocol can still tolerate a positive fraction β of ad-

1 The notion of adversary-proof convergence is not to be confused with the notion
of convergence opportunities in [25]. The latter refers to times in which the honest
blocks are not mined at similar time so that honest nodes may have a split view of
the blockchain. It says nothing about whether the adversary can launch an attack
using the blocks it mined. That is what our notion focuses on.

4 Bagaria et al.

Main chain grows
at rate ≥ 𝜆#

Tip of each of the adversarial NaS tree
grows at rate e 𝜆$

≥ 𝜆#T
blocks

≥ 𝜆#T
blocks

Since there are ≥ 2 𝜆#T blocks
and 𝜆#T are honest, at least
𝜆#T blocks are adversarial
=> 𝜆$ ≥ 𝜆# => β ≥ ½.

PoS Proof IdeaPoW Proof Idea

Fig. 1: Notations: λa, λh are the rates at which the adversary and the honest nodes
can mine a block on a given block, and T is the total duration. Left: In the PoW
case, a counting argument shows that for the adversary to create a chain to match the
longest chain, β > 1/2. This proof fails to work in the PoS case because there is no
conservation of work and the total number of adversarial blocks that can be generated
over a time duration T is exponentially larger than λaT . Right: Our proof technique.
Race between main chain and adversarial trees: adversary-proof convergence happens
at a honest block if none of the previous NaS trees can ever catch up with the main
chain downstream of the honest block. Security is proven by showing these events occur
at a non-zero frequency.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 5

versarial stake. On the other hand, the fraction that can be tolerated (1
1+e)

is still less than the fraction for the longest chain PoW protocol (12). In [14]
and [13], modifications of the longest chain protocol (called g-greedy and D-
distance-greedy) are proposed, based on improvements to their security against
the private double-spend attack. In §A, we showed that, unlike the longest chain
protocol, these protocols are subject to worse public-private attacks, and they
not only do not exhibit true improvements in security than the longest chain
protocol, but in many cases, they do far worse.

New PoS Protocol Contribution. Taking a different direction, we propose
a new family of simple longest chain PoS protocols that we call c-Nakamoto-
PoS (§4); the fork choice rule remains the longest chain but the randomness
update in the blockchain is controlled by a parameter c, the larger the value of
the parameter c, the slower the randomness is updated. The common source of
randomness used to elect a leader remains the same for c blocks starting from
the genesis and is updated only when the current block to be generated is at
a depth that is a multiple of c. When updating the randomness, the hash of
that newly appended block is used as the source of randomness. The basic PoS
Nakamoto protocol corresponds to c = 1, where the NaS attack is most effective.
We can increase c to gracefully reduce the potency of NaS attacks and increase
the security threshold. To analyze the formal security of this family of protocols,
we combine our analysis for c = 1 with results from the theory of branching
random walks [28]; this allows us to characterize the largest adversarial fraction
β∗c of stake that can be securely tolerated. As c → ∞, β∗c → 1/2. We should
point out that the Ouroboros family of protocols [2, 10] achieves security also
by an infrequent update of the randomness; however, the update is much slower
than what we are considering here, at the rate of once every constant multiple
of κ, the security parameter. This is needed because the epoch must be long
enough for the blockchain in the previous epoch to stabilize in order to generate
the common randomness for the current epoch. Here, we are considering c to be
a fixed parameter independent of κ, and show that this is sufficient to thwart the
NaS attack. Technically, we show that even if c is small, there is no fundamental
barrier to achieving any desired level of security κ. Hence, achieving a high level
of security κ should not come at the cost of longer predictable window, and in
this paper we introduce a natural adoption of Nakamoto protocol to achieve this.
The practical implication of this result is shown in Fig. 2, where we can see that
c-Nakamoto can achieve comparable security with a much smaller prediction
window than a current implementation of Orouboros as part of the Cardano
project [30].

Organization. In §2 we formally define prediction windows for any PoS
protocol and discuss a class of bribery attacks enabled by the predictive fea-
ture of leader elections of many PoS protocols. The seriousness of these bribery
attacks is underscored by the fatal nature of the attacks (double-spends and
ledger rewrites) and that they can be implemented by bribing a fraction of users
possessing an arbitrarily small total stake. This sets the stage for the protocols
discussed in this paper, Nakamoto-PoS and c-Nakamoto-PoS, which have low

6 Bagaria et al.

Fig. 2: The security threshold β∗c of c-Nakamoto-PoS against the prediction window,
equaling to c times the inter-block time, which we set to be 20s, to match the im-
plementation of Orouboros in Cardano. The Cardano project currently updates the
common randomness every 5 days (21600 blocks, or 10κ), while the security threshold
of c-Nakamoto-PoS can approach 1/2 with much higher randomness update frequency.

prediction windows and hence resistant to these bribery attacks. §3 discusses
the formal security model we use to the analyze the c-Nakamoto-PoS protocols
(defined formally in §4). The formal security analyses of Nakamoto-PoS and c-
Nakamoto-PoS protocols are conducted in §5. This analysis, conducted in the
static stake setting, is generalized to dynamic stake settings in §6.

2 Predictability in PoS Protocols

Longest Chain BFT Our results
[19] [10] [2] [6] [14] [13] Algorand [9] Nakamoto-PoS c-Nakamoto-PoS

W 2κ 3κ 6κ 6κ 1 1 Θ(κ) 1 c

β∗ 1
2

unknown 1
3

1
1+e

β∗c

Table 1: Our results decouple the prediction window W and the security parameter
κ, achieving any combination of (W,κ). Prediction window W for other PoS protocols
are strongly coupled with the security parameter κ = log(1/Pfailure). The maximum
threshold of adversarial stake that can be tolerated by the PoS protocols while being
secure is β∗. Nakamoto-PoS is the most basic way of extending Nakamoto protocol
to the PoS setting. This was originally introduced in [13, 14] but with an incomplete
security analysis; In §5 we show β∗c ≈ 1/2 − Θ(

√
(1/c)ln c) and numerically tabulate

β∗c (example: β∗c = 39% for c = 10). [2, 10, 19] are the Ouroboros family, [6] is Snow
White, [14] is g-Greedy, and [13] is D-Distance-Greedy.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 7

In PoW protocols such as Bitcoin, no miner knows when they will get to
propose the block until they solve the puzzle, and once they solve the puzzle, the
block is inviolable (because the puzzle solution will become invalid, otherwise).
This causality is reversed in proof-of-stake (PoS) protocols: a node eligible to
propose a block knows a priori of its eligibility before proposing a block. This
makes PoS protocols vulnerable to a new class of serious attacks not possible
in the PoW setting. We briefly discuss these attacks here, deferring a detailed
discussion to §D.

Definition 1 (W -predictable). Given a PoS protocol ΠPoS, let C be a valid
blockchain ending with block B with a time stamp t. We say a block B enables
w-length prediction, if there exists a time t1 > t and a block B1 with a time
stamp t1 such that (i) B1 can be mined by miner (using its private state and
the common public state) at time t; and (ii) B1 can be appended to C′ to form a
valid blockchain for any valid chain C′ that extends C by appending w − 1 valid
blocks with time stamps within the interval (t, t1). By taking the maximum over
the prediction length over all blocks in ΠPoS, we say ΠPoS is W -predictable. W
is the size of the prediction window measured in units of number of blocks.

Informally, a longest-chain PoS protocol has W length prediction window if
it is possible for a miner to know that it is allowed to propose a block W blocks
downstream of the present blockchain. We note that our definition is similar
to the definition of W -locally predictable protocols in [7], where it has been
pointed out that PoS protocols trade off between predictability and nothing-
at-stake incentive attacks. In Table 1, we compare the prediction windows of
various protocols. The longest-chain family of protocols of Ouroboros update
randomness every epoch have prediction window equal to the epoch length.
Furthermore, they require the epoch length to be proportional to the security
parameter κ, since one error event is that a majority of block producers in an
epoch are not honest (and in that case, they can bias the randomness of all
future slots).

We note that in any PoS protocol with confirmation-depth κ (the number of
downstream blocks required to confirm a given block), a simple bribing attack
is possible, where a briber requests the previous block producers to sign an al-
ternate block for each of their previous certificates. However, such attacks are
overt and easily detectable, and can be penalized with slashing penalties. If the
prediction window W is greater than the confirmation-depth κ, then the follow-
ing covert (undetectable) attack becomes possible. An adversary who wants to
issue a double-spend can create a website where nodes that have future proposer
slots post their leadership certificates for a bribe. If the adversary gets more
than κ+ 1 miners to respond to this request, then the adversary can launch the
following attack: (1) collect the κ+ 1 leadership certificates (2) issue a transac-
tion that gets included in the upcoming honest block, (3) let the honest chain
grow for κ blocks to confirm the transaction and receive any goods in return,
then (4) create a double spend against the previous transaction and (5) create a
longer chain downstream of a block including the double-spend using the κ+ 1

8 Bagaria et al.

certificates. We note that this attack does not require participation from miners
having a majority of the stake. Far from it, it only requires κ + 1 out of the
next 2κ miners each holding a potentially infinitesimal fraction of stake. Fur-
thermore, this attack does not require miners to double-sign blocks, making it
indistinguishable from unexpected network latency and providing plausible de-
niability for the miners who take the bribe. Thus, it is a serious covert attack on
security requiring only participants with a net infinitesimal stake to participate
in it. We note that this attack is not covered in the popular adaptive adversary
model [10, 16], since in that model, nodes are assumed not to have any agency
and remain honest till the adversary corrupts them (based only on public state).

We note that it is not possible to mitigate the prediction issue by increasing
the confirmation depth beyond the prediction window (which is equal to the
epoch length). This is because the guarantees of existing protocols rely on the
randomness of each epoch being unbiased and this guarantee fails to hold when a
majority of nodes in an epoch are bribed through the aforementioned mechanism
in order to bias the randomness.

While our discussion so far focused on longest-chain PoS protocols, we note
that the prediction issue is even more serious in BFT based PoS protocols. PoS-
based BFT protocols that work with the same committee or same proposer for
many time-slots give raise to similar prediction based attacks. Even in protocols
such as Algorand [9, 16], which require a new committee for each step of the
BFT protocol, the entire set of committees for all steps of the BFT protocol
for a given block is known once the previous block is finalized. This leads to a
similar type of bribing attack where once a 2/3 majority of a BFT-step committee
coordinate through a centralized website, they can sign a different block than
the one the honest nodes agreed on. We note that since Algorand elects a small
constant size committee (proportional to κ) for each round, a 2/3 majority of
the committee can comprise a negligible total stake. Thus, in Algorand, even
though the prediction window appears negligible, the confirmation delay is also
small – thus leading to the same type of attack (detailed discussion deferred to
§D). A formal definition of prediction window for BFT-based PoS protocols is
in §D.4 where we evaluate the prediction window W for a canonical BFT based
PoS protocol: Algorand [9]. There is a strong coupling between the security
parameter and prediction window for Algorand, and is tabulated in Table 1.

Summary. We have demonstrated that both longest-chain and BFT based
protocols are highly vulnerable to prediction-based security attacks when coor-
dinating through an external bribing mechanism, thus compromising the per-
sistence and liveness of the system. These attacks are covert, i.e., the deviant
behavior is not detectable and punishable on the blockchain, and require only
an infinitesimal fraction of the stake to collude, thus significantly weakening the
security of the protocol. This motivates the study of Nakamoto-PoS (with a very
small prediction window) and the design of a new PoS protocol that has a pre-
diction window much shorter than the confirmation depth and can be secure
against adversaries with up to 50% of the stake. This state of affairs, together
with the security results we prove in this paper are summarized in Table 1.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 9

3 Security Model

A blockchain protocol Π is directed by an environment Z(1κ), where κ is the
security parameter. This environment (i) initiates a set of participating nodes
N ; (ii) manages nodes through an adversary A which corrupts a dynamically
changing subset of nodes; (iii) manages all accesses of each node from/to the
environment including broadcasting and receiving messages of blocks and trans-
actions.

The protocol Π proceeds in discrete time units called slots, each consisting
of δ milliseconds (also called the slot duration), i.e. the time argument in the
input to the hash function should be in δ millisecond increments. Each slot
slr is indexed by an integer r ∈ {1, 2, · · · }. A ledger associates at most one
block to each slot among those generated (or proposed) by participating nodes,
each running a distributed protocol. Collectively, at most one block per slot
is selected to be included in the ledger according to a rule prescribed in the
protocol Π. Similar to [19], we assume that the real time window for each slot
satisfies that: (1)The time window of a slot is determined by a publicly-known
and monotonically increasing function of current time; (2) every user has access
to the current global time and any discrepancies between nodes’ local time are
insignificant in comparison with the slot duration.

We follow the security model of [10,15,25] with an ideal functionality F . This
includes diffuse functionality and key and transaction functionality as described
below. With a protocol Π, adversary A, environment Z, and security parameter
κ, we denote by VIEWn,F

Π,A,Z(κ) the view of a node n ∈ N who has access to an
ideal functionality F .

We consider a semi-synchronous network model with bounded network de-
lay similar to that of [10, 25] that accounts for adversarially controlled message
delivery and immediate node corruption. All broadcast messages are delivered
by the adversary, with a bounded network delay ∆ millisecond. Let τ = ∆/δ be
an integer. We model this bounded network delay by allowing the adversary to
selectively delay messages sent by honest nodes, with the following restrictions:
(i) the messages broadcast in slot slr must be delivered by the beginning of slot
slr+τ ; and (ii) the adversary cannot forge or alter any message sent by an honest
node. This is the so called delayed diffuse functionality (denoted by DDiffuseτ
in [10]).

The dynamically changing set of honest (or uncorrupted) nodes H ⊆ N
strictly follows the blockchain protocol Π. The key registration functional-
ity (from [19]) is initialized with the nodes N and their respective stakes
(stake1, . . . , stake|N |) such that the fraction of the initial stake owned by node
n is staken/

∑
m∈N stakem. At the beginning of each round, the adversary can

dynamically corrupt or uncorrupt any node n ∈ N , with a permission from the
environment Z in the form of a message (Corrupt, n) or (Uncorrupt, n). Even the
corrupted nodes form a dynamically changing set, the total proportion of the
adversarial stake is upper bounded by β all the time. For the honest nodes, the
functionality can sample a new public/secret key pair for each node and record
them. For the corrupted nodes, if it is missing a public key, the adversary can

10 Bagaria et al.

set the node’s public key, and the public keys of corrupt nodes will be marked
as such. When the adversary releases the control of a corrupted node, the node
retrieves the current view of the honest nodes at the beginning of the following
round.

Any of the following actions are allowed to take place. (i) A node can retrieve
its public/secret key pair from the functionality. (ii) A node can retrieve the
whole database of public keys from the functionality. (iii) The environment can
send a message (Create) to spawn a new node, whose local view only contains
the genesis block, and the functionality samples its public/secret key pair. (iv)
The environment can request a transaction, specifying its payer and recipient.
The functionality adjusts the stakes according to the transactions that make into
the current ledger, as prescribed by the protocol Π. The adversary has access
to the state of a corrupt node n, and will be activated in place of node n with
restrictions imposed by F .
Verifiable Random Function (VRF). Verifiable Random Functions (VRF),
first introduced in [21], generates a pseudorandom number with a proof of its
correctness. A node with a secret key sk can call VRFprove(·, sk) to gener-
ates a pseudorandom output Fsk(·) along with a proof πsk(·). Other nodes that
have the proof and the corresponding public key pk can check that the output
has been generated by VRF, by calling VRFverify(·, output, πsk(·), pk). An
efficient implementation of VRF was introduced in [11], which formally satisfy
Definition 5 in §C. This ensures that the output of a VRF is computationally in-
distinguishable from a random number even if the public key pk and the function
VRFprove is revealed.
Key Evolving Signature schemes (KES). We propose using forward secure
signature schemes [5] to sign the transactions to be included in a generated block.
This prevents the adversary from altering the transactions in the blocks mined
in the past. Efficient Key Evolving Signature (KES) schemes have been proposed
in [10,18] where keys are periodically erased and generated, while the new key is
linked to the previous one. This is assumed to be available to the nodes via the
ideal functionality F . This ensures immutability of the contents of the blocks.

4 Protocol description

We explain our protocol following terminologies from [10] and emphasize the dif-
ferences as appropriate. The ideal functionality F captures the resources avail-
able to the nodes in order to securely execute the protocol. When a PoS sys-
tem is launched, a collection N of nodes are initialized. Each node n ∈ N is
initialized with a coin possessing stake staken, a verification/signing key pair
(KES.vkn,KES.skn), and a public/secret key pair (VRF.pkn,VRF.skn). The Key
Evolving Signature key pair (KES) is used to sign and verify the content of a
block, while the Verifiable Random Function key pair (VRF) is used to verify
and elect leader nodes who generate new blocks. All the nodes and the adver-
sary know all public keys {pkn = (KES.vkn,VRF.pkn)}n∈N . The genesis block
contains all public keys and initial stakes of all nodes, {(pkn, staken)}n∈N , and

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 11

also contains a nonce in genesis.content.RandSource. This nonce is used as a
seed for the randomness. The depth of a block in a chain is counted from the
genesis (which is at depth zero). We denote the time at the inception of the
genesis block as zero (milliseconds), such that the i-th slot starts at the time δ · i
milliseconds (since the inception of the genesis block). Nakamoto-PoS protocol
is executed by the nodes and is assumed to run indefinitely. At each slot a node
starts with a local chain C, which it tries to append new blocks on.

Proposer selection. At each slot, a fresh subset of nodes are randomly elected
to be the leaders, who have the right to generate new blocks. To be elected one
of the leaders, each node first decides on where to append the next block, in its
local view of the blocktree. This choice of a parent block is governed by the fork
choice rule prescribed in the protocol. For example, in BitCoin, an honest node
appends a new block to the deepest node in the local view of the blocktree. This
is known as Nakamoto protocol. We propose s-truncated longest chain rule that
includes the Nakamoto protocol as a special case, which we define later in this
section.

A random number of leaders are elected in a single slot, and the collective
average block generation rate is controlled by a global parameter ρ that is adap-
tively set by the ideal functionality F . The individual block generation rate is
proportional to the node’s stake. The stakes are updated continuously as the
ledger is updated, but only a coin s blocks deep in the ledger can be used in the
election (the same parameter s as used in the truncated longest chain rule), and
is formally defined later in this section.

Concretely, at each slot, a node n ∈ N draws a number distributed uniformly
at random in a predefined range. If this is less than the product of its stake and
a parameter ρ (Algorithm 1 line 17), the node is elected one of the leaders of the
slot and gains the right to generate a new block. Ideally, we want to simulate such
a random trial while ensuring that the outcome (i) is verifiable by any node after
the block generation; (ii) is unpredictable by any node other than node n before
the generated block has been broadcast; and (iii) is independent of any other
events. Verifiability in (i) is critical in ensuring consistency among untrusted pool
of nodes. Without unpredictability in (ii), the adversary can easily take over the
blockchain by adaptively corrupting the future leaders. Without independence
in (iii), a corrupted node might be able to grind on the events that the simulator
(and hence the outcome of the election) depends on, until it finds one that favors
its chances of generating future blocks. Properties (ii) and (iii) are challenges
unique to PoS systems, as predicting and grinding attacks are computationally
costly in PoW systems.

To implement such a simulator in a distributed manner among mutually
untrusting nodes, [10, 16] proposed using Verifiable Random Functions (VRFs),
formally defined in §C. In our proposed protocol, a node n uses its secret key
VRF.sk to generate a pseudorandom hash and a proof of correctness (Algorithm 1
line 16). If node n is elected a leader and broadcasts a new block, other nodes
can verify the correctness with the corresponding public key VRF.pk and the
proof (which is included in the block content). This ensures unpredictability, as

12 Bagaria et al.

only node n has access to its secret key, and verifiability, as any node can access
all public keys and verify that the correctness of the random leader election.

The pseudorandom hash generated by VRFprove(x,VRF.sk), depends on
the external source of randomness, (x,VRF.sk), that is fed into the function.
Along with the secret key VRF.sk, which we refer to as the private source of
randomness, we prescribe constructing a header x that contains the time (in
a multiple of δ milliseconds) and a dynamically changing common source of
randomness. Including the time ensures that the hash is drawn exactly once
every slot. Including the common source of randomness ensures that the random
elections cannot be predicted in advance, even by the owner of the secret key.
Such private predictability by the owner of the secret key leads to other security
concerns that we discuss in §D.

A vanilla implementation of such a protocol might (a) update stakes imme-
diately and (b) use the hash of the previous block (i.e. the parent of the newly
generated block in the main chain as defined by the fork chain rule) as the com-
mon source of randomness. Each of these choices creates a distinct opportunity
for an adversary to grind on, that could result in serious security breaches. We
explain the potential threats in the following and propose how to update the
randomness and the stake, respectively, to prevent each of the grinding attacks.
A formal analysis of the resulting protocol is provided in §5.

Updating the common source of randomness. One way to ensure unpre-
dictability by even the owner of the secret key is to draw randomness from the
dynamically evolving blocktree. For example, we could use the hash of the par-
ent block (i.e. the block that a newly generated block will be appended to). This
hash depends only on the parent block proposer’s secret key, the time, and the
source of randomness included in the header of the parent block. In particular,
this hash does not depend on the content of the parent block, to prevent an
additional source of grinding attack. However, such a frequent update of the
source creates an opportunity for the adversary to grind on. At every round, a
corrupted node can run as many leader elections as the number of blocks in the
blocktree, each appending to a different block as its parent. To mitigate such
grinding attacks, we propose a new update rule for the source of randomness
which we call c-correlation.

A parameter c ∈ Z determines how frequently we update. The common
source of randomness remains the same for c blocks, and is updated only when
the current block to be generated is at a depth that is a multiple of c (Algorithm 1
line 19). When updating, the hash of that newly appended block is used as the
source of randomness. When c = 1, this recovers the vanilla update rule, where
a grinding attack is most effective. We can increase c to gracefully increase the
security threshold. A formal analysis is provided in §5. When c =∞, every block
uses the nonce at the genesis block as the common source of randomness. This
makes the entire future leader elections predictable in private, by the owners of
the secret keys.

Dynamic stake. The stake of a node n (or equivalently that of the coin the
node possesses) is not only changing over time as transactions are added to the

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 13

blocktree, but also over which chain we are referring to in the blocktree. Different
chains in the tree contain different sequences of transactions, leading to different
stake allocations. One needs to specify which chain we are referring to, when we
access the stake of a node. Such accesses are managed by the ideal functionality
F (Algorithm 1 line 12).

When running a random election to append a block to a parent block b at
depth `−1 in the blocktree, a coin can be used for this election of creating a block
with depth ` if and only if the coin is in the stake at the block with depth `− s
on the chain leading to block b. Accordingly, a node n has a winning probability
proportional to staken(b) when mining on block b, where staken(b) denotes the
stake belonging to node n as in the (s − 1)-th block before b. Starting from an
initial stake distribution staken(bgenesis), we add to or subtract from the stake
according to all transactions that (i) involve node n (or the coin that belongs to
node n); (ii) are included in the chain of blocks from the genesis to the reference
block b; and (iii) is included in the blockchain at least s − 1 blocks before b.
Here, s ∈ Z is a global parameter.

When s=1, the adversary can grind on (the secret key VRF.sk of) the coin.
For example, once a corrupted node is elected as a leader at some time slot and
proposed a new block, it can include transactions in that block to transfer all
stake to a coin that has a higher chance of winning the election at later time
slots. To prevent such a grinding on the coin, a natural attempt is to use the
stake in the block with depth `− s when trying to create a block at depth ` on
the main chain. However, there remains a vulnerability, if we use the Nakamoto
protocol from BitCoin as the fork choice rule.

Consider a corrupted node growing its own private chain from the genesis
block (or any block in the blocktree). A private chain is a blockchain that the
corrupted node grows privately without broadcasting it to the network until it is
certain that it can take over the public blocktree. Under the Nakamoto protocol,
this happens when the private chain is longer (in the number of blocks) than
the longest chain in the public blocktree. Note that the public blocktree grows
at a rate proportional to ρ and the total stake of the nodes that append to the
public blocktree. With a grinding attack, the private chain, which is entirely
composed of the blocks generated by the corrupted node, can eventually take
over the public blocktree.

Initially, the private chain grows at a rate proportional to ρ and the stake
controlled by the corrupted node. However, after s blocks from the launch of the
private chain, the corrupted node can start grinding on the private key of the
coin; once a favorable coin is found, it can transfer the stake to the favored coin
by including transactions in the first ancestor block in the private chain. This
is possible as all blocks in the private chain belong to the corrupted node. It
can alter any content of the private chain and sign all blocks again. With such
a grinding attack (which we refer to as coin grinding), the corrupted node can
potentially be elected a leader every slot in the private chain, eventually over-
taking the public blocktree. To prevent this private grinding attack, we propose
using an s-truncation as the fork choice rule.

14 Bagaria et al.

Fork choice rule. An honest node follows a fork choice rule prescribed in
the protocol. The purpose is to reach a consensus on which chain of blocks
to maintain, in a distributed manner. Eventually, such chosen chain of blocks
produces a final ledger of transactions. Under the Nakamoto protocol, a node
appends the next generated block to the longest chain in its local view of the
blocktree. Unlike PoW systems, Nakamoto protocol can lead to serious security
issues for PoS systems as discussed above. We propose using the following s-
truncated longest chain rule, introduced in [2, 14].

At any given time slot, an honest node keeps track of one main chain that
it appends its next generated block to. Upon receiving a new chain of blocks, it
needs to decide which chain to keep. Instead of comparing the length of those
two chains, as in Nakamoto protocol, we compare the creation time of the first
s blocks after the fork in truncated versions of those two chains (Algorithm 1
line 34). Let bfork be the block where those two chains fork. The honest node
counts how long it takes in each chain to create, up to s blocks after the fork.
The chain with shorter time for those s blocks is chosen, and the next generated
block will be appended to the newest block in that selected chain. When s =∞,
the stake is fixed since the genesis block, which leads to a system that is secure
but not adaptive. This is undesirable, as even a coin with no current stake can
participate in block generation. We propose using an appropriate global choice
of s < ∞, that scales linearly with the security parameter κ. This ensures that
the protocol meets the desired level of security, while adapting to dynamic stake
updates. One caveat is that we only apply this s-truncation when comparing
two chains that both have at least s blocks after those two chains forked. If
one of the chain has less than s blocks after forking, we use the longest chain
rule to determine which chain to mine on. This is necessary in order to ensure
that s-truncation is only applied to chains with enough blocks, such that our
probabilistic analysis results hold.

Content of the block. Once a node is elected a leader, all unconfirmed trans-
actions in its buffer are added to the content (Algorithm 1 line 22). Along with
the transactions, the content of the block also includes the identity of the coin
that won the election, and the hash and proof from VRFprove(·). This allows
other nodes to verify the accuracy of the leader election. A common source of
randomness RandSource is also included, to be used in the next leader election.
The state variable in the content contains the hash of parent block, which en-
sures that the content of the parent block cannot be altered. Finally, the header
and the content is signed with the forward secure signature KES.skn.

Note that the content of the block is added after the leader election, in order
to avoid any grinding on the content. However, this allows the adversary to
create multiple blocks with the same header but different content. In particular,
after one leader election, the adversary can create multiple blocks appending to
different parent blocks, as long as those parent blocks share the same common
source of randomness. Such copies of a block with the same header but different
contents are known as a “forkable string” in [19] or “non-core blocks” in [14]. We

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 15

show in the next section that the Nakamoto-PoS protocol is secure against all
such variations of attacks.

β total proportion of the adversarial stake
δ slot duration
∆ network delay
κ security parameter
c correlation parameter
s parameter in the fork choice rule
φc maximum growth rate of a private tree

Table 2: The parameters used in our analysis.

5 Security analysis

In this section, we provide formal security analysis for the longest chain PoS
protocol. We focus on c = 1, and will discuss the general c case in the last
subsection and further in §F. To simplify the expressions, we will consider the
regime when the time slot duration δ is very small, so that the block generation
processes can be modeled as Poisson. We will also assume the stake distribution
is static in this section; the case of dynamic stake is discussed in §6.

We prove liveness and persistence of the protocol through understanding
when the longest chain converges as time passes, regardless of the adversarial
strategy. We first analyze this convergence in the setting when the network delay
∆ = 0. This setting contains the core ideas of the proof, and allows us to explain
it with the simplest notations. Then we extend it to the case of positive network
delay. Finally, we use these results to prove high probability guarantees on the
liveness and persistence of the protocol.

5.1 Warmup: ∆ = 0

Random processes In this setting, all the honest nodes have the same view of
the blockchain, which can be modeled as a random process {(T (t), C(t)) : t ≥ 0}.
T (t) is a tree and C(t) is the public longest chain at time t. The tree T (t)
is interpreted as consisting of all the blocks that are generated by both the
adversary and the honest nodes up until time t, including blocks that are kept
in private by the adversary. Note that T (t) consists of the honest blocks, mined at
the tip of the longest chain, and all the blocks that the adversary can generate, by
trying and winning the election lotteries at all possible locations of the blocktree.
As such T (t) captures all the resources the adversary has at its disposal to attack
at time t.

The longest chain protocol in §4 results in a process described as follows.

1. T (0) = C(0) is a single root block (the genesis block).

16 Bagaria et al.

2. T (t) evolves as follows: there are independent Poisson processes of rate λa at
each block of T (t) (we call them the adversary processes), plus an additional
independent Poisson process of rate λh (we call it the honest process) arriving
at the last block of the chain C(t), i.e. an aggregate Poisson process of rate
λa + λh at that block (the tip of the longest chain), and rate λa at every
other block of T (t). A new block is added to the tree at a certain block when
a block is generated. An arrival from the honest process is called an honest
block. An arrival from the adversary process is called an adversarial block.

3. The chain C(t) is updated in two possible ways : 1) an additional honest
block is added to C(t) if an arrival from the honest process occurs; 2) an
adversary can replace C(t−) by another chain C(t) from T (t) which is equal
or longer in length than C(t−).2 The adversary’s decision has to be based on
the current state of the process.

The longest chain protocol means that the honest nodes always propose on
the tip of the current public longest chain C(t) (at rate λh, proportional to their
stake). The adversary can propose on any block (at rate λa, again proportional to
its stake). The adversary can change where the honest nodes act by broadcasting
an equal or longer length chain using the blocks it has succeeded in proposing.
Since the adversary can change where the honest nodes can propose even with an
equal length new chain, that means the adversary is given the ability to choose
where the honest nodes propose when there are more than one longest public
chain.

Proving the liveness and persistence of the protocol boil down to providing a
guarantee that the chain C(t) converges as t → ∞ regardless of the adversary’s
strategy. We will show that this happens provided that λa < λh/e, i.e.

β :=
λa

λa + λh
<

1

1 + e

Our key contribution here is defining an appropriate notion of adversary-proof
convergence and analyzing how frequently it occurs.

Adversary-proof convergence We first define several basic random variables
and random processes which are constituents of the processes T (·) and C(·). Then
we will use them to define the notion of adversary-proof convergence event, and
prove that indeed once the event occurs, convergence of the longest chain will
occur regardless of what the adversarial strategy is.

1. τi = generation time of the i-th honest block; τ0 = 0 is the generation time
of the genesis block, τi+1 − τi is exponentially distributed with mean 1/λh,
i.i.d. across all i’s.

2. Ah(t) = number of honest blocks generated from time 0 to t. Ah(t) increases
by 1 at each time τi. Ah(·) is a Poisson process of rate λh.

2 All jump processes are assumed to be right-continuous with left limits, so that
C(t), T (t), etc include the new arrival if there is a new arrival at time t.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 17

3. L(t) is the length of C(t). L(0) = 0. Note that since the chain C(t) increments
by 1 for every honest block generation, it follows that for all i and for all
t > τi,

L(t)− L(τi) ≥ Ah(t)−Ah(τi). (1)

4. Ti = {Ti(s) : s ≥ 0} is the random tree process generated by the adversary
starting from the i-th honest block. Ti(0) consists of the i-th honest block and
Ti(s) consists of all adversarial blocks grown on the i-th honest block from
time τi to τi + s. Note that the Ti’s are i.i.d. copies of the pure adversarial
tree T a (i.e. the tree T (t) when λh = 0).

5. Di(s) is the depth of the adversarial tree Ti(s).

Note that the overall tree T (t) is the composition of the adversarial trees
T0(t), T1(t− τ1), . . . Ti(t− τi) where the i-th honest block is the last honest block
that was generated before time t. How these trees are composed to form T (t)
depends on the adversarial action on when to release the private chains.

Let us define the events:

Eij = event that Di(t− τi) < Ah(t)−Ah(τi) for all t > τj (2)

and

Fj =

j−1⋂
i=0

Eij . (3)

These events can be interpreted as about a fictitious system where there is
a growing chain consisting of only honest blocks. The event Eij is the event
that the adversarial tree rooted at the i-th honest block does not catch up with
the honest chain any time after the generation of the j-th honest block. Such a
tree can be interpreted as providing resource for a possible attack at the honest
chain. If Eij occurs, then there is not enough resource for the i-th tree to attack
after the j-th block. If Fj occurs, there is not enough resource for any of the
previous trees to attack the honest chain.

Even though the events are about a fictitious system with a purely honest
chain and the longest chain in the actual system may consist of a mixture of
adversarial and honest blocks, intuitively the actual chain can only grow faster
than the fictitious honest chain, and so we have the following key lemma. This
lemma justifies us giving the name adversary-proof convergence event to Fj .

Lemma 1. If Fj occurs, then the chain C(τj) is a prefix of any future chain
C(t), t > τj. Equivalently, the j-th honest block will be in C(t) for all t > τj.

Proof. We will argue by contradiction. Suppose Fj occurs and let t∗ > τj be the
smallest t such that C(τj) is not a prefix of C(t). Let bh be the last honest block
on C(t∗) (which must exist, because the genesis block is by definition honest.)
If bh is generated at some time t1 > τj , then C(t−1) is the prefix of C(t∗) before
block bh, and does not contain C(τj) as a prefix, contradicting the minimality of
t∗. So bh must be generated before τj , and hence bh is the i-th honest block for

18 Bagaria et al.

some i < j. The part of C(t∗) after block bh must lie entirely in the adversarial
tree Ti(t∗ − τi) rooted at bh. Hence,

Di(t
∗ − τi) < Ah(t∗)−Ah(τi) ≤ L(t∗)− L(τi), (4)

where the first inequality follows from the fact that Fj holds, and the second
inequality follows from the longest chain policy (eqn. (1)). From this we obtain
that

L(τi) +Di(t
∗ − τi) < L(t∗) (5)

which is a contradiction since L(t∗) ≤ L(τi) +Di(t
∗ − τi).

We will show that the adversary-proof convergence event occurs infinitely
number of times if β < 1/(1+e), and will also give an estimate on how frequently
that happens. This will imply persistence and liveness of the protocol with high
probability guarantees.

Since the occurrence of the event Fj depends on whether the adversarial trees
from the previous honest blocks can catch up with the (fictitious) honest chain,
we next turns to an analysis of the growth rate of an adversarial tree.3

The adversarial tree via branching random walks The adversarial tree
T a(t) is the tree T (t) when λh = 0, i.e. honest nodes not acting. Let the depth
of the tree T a(t) be denoted by D(t) and defined as the maximum depth of its
blocks. The genesis block is always at depth 0 and hence T a(0) has depth zero.

We give a description of the (dual of the) adversarial tree in terms of a
Branching Random Walk (BRW). Such a representation appears already in [12],
but we use here the standard language from, e.g., [1, 28].

Consider the collection of k tuples of positive integers, Ik = {(i1, . . . , ik)},
and set I = ∪k>0Ik. We consider elements of I as labelling the vertices of a
rooted infinite tree, with Ik labelling the vertices at generation k as follows:
the vertex v = (i1, . . . , ik) ∈ Ik is the ik-th child of vertex (i1, . . . , ik−1) at
level k − 1. An example of labelling is given in Fig. 3. For such v we also let
vj = (i1, . . . , ij), j = 1, . . . , k, denote the ancestor of v at level j, with vk = v.
For notation convenience, we set v0 = 0 as the root of the tree.

Next, let {Ev}v∈I be an i.i.d. family of exponential random variables of pa-
rameter λa. For v = (i1, . . . , ik) ∈ Ik, let Wv =

∑
j≤ik E(i1,...,ik−1,j) and let

Sv =
∑
j≤kWvj . This creates a labelled tree, with the following interpretation:

for v = (i1, . . . , ij), the Wvj are the waiting for vj to appear, measured from the
appearance of vj−1, and Sv is the appearance time of v. A moments thought
ought to convince the reader that the tree Sv is a description of the adversarial
tree, sorted by depth.

3 The mean growth rate of this tree was analysed in [14] using difference equations.
Here, we are using the machinery of branching random walks, which not only gives
us tail probabilities but also allow the extension to the c-correlated protocol, c > 1,
easily.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 19

Fig. 3: Labelling the vertices of a rooted infinite tree.

Let S∗k = minv∈Ik Sv. Note that S∗k is the time of appearance of a block at
level k and therefore we have

{D(t) ≤ k} = {S∗k ≥ t}. (6)

S∗k is the minimum of a standard BRW. Introduce, for θ < 0, the moment
generating function

Λ(θ) = log
∑
v∈I1

E(eθSv) = log

∞∑
j=1

E(e
∑j
i=1 θEi) = log

∞∑
j=1

(E(eθE1))j

= log
E(eθE1)

1− E(eθE1)
.

Due to the exponential law of E1, E(eθE1) = λa
λa−θ and therefore Λ(θ) =

log(−λa/θ).
An important role is played by θ∗ = −eλa, for which Λ(θ∗) = −1 and

sup
θ<0

(
Λ(θ)

θ

)
=
Λ(θ∗)

θ∗
=

1

λae
=

1

|θ∗|
.

Indeed, see e.g [28, Theorem 1.3], we have the following.

Lemma 2.

lim
k→∞

S∗k
k

= sup
θ<0

(
Λ(θ)

θ

)
=

1

|θ∗|
, a.s.

In fact, much more is known, see e.g. [17].

Lemma 3. There exist explicit constants c1 > c2 > 0 so that the sequence
S∗k − k/λae− c1 log k is tight, and

lim inf
k→∞

S∗k − k/λae− c2 log k =∞, a.s.

20 Bagaria et al.

Note that Lemmas 2, 3 and (6) imply in particular that D(t) ≤ eλat for all
large t, a.s., and also that

if eλa > λh then D(t) > λht for all large t, a.s.. (7)

We will need also tail estimates for the event D(t) > eλat + x. While such
estimates can be read from [28], we bring instead a quantitative statement suited
for our needs.

Lemma 4. For x > 0 so that eλat+ x is an integer,

P (D(t) ≥ eλat+ x) ≤ e−x. (8)

Proof. We use a simple upper bound. Write m = eλat+ x. Note that by (6),

P (D(t) ≥ m) = P (S∗m ≤ t) ≤
∑
v∈Im

P (Sv ≤ t). (9)

For v = (i1, . . . , ik), set |v| = i1 + · · ·+ ik. Then, we have that Sv has the same
law as

∑|v|
j=1 Ej . Thus, by Chebycheff’s inequality, for v ∈ Im,

P (Sv ≤ t) ≤ Eeθ
∗Sve−θ

∗t =

(
λa

λa − θ∗

)|v|
e−θ

∗t =

(
1

1 + e

)|v|
eeλat. (10)

But

∑
v∈Im

(
1

1 + e

)|v|
=

∑
i1≥1,...,im≥1

(
1

1 + e

)∑m
j=1 ij

=

∑
i≥1

(
1

1 + e

)im

= e−m.

(11)
Combining (10), (11) and (9) yields (8).

Occurrence of adversary-proof convergence If the growth rate of the
adversarial tree is greater than λh, then the adversary can always attack the
honest chain by growing a side chain at a rate faster than the honest chain’s
growth rate and replace it at will. (7) immediately shows that if λa > λh/e, i.e.
when the adversarial fraction β > 1/(1 + e), the growth rate of the adversarial
tree is at least 1, and hence the private attack is successful. This is what [14]
showed. The question we want to answer is what happens when β < 1/(1 + e)?
Will another attack work? We show below that in this regime, the adversary-
proof convergence event Fj has a non-zero probability of occurrence, and this
implies that no attack works.

Lemma 5. If λa < λh/e, i.e. β < 1/(1 + e), then there exists a strictly positive
constant p > 0 such that P (Fj) ≥ p for all j. Also, with probability 1, the event
Fj occurs for infinitely many j’s.

The proof of this result can be found in §E.1.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 21

Waiting time for convergence In the previous section, we established the
fact that the event Fj has P (Fj) > p > 0 for all j. This implies that the event
Fj occurs infinitely often. But how long do we need to wait for such an event to
occur? We answer this question in the present section.

More specifically, we would like to get a bound on the probability that in
a time interval [s, s+ t], there are no adversary-proof convergence events, i.e. a
bound on:

q[s, s+ t] := P (
⋂

j:τj∈[s,s+t]

F cj).

Lemma 6. If λa < λh/e, i.e. β < 1/(1 + e) then there exist constants a2, A2 so
that, for any s, t ≥ 0,

q[s, s+ t] ≤ A2 exp(−a2
√
t). (12)

The bound in (12) is not optimal, see Remark 1 below.

Proof. Define Rj = τj+1 − τj , and let

Bik = event that Di(
∑k−1
m=iRm) ≥ (k − i− 1). (13)

(Notation as in (43).) Note that from Lemma 4 we have

P (Bik) ≤ P

(
Bik|

k−1∑
m=i

Rm < (k − i− 1)
λh + λae

2λae

1

λh

)

+P

(
k−1∑
m=i

Rm ≥ (k − i− 1)
λh + λae

2λae

1

λh

)
≤ e−

λh−λae
2λh

(k−i−1)
+A1e

−α1(k−i−1) (14)

for some positive constants A1, α1 independent of k, i. The first term in the
last inequality follows from (8), and the second term follows from the fact that
(λh+λae)/(2λae) > 1 and the Ri’s are iid exponential random variables of mean
1/λh. Then

F cj =
⋃

(i,k):i<j,k>j

Bik. (15)

Divide [s, s+ t] into
√
t sub-intervals of length

√
t, so that the r th sub-interval

is:
Jr := [s+ (r − 1)

√
t, s+ r

√
t].

Now look at the first, fourth, seventh, etc sub-intervals, i.e. all the r = 1
mod 3 sub-intervals. Introduce the event that in the `-th 1 mod 3th sub-interval,
an adversarial tree that is rooted at a honest block arriving in that sub-interval
or in the previous (0 mod 3) sub-interval catches up with a honest block in that
sub-interval or in the next (2 mod 3) sub-interval. Formally,

C` =
⋂

j:τj∈J3`+1

⋃
(i,k):τj−

√
t<τi<τj ,τj<τk<τj+

√
t

Bik.

22 Bagaria et al.

Note that for distinct `, the events C`’s are independent. Also, we have

P (C`) ≤ P (no arrival in J3`+1) + 1− p < 1 (16)

for large enough t.
Introduce the atypical events:

B =
⋃

(i,k):τi∈[s,s+t] or τk∈[s,s+t],i<k,τk−τi>
√
t

Bik , and (17)

B̃ =
⋃

(i,k):τi<s,s+t<τk

Bik . (18)

The events B and B̃ are the events that an adversarial tree catches up with an
honest block far ahead. Consider also the events

D1 = {#{i : τi ∈ (s−
√
t, s+ t+

√
t)} > 2λht} (19)

D2 = {∃i, k : τi ∈ (s, s+ t), (k − i) <
√
t/2λh, τk − τi >

√
t} (20)

D3 = {∃i, k : τk ∈ (s, s+ t), (k − i) <
√
t/2λh, τk − τi >

√
t} (21)

In words, D1 is the event of atypically many honest arrivals in (s−
√
t, s+t+

√
t)

while D2 and D3 are the events that there exists an interval of length
√
t with

at least one endpoint inside (s, s + t) with atypically small number of arrivals.
Since the number of honest arrivals in (s, s+t) is Poisson with parameter λht, we
have from the memoryless property of the Poisson process that P (D1) ≤ e−c0t

for some constant c0 = c0(λa, λh) > 0. On the other hand, using the memoryless
property and a union bound, and decreasing c0 if needed, we have that P (D2) ≤
e−c0

√
t. Similarly, using time reversal, P (D3) ≤ e−c0

√
t. Therefore, again using

the memoryless property of the Poisson process,

P (B) ≤ P (D1 ∪D2 ∪D3) + P (B ∩Dc
1 ∩Dc

2 ∩Dc
3)

≤ e−c0t + 2e−c0
√
t +

2λht∑
i=1

∑
k:k−i>

√
t/2λh

P (Bik) ≤ c1e−c2
√
t, (22)

where c1, c2 > 0 are constants that may depend on λa, λh and the last inequality
is due to (14). We next claim that there exists a constant α > 0 so that, for all
t large,

P (B̃) ≤ e−αt. (23)

Indeed, we have that

P (B̃) =
∑
i<k

∫ s

0

P (τi ∈ dθ)P (Bik, τk − τi > s+ t− θ)

≤
∑
i

∫ s

0

P (τi ∈ dθ)
∑
k:k>i

P (Bi,k)1/2P (τk − τi > s+ t− θ)1/2. (24)

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 23

By (14), there exists c3 > 0 so that

P (Bi,k) ≤ e−c3(k−i−1), (25)

while the tails of the Poisson distribution yield the existence of constants c, c′ > 0
so that

P (τk−τi > s+t−θ) = P (τk−i > s+t−θ) ≤
{

1, (k − i) > c(s+ t− θ)
e−c

′(s+t−θ), (k − i) ≤ c(s+ t− θ).
(26)

Combining (25) with (26) yields that there exists a constant α > 0 so that∑
k:k>i

P (Bi,k)1/2P (τk − τi > s+ t− θ)1/2 ≤ e−2α(t+s−θ). (27)

Substituting this bound in (24) and using that
∑
i P (τi ∈ dθ) = dθ gives

P (B̃) ≤
∑
i

∫ s

0

P (τi ∈ dθ)e−2α(t+s−θ)

≤
∫ s

0

e−2α(t+s−θ)dθ ≤ e−αt, (28)

for t large, proving (23).
Continuing with the proof of the lemma, we have:

q[s, s+ t] ≤ P (B) + P (B̃) + P (

√
t/3⋂
`=0

C`) = P (B) + P (B̃) + (P (C`))
√
t/3

≤ c1e−c2
√
t + e−αt + (P (C`))

√
t

3 (29)

where the equality is due to independence, and in the last inequality we used
(22) and (23). The lemma follows from (16).

Remark 1. Iterating the proof above (taking longer blocks and using the bound
of Lemma 6 to improve on P (C`) in (16) by replacing p with the bound from
(12)) shows that (12) can be improved to the statement that for any θ > 1 there
exist constants aθ, Aθ so that, for any s, t > 0,

q[s, s+ t] ≤ Aθ exp(−aθt1/θ). (30)

5.2 Nonzero network delay: ∆ > 0

We will now extend the analysis in the above subsection to the case of non-zero
delay.

In the case of zero network delay, the power of the adversary is in the
adversarial blocks that it can generate by winning lotteries. We show that if
β < 1/(1 + e), regardless of the adversarial strategy, there will be adversary-
proof convergence events happening in the system once in a while. When the

24 Bagaria et al.

network delay is non-zero, the adversary has the additional power to delay deliv-
ery of honest blocks to create split view among the honest nodes. In the context
of the security analysis of Nakamoto’s PoW protocol, the limit of this power
is quantified by the notion of uniquely successful round in [15] in the lock-step
synchronous round-by-round model, and extended to the notion of convergence
opportunity in [25] in the semi-synchronous model. (This notion is further used
in [27] to provide a simpler security proof for Nakamoto’s protocol.) They show
that during these convergence opportunities, the adversary cannot create split
view between honest nodes, because only one honest block is generated during
a sufficiently long time interval. We combine our notion of adversary-proof con-
vergence event with the notion of convergence opportunity to define a stronger
notion of adversary-proof convergence event for the non-zero delay case.

Random processes We consider the network model in §3 with bounded com-
munication delay, where all broadcast blocks are delivered by the adversary with
maximum delay ∆. With this network model, the evolution of the blockchain can
be modeled as a random process {(T (t), C(t), T (p)(t), C(p)(t) : t ≥ 0, 1 ≤ p ≤ n},
where n is the number of honest nodes, T (t) is a tree, T (p)(t) is an induced
sub-tree of T (t) in the view of the p-th honest node at time t, and C(p)(t) is the
longest chain in the p-th tree. Then let C(t) be the common prefix of all the local
honest chains C(p)(t) for 1 ≤ p ≤ n. The tree T (t) is interpreted as consisting
of all the blocks that are generated by both the adversary and the honest nodes
up until time t, including blocks that are kept in private by the adversary. The
chain C(p)(t) is interpreted as the longest chain in the local view of the p-th
honest node at time t. The process is described as follows.

1. T (0) = T (p)(0) = C(0) = C(p)(0), 1 ≤ p ≤ n is a single root block (the
genesis block).

2. T (t) evolves as follows: there are independent Poisson processes of rate λa at
each block of T (t) (we call them the adversary processes), plus an additional
independent Poisson process of rate λ(p)h (we call it the honest process) ar-
riving at the last block of the chain C(p)(t) (the tip of the local longest chain)
for each 1 ≤ p ≤ n, with

∑n
p=1 λ

(p)
h = λh. A new block is added to the tree

at a certain block when an arrival event occurs at that node. An arrival from
the honest process is called an honest block. An arrival from the adversary
process is called an adversarial block.

3. The sub-tree T (p)(t) for each 1 ≤ p ≤ n is updated in three possible ways
: 1) an additional honest block can be added to T (p)(t) by the adversary
if an arrival event of the honest process with the p-th honest node occurs;
2) a block (whether is honest or adversarial) must be added to C(p)(t) if it
appears in T (q) for some q 6= p at time t −∆; 3) the adversary can replace
T (p)(t−) by another sub-tree T (p)(t) from T (t) as long as T (p)(t−) is an
induced subgraph of the new tree T (p)(t). The adversary’s decision has to
be based on the current state of the process.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 25

4. C(p)(t) is updated as follows for each 1 ≤ p ≤ n: C(p)(t) is the longest chain
in the tree T (p)(t) starting from the root block at time t. If there are more
than one longest chain, tie breaking is in favor of the adversary.

5. C(t) is updated as follows: C(t) is the common prefix of all the local honest
chains C(p)(t) for 1 ≤ p ≤ n at time t.

The adversary can change where the honest nodes act by broadcasting an
equal or longer length chain using the blocks it has succeeded in proposing. Since
the adversary can change where the honest nodes can propose even with an equal
length new chain, that means the adversary is given the ability to choose where
the honest nodes propose when there are more than one longest public chain.
Also the adversary has the ability to have one message delivered to honest nodes
at different time (but all within ∆ time).

Adversary-proof convergence We first define several basic random variables
and random processes which are constituents of the processes T (·) and C(·). We
make use of the terminology in [27].

1. τi = generation time of the i-th honest block; τ0 = 0 is the mining time
of the genesis block, τi+1 − τi is exponentially distributed with mean 1/λh,
i.i.d. across all i’s. Suppose an honest block B is generated at time τj . If
τj − τj−1 > ∆, then we call B is a non-tailgater (otherwise, B is a tailgater).
If τj − τj−1 > ∆ and τj+1 − τj > ∆, then we call B is a loner. Note that
non-tailgaters have different depths and a loner is the only honest block at
its depth.

2. Hh(t) = number of non-tailgaters generated from time 0 to t.
3. L(p)(t) is the length of C(p)(t) for each 1 ≤ p ≤ n. L(p)(0) = 0. Note that

since every non-tailgater appears at different depth in the block tree, it
follows that for all t > s+∆,

L(p)(t)− L(p)(s) ≥ Hh(t−∆)−Hh(s). (31)

4. Ti = {Ti(s) : s ≥ 0} is the random tree process generated by the adversary
starting from the i-th honest block. Ti(0) consists of the i-th honest block
and Ti(s) consists of all adversarial blocks grown on the i-th honest block
from time τi to τi + s. Note that the Ti’s are i.i.d. copies of the adversarial
tree T a.

5. Di(s) is the depth of the adversarial tree Ti(s).

Let us define the events:

Êij = event that Di(t− τi) < Hh(t−∆)−Hh(τi) for all t > τj +∆, (32)

F̂j =
⋂

0≤i<j

Êij , (33)

26 Bagaria et al.

Uj = event that j-th honest block is a loner = {τj − τj−1 > ∆, τj+1 − τj > ∆},
(34)

and
Ûj = F̂j ∩ Uj . (35)

And we have the following lemma, which justifies calling the event Ûj
adversary-proof convergence event for the non-zero delay case. .

Lemma 7. If Ûj occurs, then the j-th honest block is contained in any future
chain C(t) (i.e. in all local chains C(p)(t), 1 ≤ p ≤ n), t > τj +∆.

Proof. We will argue by contradiction. Suppose Ûj occurs and let t∗ > τj + ∆
be the smallest t such that the j-th honest block is not contained in C(t). Let bh
be the last honest block on C(p)(t∗) (which must exist, because the genesis block
is by definition honest.) If bh is mined at some time t1 > τj +∆, then C(p)(t−1) is
the prefix of C(p)(t∗) before block bh, and does not contain the j-th honest block,
contradicting the minimality of t∗. So bh must be mined before time τj +∆. And
since the j-th honest block is a loner, we further know that bh must be mined
before time τj , hence bh is the i-th honest block for some i < j. The part of
C(p)(t∗) after block bh must lie entirely in the adversarial tree Ti(t∗ − τi) rooted
at bh. Hence, we have

Di(t
∗ − τi) < Hh(t∗ −∆)−Hh(τi) ≤ L(p)(t∗)− L(p)(τi), (36)

where the first inequality follows from the fact that F̂j holds, and the second
inequality follows from the longest chain policy (eqn. (31)). From this we obtain
that

L(p)(τi) +Di(t
∗ − τi) < L(p)(t∗) (37)

which is a contradiction since L(p)(t∗) ≤ L(p)(τi) +Di(t
∗ − τi).

Note that, Lemma 7 implies that if Ûj occurs, then the entire chain leading
to the j-th honest block from the genesis is stabilized after the j-th honest block
is seen by all the honest nodes.

Occurrence of adversary-proof convergence

Lemma 8. If λa < g/e · λh, i.e. β < g/(g + e) with g = e−λh∆, then there is a
p > 0 such that P (Ûj) ≥ p for all j. Also, with probability 1, the event Ûj occurs
for infinitely many j’s.

The proof of this result can be found in §E.2.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 27

Waiting time for adversary-proof convergence We have established the
fact that the event Ûj has P (Ûj) > p > 0 for all j. In analogy to the zero-delay
case, we would like to get a bound on the probability that in a time interval
[s, s+ t], there are no adversary-proof convergence events, i.e. a bound on:

q̃[s, s+ t] := P (
⋂

j:τj∈[s,s+t]

Û cj).

The following lemma is analogous to Lemma 6 in the zero-delay case. Its
proof is almost verbatim identical, and will not be repeated here.

Lemma 9. If λa < g/e ·λh, i.e. β < g/(g+ e), then there exist constants ā2, Ā2

so that for all s, t ≥ 0,

q̃[s, s+ t] ≤ Ā2 exp(−ā2
√
t). (38)

The improvement mentioned in Remark 1 applies here as well.

5.3 Persistence and Liveness

We will now use Lemma 9 to establish the liveness and persistence of the basic
longest chain PoS protocol.

In the absence of any adversary, each node will contribute to the final ledger
as many blocks as their proportion of the stake. In the presence of an adversary,
the chain quality property ensures that the contribution of the adversary is
bounded. When β < g/(g + e), we show that these properties hold with high
probability, as stated in the following theorem.

Our goal is to generate a transaction ledger that satisfies persistence and
liveness as defined in [15]. Together, persistence and liveness guarantees robust
transaction ledger; honest transactions will be adopted to the ledger and be
immutable.

Definition 2 (from [15]). A protocol Π maintains a robust public transaction
ledger if it organizes the ledger as a blockchain of transactions and it satisfies
the following two properties:

– (Persistence) Parameterized by τ ∈ R, if at a certain time a transaction tx
appears in a block which is mined more than τ time away from the mining
time of the tip of the main chain of an honest node (such transaction will be
called confirmed), then tx will be confirmed by all honest nodes in the same
position in the ledger.

– (Liveness) Parameterized by u ∈ R, if a transaction tx is received by all
honest nodes for more than time u, then all honest nodes will contain tx in
the same place in the ledger forever.

The main result is that common prefix, chain quality, and chain growth imply
that the transaction ledger satisfies persistence and liveness.

28 Bagaria et al.

Theorem 1. Distributed nodes running Nakamoto-PoS protocol generates a
transaction ledger satisfying persistence (parameterized by τ = σ) and liveness
(parameterized by u = σ) in Definition 2 with probability at least 1− e−Ω(

√
σ).

Proof. We first prove persistence and then liveness.

Lemma 10 (Persistence). The public transaction ledger maintained by
Nakamoto-PoS satisfies Persistence parameterized by τ = σ with probability at
least 1− e−Ω(

√
σ).

Proof. For a chain Ct with the last block generated at time t, let Cdσt be the chain
resulting from pruning a chain Ct up to σ, by removing the last blocks at the
end of the chain that were generated after time t− σ. Note that Cdσ is a prefix
of C, which we denote by Cdσ � C.

Let C1 be the main chain of an honest node P1 at time t1. Suppose a trans-
action tx is contained in Cdσ1 at round t1, i.e., it is confirmed by P1. Consider a
main chain C2 of an honest node P2 at some time t2 ≥ t1. The σ-common prefix
property ensures that after pruning a longest chain, it is a prefix of all future
longest chains in the local view of any honest node. Formally, it follows that
Cdσ1 � C2, which completes the proof.

We are left to show that the σ-common prefix defined below holds with
a probability at least 1 − e−Ω(

√
σ). This is a variation of a similar property

first introduced in [15] for PoW systems. Ours is closer to a local definition of
k-common prefix introduced in [3], which works for a system running for an
unbounded time.

Definition 3 (σ-common prefix). We say a protocol and a corresponding
confirmation rule have a σ-common prefix property at time t, if in the view
VIEWn,F

Π,A,Z(κ) of a honest node n at time t, n adopts a longest chain C, then
any longest chain C′ adopted by some honest node n′ at time t′ > t satisfies
Cdσ � C′.

Let Ct denote the longest chain adopted by an honest node with the last
node generated at time t. There are a number of honest nodes generated in the
interval [t−σ, t], each of which can be in Ct, Ct′ , or neither. We partition the set of
honest blocks generated in that interval with three sets:Ht , {Hj ∈ Ct : τj ∈ [t−
σ, t]},Ht′ , {Hj ∈ Ct′ : τj ∈ [t−σ, t]}, and Hrest , {Hj /∈ Ct∪Ct′ : τj ∈ [t−σ, t]},
depending on which chain they belong to.

Suppose Cdσt 6� Ct′ , and we will show that this event is unlikely. Under this
assumption, we claim that none of the honest blocks generated in the interval
[t − σ, t] are stable, i.e. for each honest block, there exists a time in the future
(since the generation of that block) in which the block does not belong to the
longest chain.

Precisely, we claim that Cdσt 6� Ct′ implies that F cj holds for all j such that
τj ∈ [t − σ, t]. This in turn implies that P (Cdσt 6� Ct′) ≤ P (∩j:τj∈[t−σ,t]F cj). By
Lemma 9, we know that the probability of this happening is low: e−Ω(

√
σ).

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 29

This follows from the following facts. (i) the honest blocks in Ct does not
make it to the longest chain at time t′: Hj /∈ Ct′ for all Hj ∈ Ht. This follows
from Cdσt 6� Ct′ . (ii) the honest blocks in Ct′ does not make it to the longest chain
Ct at time t: Hj /∈ Ct for all Hj ∈ Ht′ . This also follows from Cdσt 6� Ct′ . (iii) the
rest of the honest blocks did not make it to either of the above: Hj /∈ Ct ∪Ct′ for
all Hj ∈ Hrest.

We next prove liveness.

Lemma 11 (Liveness). The public transaction ledger maintained by
Nakamoto-PoS satisfies Livenesss parameterized by u = σ with probability at
least 1− e−Ω(

√
σ).

Proof. Assume a transaction tx is received by all honest nodes at time t, then
by Lemma 9, we know that with probability at least 1 − e−Ω(

√
σ), there exists

one honest block Bj mined at time τj with τj ∈ [t, t + u] and event Fj occurs,
i.e., the block Bj and its ancestor blocks will be contained in any future longest
chain. Therefore, tx must be contained in block Bj or one ancestor block of Bj
since tx is seen by all honest nodes at time t < τj . In either way, tx is stabilized
forever. Thus, the lemma follows.

5.4 Extending the analysis to general c

We can repeat the analysis in the previous section for the c-Nakamoto-PoS for
c > 1. Like for c = 1, the analysis basically boils down to the problem of analyzing
the race between the adversarial tree and the fictitious purely honest chain. In
§F, we confine our analysis to a study of that race. It turns out that under c-
correlation randomness, the adversarial tree is developed by another branching
random walking process, but with a slowing growth amplification factor φc, such
that φ1 = e and φ∞ = 1. So the security threshold is

βc =
e−λh∆

e−λh∆ + φc

and it goes from
e−λh∆

e−λh∆ + e

for c = 1 to
e−λh∆

e−λh∆ + 1

for c =∞. Under the c-correlation protocol, we have

φc = − cθ∗c
log(−θ∗c) + (c− 1) log(1− θ∗c)

,

30 Bagaria et al.

where θ∗c is the unique negative solution of Eq. (39)

− log(−θc)− (c− 1) log(1− θc) = −1 + (c− 1)
θc

1− θc
. (39)

We numerically compute the value of φc and β∗c with ∆ = 0 in the table
below.

c 1 2 3 4 5 6 7 8 9 10
φc e 2.22547 2.01030 1.88255 1.79545 1.73110 1.68103 1.64060 1.60705 1.57860
β∗c

1
1+e

0.31003 0.33219 0.34691 0.35772 0.36615 0.37299 0.37870 0.38358 0.38780

Table 3: Numerically computed growth rate φc and stake threshold β∗c with ∆ = 0.

In the deployment of the Ouroboros protocol in the Cardano project4, each
slot takes 20 seconds and each epoch is chosen to be 5 days [30], that is a
common randomness will be shared by 21600 blocks. In Fig. 2, we plot the
security threshold β∗c against c up to c = 21600 for our c-Nakamoto-PoS. It turns
out the security threshold of c-Nakamoto-PoS can approach 1/2 very closely
even when c is much less than 21600, which is the current randomness update
frequency in the Cardano project.

6 Security analysis of the dynamic stake protocol

One major advantage of the Nakamoto protocol in the proof of work setting is its
permissionless setting: anyone can join (leave) the system by simply contributing
(extricating) computing power for the mining process. Under the PoS setting the
stakes are used in lieu of the computing power. To support a protocol that is
close to a permissionless system, we need to handle the case when the stake is
dynamically varying. Unlike the case of compute power, the entry/removal of
stake has to be more carefully orchestrated: if a change in the stake takes effect
immediately after the transaction has been included in the blockchain, then this
gives an opportunity for the adversary to grind on the secret key of the header
(time, secret key, common source of randomness). Concretely, once an adversary
has generated a block, it can add a transaction that moves all its stake to a new
coin with a new pair of public and secret keys. The adversary can keep drawing
a new coin and simulating the next leader election, until it finds one that wins.
This is a serious concern as the adversary can potentially win all elections.

To prevent such a grinding on the coin, we use s-truncation introduced in
[2,14]. s-truncation has two components: using stakes from ancestor blocks and
a fork choice rule. The winning probability of a leader election uses the stake
computed at an ancestor block which is s blocks above the parent block that is
currently being mined on. However, this allows an adversary to launch a long
range attack, for any value of s <∞. To launch a long range attack, an adversary
4 https://www.cardano.org

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 31

grows a private block tree. Once it has grown for longer than s blocks, then it can
grind on the coin to win the election for the next block, and add the favorable
transaction to the first ancestor block. As all blocks in this private tree are
adversarial, the consistency of the transactions can be maintained by re-signing
all intermediate blocks. This allows the adversary to win all elections after s
private blocks, and eventually take over the honest block chain.

The s-truncation longest chain rule works as follows. When presented with
a chain that forks from current longest chain, a node compares the two chains
according to the following rule. Both chains are truncated up to s blocks after
the forking. Whichever truncated chain was created in a shorter time (and hence
denser) is chosen to be mined on. This ensures that honest block chains will
be chosen over privately grown adversarial chains with long range attacks. A
detailed description of the c-correlation, s-truncation, Nakamoto-PoS protocol
is in §4.

We extend Theorem 1 to show that the above s-truncation scheme is secure.

Theorem 2. Under the dynamic stake setting, distributed nodes running
Nakamoto-PoS protocol with a choice of s = Θ(σ) generates a transaction
ledger satisfying persistence and liveness in Definition 2 with probability at least
1− e−Ω(

√
σ).

Proof sketch. We prove it in three steps. First, we show that with static stake
setting, common prefix, chain growth, and chain quality properties still hold
for s-truncation protocol with s = Θ(σ). Second, we show that with dynamic
stake setting and s stake update rule, the adversary can mine a private chain
with consecutive s blocks that is denser than the public main chain only with a
negligible probability.

We show in §5 that the choice of c only determines how many fraction of
adversary the system can tolerate and not the security parameter κ. On the
other hand, the choice of s is critically related to the target security parameter
κ as we show in §6. By decoupling these two parameters c and s in the protocol,
we can achieve any level of predictability (with an appropriate choice of c), while
managing to satisfy any target security parameter κ (with an appropriate choice
of s).

7 Conclusion

We proposed a new family of PoS protocols and proved that our proposed PoS
protocols have low predictability while guaranteeing security against adversar-
ial nothing-at-stake attacks. We did not discuss the design of incentive systems
that encourage users to follow the honest protocol. We point out that there are
existing ideas that could be naturally adapted for our problem. For example,
one way to minimize NaS attacks is to require users to deposit stake that can
be slashed if the node has a provable deviation (for example, double-signing
blocks) [6, 8]. Another important idea is that fruitchain-type incentive mecha-
nisms [26] which protect against selfish mining in PoW can be ported to PoS

32 Bagaria et al.

protocols [19]. However, as pointed out in [7], the full problem of designing PoS
protocols that strongly (instead of weakly) disincentivze NaS and selfish-mining
attacks remains an important direction of future research. Finally, a detailed
mathematical modeling of bribing attacks that consider interaction between the
blockchain and external coordination mechanisms also remains open.

References

1. Aïdékon, E. Convergence in law of the minimum of a branching random walk.
The Annals of Probability 41, 3A (2013), 1362–1426.

2. Badertscher, C., Gaži, P., Kiayias, A., Russell, A., and Zikas, V.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availabil-
ity. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and Com-
munications Security (2018), ACM, pp. 913–930.

3. Bagaria, V., Kannan, S., Tse, D., Fanti, G., and Viswanath, P. Prism: De-
constructing the blockchain to approach physical limits. Conference on Computer
and Communications Security (also available on arXiv), 2019.

4. Baudet, M., Ching, A., Chursin, A., Danezis, G., Garillot, F., Li, Z.,
Malkhi, D., Naor, O., Perelman, D., and Sonnino, A. State machine repli-
cation in the libra blockchain, 2018.

5. Bellare, M., and Miner, S. K. A forward-secure digital signature scheme. In
Annual International Cryptology Conference (1999), Springer, pp. 431–448.

6. Bentov, I., Pass, R., and Shi, E. Snow white: Provably secure proofs of stake.
IACR Cryptology ePrint Archive 2016 (2016), 919.

7. Brown-Cohen, J., Narayanan, A., Psomas, A., and Weinberg, S. M. For-
mal barriers to longest-chain proof-of-stake protocols. In Proceedings of the 2019
ACM Conference on Economics and Computation (2019), ACM, pp. 459–473.

8. Buterin, V., and Griffith, V. Casper the friendly finality gadget. arXiv
preprint arXiv:1710.09437 (2017).

9. Chen, J., and Micali, S. Algorand. arXiv preprint arXiv:1607.01341 (2016).
10. David, B., Gaži, P., Kiayias, A., and Russell, A. Ouroboros praos: An

adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques
(2018), Springer, pp. 66–98.

11. Dodis, Y., and Yampolskiy, A. A verifiable random function with short proofs
and keys. In International Workshop on Public Key Cryptography (2005), Springer,
pp. 416–431.

12. Drmota, M. The height of increasing trees. Annals of Combinatorics 12, 4 (2009),
373–402.

13. Fan, L., Katz, J., and Zhou, H.-S. A large-scale proof-
of-stake blockchain in the open setting. Available online at
http://www.fractalblock.com/assets/iching_consensus_protocol.pdf.

14. Fan, L., and Zhou, H.-S. A scalable proof-of-stake blockchain in the open setting
(or, how to mimic nakamoto’s design via proof-of-stake), 2018. Cryptology ePrint
Archive, Report 2017/656, Version 20180425:201821.

15. Garay, J., Kiayias, A., and Leonardos, N. The bitcoin backbone protocol:
Analysis and applications. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (2015), Springer, pp. 281–310.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 33

16. Gilad, Y., Hemo, R., Micali, S., Vlachos, G., and Zeldovich, N. Algo-
rand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th
Symposium on Operating Systems Principles (2017), ACM, pp. 51–68.

17. Hu, Y., and Shi, Z. Minimal position and critical martingale convergence in
branching random walks, and directed polymers on disordered trees. The Annals
of Probability 37, 2 (2009), 742–789.

18. Itkis, G., and Reyzin, L. Forward-secure signatures with optimal signing
and verifying. In Annual International Cryptology Conference (2001), Springer,
pp. 332–354.

19. Kiayias, A., Russell, A., David, B., and Oliynykov, R. Ouroboros: A prov-
ably secure proof-of-stake blockchain protocol. In Annual International Cryptology
Conference (2017), Springer, pp. 357–388.

20. Kiffer, L., Rajaraman, R., et al. A better method to analyze blockchain
consistency. In Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security (2018), ACM, pp. 729–744.

21. Micali, S., Rabin, M., and Vadhan, S. Verifiable random functions. In 40th
Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039)
(1999), IEEE, pp. 120–130.

22. Micali, S., Rabin, M., and Vadhan, S. Verifiable random functions. In 40th an-
nual symposium on foundations of computer science (cat. No. 99CB37039) (1999),
IEEE, pp. 120–130.

23. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system.
24. Natoli, C., and Gramoli, V. The balance attack against proof-of-work

blockchains: The r3 testbed as an example. arXiv preprint arXiv:1612.09426
(2016).

25. Pass, R., Seeman, L., and Shelat, A. Analysis of the blockchain protocol in
asynchronous networks. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques (2017).

26. Pass, R., and Shi, E. Fruitchains: A fair blockchain. In Proceedings of the ACM
Symposium on Principles of Distributed Computing (2017), ACM.

27. Ren, L. Analysis of nakamoto consensus. Tech. rep., Cryptology ePrint Archive,
Report 2019/943.(2019). https://eprint. iacr. org . . . , 2019.

28. Shi, Z. Branching Random Walks, vol. 2151 of Lecture Notes in Mathematics.
Springer Verlag, New York NY, 2015.

29. Sompolinsky, Y., and Zohar, A. Secure high-rate transaction processing in
bitcoin. In International Conference on Financial Cryptography and Data Security
(2015), Springer, pp. 507–527.

30. Stütz, R., Gaži, P., Haslhofer, B., and Illum, J. Stake shift in major
cryptocurrencies: An empirical study. arXiv preprint arXiv:2001.04187 (2020).

31. Wang, X. e. a. Proof-of-stake longest chain protocol revisited. arXiv preprint
arXiv:1910.02218v2 (2018).

32. Yin, M., Malkhi, D., Reiter, M. K., Gueta, G. G., and Abraham, I.
Hotstuff: Bft consensus in the lens of blockchain. arXiv preprint arXiv:1803.05069
(2018).

34 Bagaria et al.

Appendix

A Attacks on greedy protocols of [13,14]

PoS protocols based directly on the Nakamoto protocol, have been proposed
recently (g-greedy Protocol [14] and D-distance-greedy Protocol [13]), in a series
of attempts to achieve a short predictability and a provable security. However, the
security analyses are subtle and we show more malignant attacks in this section
on the protocols of [13, 14]; thus more rigorous analysis is needed to study the
security of those protocols. Both (g-greedy Protocols [14] and D-distance-greedy
Protocols [13]) are extensions of Nakamoto-PoS discussed in 1, where honest
nodes are encouraged to mine on multiple blocks in a single slot as well.

A.1 g-greedy Protocol [14] (F -height-greedy Protocol [13])

g-greedy Protocol. In an attempt to increase the amount of adversarial stake
that can be tolerated by the basic protocol closer to 1/2, [14] proposes a family
of protocols called g-greedy, parameterized by a non-negative integer g, which
is called as F -height-greedy in [13]. Under the g-greedy protocol, the honest
nodes are prescribed to run multiple leader elections in an attempt to outgrow
the private NaS tree. In an honest node’s view, if the longest chain is at height
` blocks, then the node mines on any block that is higher than ` − g blocks
(illustrated by the blocks inside the dotted box in Fig. 4). When g = ∞, each
honest node works on every block, and when g = 0, the node works on all blocks
at the same height as the tip of the longest chain in the current view. Note that
0-greedy differs from the basic Nakamoto’s protocol above, which chooses one
block to mine on when there are multiple longest chains. However, the g-greedy
protocol also has prediction window W = 1.

Fig. 4: g-greedy protocol with g = 0, 1, 2

Private Attack on g-greedy Protocol. A notorious attack in longest chain
blockchain protocols is the private attack: the adversary privately mines a chain

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 35

that is longer than the longest chain in the honest view. Roughly speaking, by
the law of large numbers, adversary will fail with the private attack eventually
if the growth rate of the adversarial chain is strictly lower than the honest chain.
The security guarantee for g-greedy protocol in [14] is based on this argument.

Fig. 5: Private attack on g-greedy protocol with g = 2

g 0 1 2 3 4 5 6 7 8
Rg [14] 1 1.7071 2.1072 2.3428 2.4905 2.5883 2.6562 2.7051 2.7414

Rg this paper 1 1.6531 2.0447 2.2708 2.4084 2.4952 2.5472 2.5805 2.6048
βg =

Rg
e+Rg

[14] 0.2689 0.3858 0.4367 0.4629 0.4781 0.4876 0.4942 0.4988 0.5021

βg =
Rg

e+Rg
this paper 0.2689 0.3782 0.4293 0.4552 0.4698 0.4786 0.4838 0.4870 0.4893

Table 4: Expected growth rate of honest tree for g-greedy protocol under private adver-
sarial behavior. The largest adversarial stake that can be tolerated under the private
attack is denoted by βg. The claims of [14] are corrected and compared with our cal-
culations.

How about the expected growth rate Rg(1− β) of the honest tree under the
g-greedy protocol and private behavior by the adversary? It is clear that Rg
is monotonically increasing in g. The limiting largest expected growth rate is
achieved at g =∞, where the protocol is the same as the NaS attack. Thus the
expected growth rate Rg(1 − β) = (1 − β)e for g = ∞. One suspects that the
protocol for g = 0 is similar to simply growing only one of the longest chains. If
the mining rate is slow enough (mining is considered to occur in discrete rounds
which are spaced enough apart relative to the network broadcast propagation
delay; detailed model in §3), then the expected growth rate of the honest tree
(essentially a chain) is simply 1 − β. This is the expected growth rate of the
honest tree with g = 0.

36 Bagaria et al.

The expected growth rate for a general g is significantly involved. In Lemma
4.6 of [14], a heuristic argument is conducted to estimate the expected growth
rate for g = 2 to be R2(1 − β) = 2.1(1 − β). This heuristic argument can be
extended to other values of g (see §B.1) as summarized in Table 5. We note
that R8 = 2.7414, which is at odds with the observation that Rg increases
monotonically and R∞ = e. This shows that the heuristic argument in Lemma
4.6 of [14] is flawed. It is clear that the expected growth rate is related to the
solution to the following set of recursive differential equations: dx`(t)dt = x`−1(t)

for m− g ≤ ` ≤ m and dx`(t)
dt = 0 for 0 ≤ ` < m− g for some fixed m. Now Rg is

the largest value of mt such that xm(t) decreases exponentially in t. A closed form
solution to Rg is challenging; although a numerical solution is readily achieved
and tabulated in Table 4.

We can make the following conclusion from Table 4: the g-greedy protocol
of [14] is robust to the purely private NaS attack as long as the adversarial stake
is such that Rg(1 − β) > RNaSβ = eβ. As g grows large, this threshold on the
adversarial stake approaches 1

2 ; for instance, for g = 5, robustness to private NaS
attack is achieved as long as the adversarial stake is less than 47.86%. The caveat
is that this security statement is misleading since only one specific attack (the
private NaS attack) has been studied. A different attack strategy could prove
more malignant, as we show next.
Balance Attack on g-greedy Protocol. We describe an adversarial action
that is a combination of private and public behaviors below; we term this as a
balance attack for reasons that will become obvious shortly; this attack has some
commonalities with the balance attack on the GHOST protocol in [20]. The key
idea of the balance attack is to reveal some privately mined blocks at an appro-
priate time to balance the length of two longest chains each sharing a common
ancestor in the distant past.

The balance attack aims to have two longest chains of equally long length,
forking all the way from the genesis block. Fig. 6 depicts the balance attack in
action, as it progresses over time. At any time, the adversary will try to mine
on every block including public blocks and private blocks, while honest nodes
follow g-greedy protocol. Once the adversary succeeds in creating a new block,
it will first keep the block in private as shown in step 1 and step 3 of Fig. 6.
Whenever the adversary owns a private chain that has the same length as the
longest public chain, it will reveal the private chain so that there will be two
public chain with the same length as shown in step 2 and step 4 of Fig. 6. If
the adversary can keep up this kind of balance attack, then it has successfully
prevented any block from irreversible no matter how deep the block is buried
in the longest chain. To succeed with the balance attack, the adversary only
needs to mine a few blocks as most blocks in the two main chain may be mined
by honest nodes under g-greedy protocol. A formal pseudocode describing the
balance attack algorithm is available in §B.2.

The balance attack is hard to analyze theoretically, but its efficacy can be
evaluated via simulations. The simulation starts with a fork with length 1 (i.e.,
two independent public trees). The honest nodes follow g-greedy protocol with

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 37

Fig. 6: Snapshot of balance attack in progress on g-greedy protocol with g = 2. The
goal of the adversary is to balance the lengths of two chains each tracing the genesis
block as their ancestor, consequently creating a deep fork.

stake proportion 1 − β while adversary will always mine on every block in his
private view. Whenever the two public trees have different heights, the adversary
will immediately reveal the private blocks appending to the shorter public tree to
re-balance their heights if he can. We set f∆ = 0.1 in each round and simulated
various pairs of (g, β) for 2000 rounds. Note that the simulation can be made
more accurate with a finer discretization and a longer run-time. The depth of
the longest fork and its associated cumulative probability is plotted in Fig. 7
for fixed parameters g, β. We see that in each instance, the probability of a fork
of any length is larger for the balance attack than the private NaS attack; this
implies that the balance attack stochastically dominates the private attack. For
example, when g = 2, β = 0.38, the adversary is able to cause a fork from genesis,
which is longer than 100 blocks, with a probability around 20%, while the private
attack can only achieve it with probability less than 0.1%. In this instance, the
balance attack is significantly more powerful than the private attack.

Fig. 7: Comparison of CDF of the longest fork from genesis caused by private attack
and balance attack for various pairs of (g, β). The balance attack is a stochastically
dominating strategy for g ≥ 1.

We see that virulence of the balance attack increases, dramatically, with g. In
Fig. 8, the blue lines plot the largest value of β the balance attacking adversary
can have while allowing a fork of a large fixed length (50,100,200 blocks) with

38 Bagaria et al.

significantly high probability (25%, 25%, 10% respectively). The orange line
plots the corresponding largest value of β using the private NaS attack. The
experiments conclusively demonstrate the fatal nature of the balance attack as
g increases: the private NaS attack gets weaker while the balance attack gets
dramatically stronger. For g = 6, the balance attack is successful in creating a
very long fork (200 blocks deep) with a high probability (10%) using only 3% of
the stake.

Fig. 8: The threshold of β to break k-common-prefix property with a certain probability
actually declines as greedy parameter g increases.

A.2 D-distance-greedy Protocol [13]

D-distance-greedy Protocol. In an attempt to make the g-greedy protocol of
[14] robust against the balance attack, recent work [13] has updated the protocol
to a new variant called the D-distance-greedy protocol described as below. The
reason g-greedy protocol is so vulnerable against balance attack is that honest
nodes are mining on both sides of two, for example, chains that forked many
blocks deep. This makes it easy for the adversary to keep those chains balanced,
especially when g is large. The protocol in [13] is aimed to prevent honest nodes
from mining on both chains as follows.

We first define the distance between two chains in a tree. For two chains Ca
with length `a and Cb with length `b, let C be the common prefix of Ca and Cb with
length `, then the distance between Ca and Cb is defined as max(`a − `, `b − `).
D-distance-greedy protocol prescribes every honest node to first select one of
the longest chains (the tie breaking could be random) and attempt to extend a
set of chains in which all chains have distance no more than D from the longest
chain (illustrated by the blocks with green diamonds in Fig. 9). If there are two
chains that forked at more than D blocks deep from the tip of the chain, then
each honest node will mine on one side of those two chains. Again, the prediction
window remains the same: W = 1.

The intuition behind this protocol is the following:

1. Although we are limiting the mining strategy of honest nodes to small dis-
tance blocks, the growth of the longest chain is still high. Using a heuristic
argument, [13] claims that the expected growth rate AD(1−β) of the longest
chain following the D-distance greedy protocol, is (1−β)(D+1)

D+1
√

(D+1)!
. Note that as

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 39

Fig. 9: D-distance-greedy protocol with D = 0, 1, 2

D increases, the expected growth rate of the honest tree, according to this
calculation, approaches e(1− β). Based on this calculation, the anticipated
threshold of largest adversarial stake that can be tolerated under a private
attack, βD = AD

AD+e , approaches the ideal threshold of β = 0.5.
2. Second, limiting the honest strategy to only grow on nodes that are near the

tip of the longest chain might, at the outset, seems to render the balance
attack of §A.1 ineffective. Indeed, an argument is made in [13] to imply the
security of the D-distance-greedy protocol against all possible adversarial
strategies as long as the adversarial stake is less than βD.

In this section, we show that both these results of [13] are inaccurate. We do
this by focusing on the case of D = 1 first. Specifically:

1. For D = 1, we show that the precise expected growth of the longest chain of
the honest block tree is A1(1−β) = 1−β

e−2 ≈ 1.3922(1−β) and not
√

2(1−β).
This implies that, even if the adversary is controlling a smaller fraction of
stake, say β = 0.339, than the threshold βD=1 = 0.3422 claimed in [13], the
simple private attack can succeed with probability close to one. A formal
statement and proof is in §B.3; a precise calculation of the growth rate for
general D appears to be a challenging mathematical problem.

2. More critically, we show that a balance attack similar to the one from §A.1
can still be effective on the D-distance-greedy protocol – and the efficacy is
primarily achieved by slowing down the growth rate of the honest strategy.
The D-distance-greedy protocol is not secure against balance attack, even
if the adversary controls less than βD = AD

AD+e fraction of the stake, with
the correct AD we compute in §B.3. The actual security threshold on β is
strictly smaller; the private attack considered in [13] is strictly weaker than a
standard adversary studied in the literature which can perform the balance
attack. This is described in detail next.

For general D larger than one, a balance attack can successfully slow down
the growth rate of honest nodes, but a precise computation of the slowed down
growth rate is a challenging problem. We discuss security implications for largeD

40 Bagaria et al.

at the end of this section. [13] expects that the security of the protocol increases
as D increases, eventually achieving the ideal threshold of β = 0.5. Contrarily,
we find that for a large enough D, the D-distance-greedy protocol becomes
insecure; none of the blocks can be confirmed, regardless of how deep the block
is in the current block chain. This is also true for the g-greedy protocol with
a large enough g. This follows from the fact that when every node is mining
on every block, the entire block tree becomes unstable: the prefix of the longest
chain keeps changing indefinitely. Hence, even if the conjectured growth rate of
AD = (D+1)

D+1
√

(D+1)!
were true for large D, the desired threshold of β = 0.5 cannot

be achieved.
Balance Attack on D-distance-greedy Protocol. We consider the same
balance attack, now on 1-distance-greedy protocol. Here we assume that, when
two chains with equal length are broadcast in the network, honest nodes will split
into two groups with equal stake proportion, where each group picks one chain as
the longest chain and mines on the corresponding tree under 1-distance-greedy
protocol. This balance attack is described formally in §B.5.

Perhaps surprisingly, this balance attack can slow down the growth rate of the
honest block tree: we show the growth rate of the longest chain to be Ã1(1−β) =
4(1−β)
3e2−19 ≈ 1.26(1 − β) < A1(1 − β). A formal statement and proof of this result
is in §B.4. We note that this result is against the grain of the Nakamoto longest
chain protocol, where no adversary strategy can slow down the growth rate of the
block tree, even though the honest nodes can be potentially split into working
on two different chains of equally long length. Thus when the proportion of
adversarial stake β falls in the interval (Ã1

Ã1+e
, A1

A1+e
), the adversarial private tree

will be ahead of the public longest chain, and the balance attack in conjunction
with the private attack is fatal (i.e., any confirmed block can be reversed no
matter how deep the block is buried in the longest chain).

We illustrate the high level idea of the slow-down effect of 1-distance-greedy
protocol with Fig. 10. The scenario at the top of Fig. 10 is a pure honest tree
with one block at height `− 1 and two blocks at height `, and honest nodes will
mine on all these three blocks with rate 1− β; while the scenario at the bottom
is two trees balanced by the adversary, where child-blocks of every block are
generated as a Poisson point process with rate 0.5(1−β) since honest nodes are
split. Note that the number of blocks at height ` and ` + 1 increases with the
same rates in these two scenarios (1 − β) and 2(1 − β) respectively). However,
when the number of blocks at height ` increases by one in both scenarios, the
growth rate of blocks at height ` + 1 becomes 3(1 − β) in the top scenario but
only 2.5(1− β) in the bottom. Since only half of honest nodes will benefit from,
or mine on the new block due to splitting, the growth rate of the public longest
chain is slowed down. Formal analysis of this slow-down effect will be provided
in §B.4.

We also use simulation to verify the analysis above. The simulation starts
with a fork with length 2 (i.e., two independent public trees). The honest nodes
follow 1-distance-greedy protocol with stake proportion 1 − β while adversary
will always mine on every block in his private view. Whenever the two public

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 41

Fig. 10: The slow-down effect of 1-distance-greedy protocol

trees have different heights, the adversary will immediately reveal a private chain
appending to the shorter public tree to re-balance their heights if he can. For
simplicity, when two chains with equal length are revealed in the public view,
honest nodes will split into two groups with equal stake proportion. We set
f∆ = 0.1 in each round and simulated the case β = 0.32 and β = 0.33 for 10000
rounds and 20000 rounds respectively. Note that the simulation can be made
more accurate with a finer discretization and a longer run-time. The depth of
the longest fork and its associated cumulative probability is plotted in Fig. 11 for
fixed parameters β = 0.32 and β = 0.33. One can see that the success probability
(1 minus the probability in the plots) of private attack will converge to 0 as
for longer fork, while the success probability of balance attack will saturate to
some constant, which indicates that, using the balance attack, the adversary can
succeed in creating a fork of any length with some non-negligible probability. This
simulation results immediately verify the slow-down effect of 1-distance-greedy.
When the growth rate of the public longest chain is slowed down due to splitting
for some time, the adversarial private tree will be ahead of the public longest
chain, and the balance attack can continue to succeed easily in the future and
create forks with any length.

Fig. 11: Comparison of CDF of the longest fork from genesis caused by private attack
and balance attack for various β. Due to the slow-down effect, the success probability
of balance attack saturates to some constant number.

42 Bagaria et al.

For generalD-distance-greedy, the growth rate of the honest chain can also be
slowed down from AD(1−β) by splitting the honest nodes. However, this balance
attack of keeping two chains of balanced lengths is a sub-optimal strategy (for
the adversary). The adversary can maintain multiple balanced chains, splitting
honest nodes as much as possible. Under such an attack, we conjecture that the
growth rate of the public longest chain can be slowed down all the way to 1−β,
eliminating amplification entirely. However, how large β needs to be to make this
attack successful remains an open question, and we defer it as a future research
direction.

In order to fix the slow-down effect for 1-distance greedy protocol, we in-
troduce the following refined tie breaking rule. Recall that 1-distance greedy
protocol prescribes an honest node to mine on one of the longest chains (chosen
randomly when there are multiple), and also simultaneously mine on its parent
block and all its sibling blocks.

Definition 4 (no-slow-down tie breaking rule for 1-distance greedy
protocol). When there are multiple longest chains with equal lengths, mine on
one node that has the largest number of sibling blocks, and simultaneously mine
on its parent block and all its sibling blocks. Further ties can be broken arbitrarily.

For example, let h denote the height of the longest chain. If there are two
nodes at height h − 1, one with two children blocks and another with three
children blocks, then honest nodes will mine on the three sibling blocks at height
h and its parent. If there are three nodes at height h− 1, one with two children
blocks and the rest with three children blocks each, then each honest node will
mine on one set of three sibling blocks and its parent (chosen arbitrarily). If this
finer tie breaking rule is adopted, then we can prove the following “no-slow-down
lemma” for 1-distance greedy protocol.

Lemma 12 (no-slow-down lemma for 1-distance greedy). Under the syn-
chronous network setting with bounded message delay from [13], an adversary
cannot slow down the honest chain growth. That is, no matter what the adver-
sary does, the honest nodes will grow a chain that is at least as long as if the
adversary does not generate any blocks.

Proof. By the analysis in §B.3, for 1-distance greedy protocol, the growth rate of
the longest chain in the honest tree depends only on the number of sibling blocks
on the tip, then the adversary cannot slow down the honest chain under this tie
breaking rule since honest nodes are always choosing the longest chain with
the largest potential growth rate. To be more specific, whenever the adversary
publishes a block B and some honest nodes start to mine on B under this no
slow-down tie breaking rule, which means that either B is on a deeper level or
the number of sibling blocks of B is no less than the number of sibling blocks of
the main chain which is chosen before B is revealed, in both case the growth of
the honest tree will not be slowed down.

Thus the chain growth property for 1-distance greedy protocol can be guar-
anteed under the tie breaking rule with the no slow-down lemma proved above.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 43

This is not true for the random tie breaking rule, as we shows with balance
attack in §B.4. Beyond the no-slow-down lemma, a rigorous analysis of common
prefix property for 1-distance greedy protocol still remains a challenging research
problem.

When there are multiple longest chains to be mined on, no-slow-down lemma
holds as long as the honest nodes can choose the one that will ensure fastest
expected growth. However, it is not straightforward how to selecting the fastest
growing chain under D-distance-greedy, especially for large D. For large D, it
becomes computationally intractable to break ties in order to eliminate the slow-
down effect completely.

B Notes and Proofs for §A

B.1 Rg calculation according to [14]

We recall that Rg(1 − β) is the expected growth rate of the longest chain of
the tree grown by honest nodes (adversaries are acting purely privately) using
the g-greedy protocol. We also recall that Rg is increasing monotonically in g
and that R∞ = e, where e is the base of the natural logarithm. In [14], the
authors claim that R2 = 2.1 by assuming that all chains grow with at the same
steady rate as the longest chain and then investigating the average case. One
can generalize their methodology for arbitrary g as follows: suppose the length
of the longest chain at round r is `, let xi with 0 ≤ i ≤ g be the number of chains
with length `− i. For simplicity, x0 is set to be 1. Then using the arguments in
Lemma 4.6 in [14], we obtain the following g+ 1 equations with g+ 1 unknowns
{xi : 1 ≤ i ≤ g} and Rg.

x0+x1

2 = Rgx0
xi+xi+1

2 = Rg(xi − xi−1) for i ∈ {1, 2, · · · , g − 1}
xg = Rg(xg − xg−1)

By solving these equations numerically, we obtain the value of Rg as shown
in Table 5. It turns out that Rg > e for g ≥ 8 which is in contradiction to the
fact that Rg is monotonically increasing and the limiting value is R∞ = e. This
shows that the method in [14] to estimate the growth rate of the longest chain
is flawed.

g 0 1 2 3 4 5 6 7 8 9 10 ∞
Rg 1 1.7071 2.1072 2.3428 2.4905 2.5883 2.6562 2.7051 2.7414 2.7690 2.7906 e = 2.7183

Table 5: Chain growth rate for g-greedy protocol using the method of [14]. There is an
inconsistency in the calculation for g ≥ 8.

44 Bagaria et al.

B.2 Pseudo Code for the Balance Attack on g-greedy Protocol

In the main text we have described the balance attack informally along with
accompanying examples depicted in Fig. 6. Here we provide a formal pseudocode
describing the balance attack algorithm for completeness.

Balance attack (g)

1: procedure Initialize()
2: PrivateTree1← genesis
3: PrivateTree2← genesis
4: PublicTree1← genesis
5: PublicTree2← genesis
6: procedure Attack()
7: for r = 1 : rmax do
8: HonestMining(g,PublicTree1,PublicTree2) . honest nodes work on

blocks in the public view under g-greedy protocol
9: AdversaryMining(PrivateTree1,PrivateTree2) . adversary works

privately on all blocks in the private view
10: if height(PublicTree1) == height(PublicTree2) then
11: adversary reveals nothing
12: else if height(PublicTree1) > height(PublicTree2) then
13: PublicTree2(1:height(PublicTree1)) ← Private-

Tree2(1:height(PublicTree1))
14: else if height(PublicTree1) < height(PublicTree2) then
15: PublicTree1(1:height(PublicTree2)) ← Private-

Tree1(1:height(PublicTree2))
16: height(r) ← max{height(PublicTree1),height(PublicTree2)}
17: diff(r) ← height(PublicTree1) − height(PublicTree2)
18: return height(last(diff == 0)) . return the length of the longest fork

from genesis

B.3 Growth rate of 1-distance-greedy Protocol

In this section we calculate the expected growth rate of honest tree under 1-
distance-greedy protocol with a continuous time Markov chain.

The honest nodes grow a tree starting with the genesis block as root at time
t = 0. At any time t, the honest nodes independently mines on a set of blocks
according to 1-distance-greedy protocol. From the point of view of a fixed block,
its child-blocks are generated as a Poisson point process with rate 1− β i.e., the
time interval between the child-blocks is an exponential random variable with
rate 1− β.

LetW (t) be the number of blocks on the tip of the tree. For very small values
of h, we have

P
(
W (t+ h) = k + 1 |W (t) = k

)
= (1− β)h+ o(h)

P
(
W (t+ h) = 1 |W (t) = k

)
= k(1− β)h+ o(h)

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 45

It follows that the infinitesimal generator of W (t) is

A = (1− β)

−1 1 0 0 · · ·
2 −3 1 0 · · ·
3 0 − 4 1 · · ·
...

...
...

...
. . .

let π = (π1, π2, · · ·) be the stationary distribution, then it satisfies πA = 0. By
solving the equations, we have π1 = 1

2(e−2) and πn = 2π1

(n+1)! for n ≥ 1. Then the
expected number of blocks on the tip of the honest tree can be computed as

E[W (t)] =

∞∑
n=1

nπn = 2π1

∞∑
n=1

n

(n+ 1)!
= 2π1

∞∑
n=1

(1

n!
− 1

(n+ 1)!

)
= 2π1 =

1

e− 2
.

Let T be the time for the height of the honest tree to grow by one, then we
have

P(T ∈ (t, t+ dt) |W (t) = k, T ≥ t) = k(1− β)dt

=⇒P(T ∈ (t, t+ dt) | T ≥ t) =

∞∑
k=1

k(1− β)dtP(W (t) = k) = E[W (t)](1− β)dt

=⇒P(T ∈ (t, t+ dt))

P(T ≥ t)
= E[W (t)](1− β)dt. (40)

Let fT (t) be the probability density function of random variable T , FT (t) be
the cumulative distribution function of T , and F cT (t) = 1−FT (t), then we know
fT (t) = − ˙F cT (t). Equation (40) can be represented as

˙F cT (t)

F cT (t)
= −E[W (t)](1− β)dt,

with F cT (0) = 1, and the solution of this differential equation is F cT (t) =
eE[W (t)](1−β), then we have

E[T] =

∫ ∞
0

F cT (t)dt =
1

E[W (t)](1− β)
.

Therefore we can conclude that the growth rate of the honest tree A1(1− β) =
1/E[T] = E[W (t)](1− β) = 1−β

e−2 ≈ 1.39(1− β).

B.4 Growth rate of 1-distance-greedy Protocol under Balance
Attack

In this section we calculate the expected growth rate of honest tree in 1-distance-
greedy protocol under the balance attack in §A.2 (see pseudocode in §B.5).

We start with two chains of equal length and the distance between them is
greater than 1. In this situation, honest nodes will split into two groups with

46 Bagaria et al.

equal stake proportion to mine on different chains under 1-distance-greedy pro-
tocol. We first consider the steady state behavior where the adversary has “suf-
ficient" number of private chains under each public chain, that is, whenever the
length of one public chain grows by one, the adversary can immediately reveal
one block for the other chain to re-balance these two chains and keep the honest
nodes split. We analyze the transient stage, i.e., getting to steady state from
genesis after the steady state analysis.

Let U(t) and V (t) be the number of blocks on the tip of the two trees. For
very small values of h, we have

P
(
(U(t+ h), V (t+ h)) = (u+ 1, v) | (U(t), V (t)) = (u, v)

)
= 0.5(1− β)h+ o(h)

P
(
(U(t+ h), V (t+ h)) = (u, v + 1) | (U(t), V (t)) = (u, v)

)
= 0.5(1− β)h+ o(h)

P
(
(U(t+ h), V (t+ h)) = (1, 1) | (U(t), V (t)) = (u, v)

)
= 0.5(u+ v)(1− β)h+ o(h)

Let Z(t) = U(t) + V (t), then we have

P
(
Z(t+ h) = k + 1 | Z(t) = k

)
= (1− β)h+ o(h)

P
(
Z(t+ h) = 2 | Z(t) = k

)
= 0.5k(1− β)h+ o(h)

It follows that the infinitesimal generator of Z(t) is

A = (1− β)

−1 1 0 0 · · ·
1.5 −2.5 1 0 · · ·
2 0 − 3 1 · · ·
...

...
...

...
. . .

let π = (π2, π3, · · ·) be the stationary distribution, then it satisfies πA = 0. By
solving the equations, we have π2 = 2

3e2−19 and πn = 3π12
n+1

(n+2)! for n ≥ 1. Then
the expected number of blocks on the tip of the honest tree can be computed as

E[Z(t)] =

∞∑
n=2

nπn = 3π2

∞∑
n=2

2n+1n

(n+ 2)!
= 3π2

∞∑
n=2

2n+1(n+ 2− 2)

(n+ 2)!

= 3π2

∞∑
n=2

(2n+1

(n+ 1)!
− 2n+2

(n+ 2)!

)
= 4π2.

Let T be the time for the height of the honest tree to grow by one. Then,
similar to the analysis in §B.3, we have that E[T] = 2/(E[Z(t)](1 − β)) Thus
the growth rate of the honest tree Ã1(1 − β) = 1/E[T] = E[Z(t)](1 − β)/2 =

4
e2−19 (1− β) ≈ 1.26(1− β) < A1(1− β).

This implies that the growth rate of the public longest chain will be slowed
down due to the balance attack. Therefore, when the adversary with β smaller
but close to A1/(A1 +e) succeeds in balancing the two chains for some time, the
private chains will grow faster than the public chain, which gives the adversary
a lot of future blocks in the “bank” to continue the balance attack.

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 47

B.5 Pseudo Code for the Balance Attack on 1-distance-greedy
Protocol

Here we provide a formal pseudocode describing the balance attack algorithm
on 1-distance-greedy protocol for completeness.

Balance attack (D = 1, β)

1: procedure Initialize()
2: PrivateTree1← genesis
3: PrivateTree2← genesis
4: PublicTree1← genesis
5: PublicTree2← genesis
6: procedure Attack()
7: for r = 1 : rmax do
8: if height(PublicTree1) == height(PublicTree2) then
9: HonestMining(Poisson_rate = 0.5(1− β),D = 1,PublicTree1)

10: HonestMining(Poisson_rate = 0.5(1− β),D = 1,PublicTree2)
11: else if height(PublicTree1) > height(PublicTree2) then
12: HonestMining(Poisson_rate = 1− β, D = 1,PublicTree1)
13: else if height(PublicTree1) < height(PublicTree2) then
14: HonestMining(Poisson_rate = 1− β, D = 1,PublicTree2)

. honest nodes work on blocks in the public view under
D-distance-greedy protocol

15: AdversaryMining(Poisson_rate = β,PrivateTree1,PrivateTree2) .
adversary works privately on all blocks in the private view

16: if height(PublicTree1) == height(PublicTree2) then
17: adversary reveals nothing
18: else if height(PublicTree1) > height(PublicTree2) then
19: PublicTree2(height(PublicTree2)+1:min(height(PrivateTree2),height(PublicTree1))
← 1 . adversary reveals a chain from PrivateTree2 to match the height of
the public trees if he can

20: else if height(PublicTree1) < height(PublicTree2) then
21: PublicTree1(height(PublicTree1)+1:min(height(PrivateTree1),height(PublicTree2))
← 1 . adversary reveals a chain from PrivateTree1 to match the height of
the public trees if he can

22: height(r) ← max{height(PublicTree1),height(PublicTree2)}
23: diff(r) ← height(PublicTree1) − height(PublicTree2)
24: return height(last(diff == 0)) . return the length of the longest fork

from genesis

F

C Verifiable Random Functions

Definition 5 (from [11]). A function family F(·)(·) : {0, 1}a(κ) → {0, 1}b(κ) is
a family of VRFs is there exists a probabilistic polynomial-time algorithm Gen
and deterministic algorithms VRFprove and VRFverify such that Gen(1κ)

48 Bagaria et al.

outputs a pair of keys (pk, sk); VRFprove(x, sk) computes (Fsk(x), πsk(x)),
where πsk(x) is the proof of correctness; and VRFverify(x, y, π, pk) verifies
that y = Fsk(x) using the proof π. Formally, we require

1. Uniqueness: no values (pk, x, y1, y2, π1, π2) can satisfy
VRFverify(x, y1, π1, pk) =VRFverify(x, y2, π2, pk) when y1 6= y2.

2. Provability: if (y, π) =VRFprove(x, sk), then VRFverify(x, y, π, sk) =
1.

3. Pseudorandomness: for any probabilistic polynomial-time algorithm A =
(A1, A2), who does not query its oracle on x,

Pr

z = z′

∣∣∣∣∣∣∣∣∣∣∣∣

(pk, sk)← Gen(1κ);

(x, st)← A
VRFprove(·)
1 (pk);

y0 = Fsk(x);
y1 ← {0, 1}b(k);
z ← {0, 1};
z′ ← A

VRFprove(·)
2 (yz, st)

 ≤
1

2
+ negl(κ)

This ensures that the output of a VRF is computationally indistinguishable
from a random number even if the public key pk and the function VRFprove
is revealed.

D Prediction inspired bribing attacks

Proof-of-work (PoW) protocols such as Nakamoto’s protocol for Bitcoin achieve
high security while maintaining a high unpredictability as to which miners can
propose future blocks. A very attractive feature of this PoW protocol is that
nodes that mine a valid block have no further ability to update the block after
they have solved the mining puzzle, since the nonce seals the block making it
tamper-proof. Thus no node knows whether they have the power to propose the
block till they solve the puzzle, and once they solve the puzzle, they have no
future rights to alter the content.

This causality is reversed in proof-of-stake (PoS) protocols: usually, the node
that is eligible to propose a block knows a priori of its eligibility before proposing
a block. This makes PoS protocols vulnerable to a new class of serious attacks
not found in the PoW setting. We will show that a set of miners controlling
an infinitesimal fraction of the stake can potentially completely undermine the
security of the protocol. We demonstrate that the longer the prediction win-
dow, the more serious the attack space is. This raises an important questions
as to whether it is possible to design a secure proof-of-stake protocol which has
minimal prediction window.

We point out that an existing work [7] has already raised this issue that PoS
protocols are forced make a tradeoff between predictability and NaS attacks.
While that work mainly concerned itself with incentive attacks, our concern
here is adversarial attacks that compromise consensus. We point out that even in
the adversarial setting, all provably secure PoS protocols have a long prediction

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 49

window; the main contribution of this paper is to design such a protocol and
show its security up to 50% of adversarial stake.

D.1 Adaptive Adversaries and the VRF Attack

Fig. 12: Structure of bribing attack

A popular model that has been proposed to capture the effect of future
prediction in the PoS setting is the so-called adaptive adversary model [10, 16].
In the adaptive adversary model, a node remains honest unless corrupted by an
adversary (who can change who they are corrupting based on the public state).
The adversary has a bound on how many nodes it can corrupt at any given time.
To defend against an adaptive adversary model, many protocols have moved
from global predictability of future block proposers (i.e., everyone knows who
the future block leaders are) [19] to local predictability (i.e., each miner knows
when in the future they will propose a block) [10,16]. The local predictability is
achieved using a Verifiable Random Function (VRF) [22] based leader-election.

However, the adaptive adversary model assumes that miners do not have
any independent agency but rather only get corrupted based on an adversary’s
instructions. An adversary can easily circumvent this assumption by establishing
a website where it can offer a bribe to anyone who posts their credentials for
proposing blocks in an upcoming epoch of time. Thus even when the node’s
future proposer status is not public knowledge, this bribing website can solicit
such information and help launch serious attacks (see Fig. 12).

50 Bagaria et al.

D.2 Longest Chain protocols

We first consider longest-chain PoS protocols, in order to demonstrate our pre-
diction attacks. We begin with a definition of prediction window of a protocol.

Definition 6 (W -predictable). Given a PoS protocol ΠPoS, let C be a valid
blockchain ending with block B with a time stamp t. We say a block B is w(B)-
predictable, if there exists a time t1 > t and a block B1 with a time stamp t1 such
that (i) B1 can be mined by miner (using its private state and the common public
state) at time t; and (ii) B1 can be appended to C′ to form a valid blockchain
for any valid chain C′ that extends C by appending w − 1 valid blocks with time
stamps within the interval (t, t1). By taking the maximum over the prediction
parameter over all blocks in ΠPoS, i.e., let W = maxB w(B), we say ΠPoS is W -
predictable. W is the size of the prediction window measured in units of number
of blocks.

We note that our definition is similar to the definition of W -locally pre-
dictable protocols in [7]. We note furthermore that longest chain protocols also
have a κ-deep confirmation policy, where a block embedded deep enough is
deemed to be confirmed.

D.3 Prediction Attack on W -predictable protocols

Let us consider a W -predictable protocol, where the prediction window W is
longer than the confirmation window κ. We note that the prediction window of
many existing protocols are quite large, as demonstrated in Table 1 and therefore
this is a reasonable assumption. We will consider the alternative case (W << κ
in the upcoming subsection).

Consider block B that has been mined at time t (assume that B is W -
predictable, since such a block exists by definition). The adversary launches
a prediction attack by launching a website where it announces a reward for min-
ers which possess a future block proposal slot. Some of the leaders respond to
this call (these are shown with a red outer circle in Fig. 13). We note that while
the adversary requires κ+ 1 leaders out of 2κ+ 1 slots to respond to the bribe,
the total stake represented by these bribed leaders can be a very tiny fraction
of the total stake. The adversary bribes these leaders to sign a forked version
of the blockchain that it hoards till the block s is confirmed by a κ-deep honest
chain. After that point, the adversary releases the hoarded blockchain to all the
users thus switching the longest chain and confirming a block s′ (which contains
a double spend) instead of s. We note that this attack is indistinguishable from
network delay since none of the bribed leaders sign multiple blocks with a single
leadership certificate - thus nodes that participate in the bribing attack have
plausible deniability.

Bribing can enlarge prediction window We note that the previous attack
applies whenever the prediction windowW is larger than the confirmation depth

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 51

Fig. 13: Prediction attack on Ouroboros Praos.

κ, this attack can be launched. However, here we will briefly note that even
when W is smaller than κ, the protocols still have a prediction problem. This is
because in longest-chain PoS protocols such as Ouroboros, Praos, Snow White,
the randomness is updated every epoch and a key assumption for the updated
randomness to be unbiased is that a majority of the previous leaders were honest.
However, by bribing the previous leaders, the adversary can bias the randomness
(for example, by choosing a subset of proposers), thus leading itself to more
favorable leadership slots in the upcoming epoch (and effectively enlarging the
prediction window). These protocols offer no protection against these bribed
randomness grinding attacks and hence their security parameter is limited to be
of the same order as the epoch size. We note that while our proposed protocol has
a similar structure as Ouroboros, our analysis proves security against adversarial
randomness grinding (the so-called NaS attack).

D.4 Prediction Attack on BFT-based PoS protocols

While we have focused on longest chain PoS protocols in the previous section,
here we consider the other large family of PoS protocols that are based on Byzan-
tine Fault Tolerant consensus (BFT). Some PoS-based BFT protocols work with
the same committee for many time-slots thus giving raise to prediction based
attacks. Furthermore, in many BFT protocols, a single leader proposes blocks till
evicted for wrong-doing [32], thus making the prediction problem worse. Among
BFT-based PoS protocols, the one with the least prediction window is Algo-

52 Bagaria et al.

Fig. 14: Randomness grinding enlarges prediction ability.

rand [9, 16]. We will demonstrate a fatal prediction attack on Algorand (other
BFT protocols which are even more predictable are naturally attacked as well).

Fig. 15: Algorand Bribing Attack

In Algorand, at each round, a set of leaders and many sets of committees
are elected using VRF from the previous finalized block. The leaders and com-
mittee members can construct their membership certificates from the previous
finalized block’s randomness, and others do not know their identities till they
reveal themselves. The BFT consensus process proceeds in steps and each step
is run by a different committee - a block is considered finalized if it is voted on
by a 2/3-majority of committee members at any step.

This feature is used to prove that Algorand is secure against adaptive ad-
versaries. However, we show that Algorand is not immune to the bribing-based
prediction attack (similar to the one for longest-chain protocols). Since the pro-

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 53

tocol does not use a sequence of blocks for confirmation, the prediction window
defined for longest-chain protocols is not the appropriate measure for prediction-
attacks in this protocol. Rather, the appropriate measure is what fraction of the
committee participants are locally known when a block is proposed. For Algo-
rand, all of the committee participants are known to themselves.

Suppose in a given round, there are two leaders blocks B and B′ (the latter
block may contain a double-spend relative to B). The adversary solicits using a
website the committee members to post their certificates. If the adversary is able
to obtain a 2/3-quorum in any step, then the adversary can use that quorum to
sign a different certificate than the one the honest nodes signed. In particular,
the adversary waits for a honest quorum to sign a certificate for B in order to
confirm the transaction and then signs a bribed quorum from a different step to
certify B′. This enables the adversary to reverse a confirmation. We note that
none of the bribed miners have to double sign a block since they would not have
been elected in other steps of the quorum.

We note that establishing a stalling-attack is even easier in this model - the
adversary needs a 1/3-fraction of committee members in a step to remain silent
in order to stall the progress of Algorand. Given that miners are randomly sam-
pled, this quorum may hold a very small fraction of stake (which the adversary
may compensate for using its bribe). This stalling attack can be used to launch
extortion attacks demanding a large amount of money to un-stall the network.

D.5 Summary of Prediction Attacks

We have demonstrated that both longest-chain and BFT based protocols are
highly vulnerable to prediction-based security attacks (compromising the safety
and liveness of the system). This motivates the design of a new PoS protocol
that can only be predicted with a look ahead window, much shorter than the
confirmation window.

E Proofs for §5

E.1 Proof of Lemma 5

In this proof, we renormalize time such that λh = 1, and we set λa = λ to
simplify notations.

The random processes of interest start from time 0. To look at the system
in stationarity, let us extend them to −∞ < t < ∞. More specifically, define
τ−1, τ−2, . . . such that together with τ0, τ1, . . . we have a double-sided infinite
Poisson process of rate 1. Also, for each i < 0, we define an independent copy of
a random adversarial tree Ti with the same distribution as T0.

These extensions allow us to extend the definition of Eij to all i, j, −∞ <
i < j <∞, and define Ej to be:

Ej =
⋂
i<j

Eij .

54 Bagaria et al.

Note that Ej ⊂ Fj , so to prove that Fj occurs for infinite many j’s with prob-
ability 1, it suffices to prove that Ej occurs for infinite many j’s with probability
1. This is proved in the following.

Define Rj = τj+1 − τj and

Zj = (Rj , Tj). (41)

Consider the i.i.d. process {Zj}−∞<j<∞. Now,

Eij = event that Di(t− τi) < Ah(t)−Ah(τi) for all t > τj

= event that Di(τk − τi) < Ah(τk
−)−Ah(τi) for all k > j

= event that Di(τk − τi) < Ah(τk)−Ah(τi)− 1 for all k > j

= event that Di(τk − τi) < k − i− 1 for all k > j

= event that Di(
∑k−1
m=iRm) < k − i− 1 for all k > j

Hence Ej = ∩i<jEij has a time-invariant dependence on {Zi}. This means that
p = P (Ej) does not depend on j. Since {Zj} is i.i.d. and in particularly ergodic,
with probability 1, the long term fraction of j’s for which Ej occurs is p, which
is nonzero if p 6= 0. This is the last step to prove.

Let

E0 = event that Di(
∑k−1
m=iRm) < k − i− 1 for all k > 0 and i < 0 (42)

and
Bik = event that Di(

∑k−1
m=iRm) ≥ k − i− 1 (43)

then
Ec0 =

⋃
k>0,i<0

Bik. (44)

Let us fix a particular n > 0, and define:

Gn = event that Rm < 1
n for m = −n,−n+ 1, . . . ,−1, 0,+1, . . . , n− 1 (45)

Then

P (E0) ≥ P (E0|Gn)P (Gn) (46)
= (1− P (∪k>0,i<0Bik|Gn))P (Gn) (47)

≥

1−
∑

k>0,i<0

P (Bik|Gn)

P (Gn) (48)

≥ (1− an − 2bn − cn)P (Gn) (49)

where

an :=
∑

(i,k):−n≤i<0<k≤n

P (Bik|Gn) (50)

bn :=
∑

(i,k):−n≤i<0<n<k

P (Bik|Gn) (51)

cn :=
∑

(i,k):i<−n<n<k

P (Bik|Gn). (52)

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 55

The last inequality (49) comes from the fact P (Bik|Gn) = P (B−k,−i|Gn).
Using (8), we can bound P (Bik|Gn). Consider three cases:

Case 1: −n ≤ i < 0 < k ≤ n:
For k − i < 4

√
n, we have that

P (Bik|Gn) = P (Di(

k−1∑
m=i

Rm) ≥ k − i− 1|Gn) ≤ P (Di(
1

4
√
n3

) ≥ 1)

= P (Γλ ≤
1

4
√
n3

) = 1− e
− λ

4√
n3 <

λ
4
√
n3
, (53)

where Γλ ∼ Exp(λ).
For k − i ≥ 4

√
n, we have that

P (Bik|Gn) = P (Di(

k−1∑
m=i

Rm) ≥ k − i− 1|Gn)

≤ P (Di(
k − i
n

) ≥ 4
√
n− 1)

≤ P (Di(2) ≥ 4
√
n− 1) ≤ e− 4

√
n+1+2eλ, (54)

where the last inequality follows from (8). Summing these terms, we have:

an =
∑

(i,k):−n≤i<0<k≤n

P (Bik|Gn)

≤
∑

(i,k):−n≤i<0<k≤n,k−i< 4
√
n

λ
4
√
n3

+
∑

(i,k):−n≤i<0<k≤n,k−i≥ 4
√
n

e−
4
√
n+1+2eλ

≤ λ
4
√
n

+
∑

(i,k):−n≤i<0<k≤n,k−i≥ 4
√
n

e−
4
√
n+1+2eλ := ān

which is bounded and moreover ān → 0 as n→∞.
Case 2: −n ≤ i < 0 < n < k:

P (Bik|Gn)

≤ P

(
Bik|Gn, 2 +

k−1∑
m=n

Rm < (k − i− 1)
1 + λe

2λe

)

+P

(
2 +

k−1∑
m=n

Rm > (k − i− 1)
1 + λe

2λe

)
≤ e−

1−λe
2 (k−i−1) +A1e

−α(k−i−1)

for some positive constants A1, α independent of n, k, i. The first term in the
last inequality follows from (8), and the second term follows from the fact that

56 Bagaria et al.

(1 + λe)/(2λe) > 1 and the Ri’s have mean 1. Summing these terms, we have:

bn =
∑

(i,k):−n≤i<0<n<k

P (Bik|Gn)

≤
∑

(i,k):−n≤i<0<n<k

[
e−

1−λe
2 (k−i−1) +A1e

−α(k−i−1)
]

:= b̄n

which is bounded and moreover b̄n → 0 as n→∞.
Case 3: i < −n < n < k:

P (Bik|Gn)

≤ P

(
Bik|Gn, 2 +

−n−1∑
m=−i

Rm +

k−1∑
m=n

Rm < (k − i− 1)
1 + λe

2λe

)

+P

(
2 +

−n−1∑
m=−i

Rm +

k−1∑
m=n

Rm > (k − i− 1)
1 + λe

2λe

)
≤ e−

1−λe
2 (k−i−1) +A2e

−α(k−i−1)

for some positive constants A2, α independent of n, k, i. The first term in the
last inequality follows from (8), and the second term follows from the fact that
(1 + λe)/(2λe) > 1 and the Ri’s have mean 1.

Summing these terms, we have:

cn =
∑

(i,k):i<−n<n<k

P (Bik|Gn)

≤
∑

(i,k):i<−n<n<k

[
e−

1−λe
2 (k−i−1) +A2e

−α(k−i−1)
]

:= c̄n

which is bounded and moreover c̄n → 0 as n→∞.
Substituting these bounds in (49) we finally get:

P (E0) > [1− (ān + 2b̄n + c̄n)]P (Gn) (55)

By setting n sufficiently large such that ān, b̄n and c̄n are sufficiently small, we
conclude that P (E0) > 0.

E.2 Proof of Lemma 8

In this proof, we fix g = e−λh∆ and renormalize time such that λh = 1, and we
set λa = λ to simplify notations.

The random processes of interest start from time 0. To look at the system
in stationarity, let us extend them to −∞ < t < ∞. More specifically, define
τ−1, τ−2, . . . such that together with τ0, τ1, . . . we have a double-sided infinite

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 57

Poisson process of rate 1. Also, for each i < 0, we define an independent copy of
a random adversarial tree Ti with the same distribution as T0.

These extensions allow us to extend the definition of Êij to all i, j, −∞ <

i < j <∞, and define Êj and V̂j to be:

Êj =
⋂
i<j

Êij

and
V̂j = Êj ∩ Uj .

Note that V̂j ⊂ Ûj , so to prove that Ûj occurs for infinite many j’s with prob-
ability 1, it suffices to prove that V̂j occurs for infinite many j’s with probability
1. This is proved in the following.

Define Rj = τj+1 − τj and

Zj = (Rj , Tj).

Consider the i.i.d. process {Zj}−∞<j<∞. Now,

Uj ∩ Êij = Uj ∩ event that Di(t− τi) < Hh(t−∆)−Hh(τi) for all t > τj +∆

= Uj ∩ event that Di(t+∆− τi) < Hh(t)−Hh(τi) for all t > τj

= Uj ∩ event that Di(τk
− +∆− τi) < Hh(τk

−)−Hh(τi) for all k > j

= Uj ∩ event that Di(
∑k−1
m=iRm +∆) < Hh(τk−1)−Hh(τi) for all k > j

Hence Êj ∩Uj =
⋂
i<j Êij ∩Uj has a time-invariant dependence on {Zi}, which

means that p = P (V̂j) does not depend on j. Since {Zj} is i.i.d. and in par-
ticularly ergodic, with probability 1, the long term fraction of j’s for which V̂j
occurs is p, which is nonzero if p 6= 0. This is the last step to prove.

P (V̂0) = P (Ê0|U0)P (U0) = P (Ê0|U0)P (R0 > ∆)P (R−1 > ∆) = g2P (Ê0|U0).

It remains to show that P (Ê0|U0) > 0.

Ê0 = event that Di(
∑k−1
m=iRm +∆) < Hh(τk−1)−Hh(τi) for all k > 0 and i < 0

(56)
Let

B̂ik = event that Di(
∑k−1
m=iRm +∆) ≥ Hh(τk−1)−Hh(τi) (57)

then
Êc0 =

⋃
k>0,i<0

B̂ik. (58)

Let us fix a particular n > 2∆ > 0, and define:

Gn = event that Dm(3n) = 0 for m = −n,−n+ 1, . . . ,−1, 0,+1, . . . , n− 1, n
(59)

58 Bagaria et al.

Then

P (Ê0|U0) ≥ P (Ê0|U0, Gn)P (Gn|U0) (60)

=
(

1− P (∪k>0,i<0B̂ik|U0, Gn)
)
P (Gn|U0) (61)

≥

1−
∑

k>0,i<0

P (B̂ik|U0, Gn)

P (Gn|U0) (62)

≥ (1− an − bn)P (Gn|U0) (63)

where

an :=
∑

(i,k):−n≤i<0<k≤n

P (B̂ik|U0, Gn) (64)

bn :=
∑

(i,k):i<−n or k>n

P (B̂ik|U0, Gn). (65)

Using (8), we can bound P (B̂ik|U0, Gn). Consider two cases:
Case 1: −n ≤ i < 0 < k ≤ n:

P (B̂ik|U0, Gn) = P (B̂ik|U0, Gn,

k−1∑
m=i

Rm +∆ ≤ 3n) + P (

k−1∑
m=i

Rm +∆ > 3n|U0, Gn)

≤ P (

k−1∑
m=i

Rm +∆ > 3n|U0, Gn)

≤ P (

k−1∑
m=i

Rm > 5n/2|U0)

≤ P (

k−1∑
m=i

Rm > 5n/2)/P (U0)

≤ A1e
−α1n

for some positive constants A1, α1 independent of n, k, i. The last inequality
follows from the fact that Ri’s are iid exponential random variables of mean 1.
Summing these terms, we have:

an =
∑

(i,k):−n≤i<0<k≤n

P (Bik|U0, Gn) ≤
∑

(i,k):−n≤i<0<k≤n

A1e
−α1n := ān,

which is bounded and moreover ān → 0 as n→∞.
Case 2: k > n or i < −n:

For 0 < ε < 1, let us define event W ε
ik to be:

W ε
ik = event that Hh(τk−1)−Hh(τi) ≥ (1− ε)g(k − i− 1).

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 59

Then we have

P (B̂ik|U0, Gn) ≤ P (B̂ik|U0, Gn,W
ε
ik) + P (W ε

ik
c|U0, Gn).

Let Xj be a Bernoulli random variable such that Xj = 1 if and only if
Rj−1 > ∆, i.e., the j-th honest block is a non-tailgater. Since Rj ’s are i.i.d
exponential random variables with mean 1, we have that Xj ’s are also i.i.d and
P (Xj = 1) = g. By the definition of Hh(·), we have Hh(τk−1) − Hh(τi) =∑k−1
j=i+1Xj , then

P (W ε
ik
c|U0, Gn) = P (

k−1∑
j=i+1

Xj < (1− ε)g(k − i− 1)|X0 = 1, X1 = 1)

= P (

−1∑
j=i+1

Xj +

k−1∑
j=2

Xj < (1− ε)g(k − i− 1)− 2)

≤ P (

−1∑
j=i+1

Xj +

k−1∑
j=2

Xj < (1− ε)g(k − i− 3))

≤ A2e
−α2(k−i−3) (66)

for some positive constants A2, α2 independent of n, k, i. The last inequality
follows from the Chernoff bound.

Meanwhile, we have

P (B̂ik|U0, Gn,W
ε
ik)

≤ P (Di(

k−1∑
m=i

Rm +∆) ≥ (1− ε)g(k − i− 1))|U0, Gn,W
ε
ik)

≤ P (Di(

k−1∑
m=i

Rm +∆) ≥ (1− ε)g(k − i− 1))

| U0, Gn,W
ε
ik,

k−1∑
m=i

Rm +∆ ≤ (k − i− 1)
g + λe

2λe
)

+ P (

k−1∑
m=i

Rm +∆ > (k − i− 1)
g + λe

2λe
|U0, Gn,W

ε
ik)

≤ e−
(1−2ε)g−λe

2 (k−i−1) + P (

k−1∑
m=i

Rm +∆ > (k − i− 1)
g + λe

2λe
|U0, Gn,W

ε
ik)

where the first term in the last inequality follows from (8), and the second term
can also be bounded:

60 Bagaria et al.

P (

k−1∑
m=i

Rm +∆ > (k − i− 1)
g + λe

2λe
|U0, Gn,W

ε
ik)

= P (

k−1∑
m=i

Rm +∆ > (k − i− 1)
g + λe

2λe
|U0,W

ε
ik)

≤ P (

k−1∑
m=i

Rm +∆ > (k − i− 1)
g + λe

2λe
)/P (U0,W

ε
ik)

≤ A3e
−α3(k−i−1)

for some positive constants A3, α3 independent of n, k, i. The last inequality
follows from the fact that (g + λe)/(2λe) > 1 and the Ri’s have mean 1, while
P (U0,W

ε
ik) is a event with high probability as we showed in (66).

Then we have

P (B̂ik|U0, Gn) ≤ A2e
−α2(k−i−3) + e−

(1−2ε)g−λe
2 (k−i−1) +A3e

−α3(k−i−1).

Summing these terms, we have:

bn =
∑

(i,k):i<−n or k>n

P (B̂ik|U0, Gn)

≤
∑

(i,k):i<−n or k>n

[
A2e

−α2(k−i−3) + e−
(1−2ε)g−λe

2 (k−i−1) +A3e
−α3(k−i−1)

]
:= b̄n

which is bounded and moreover b̄n → 0 as n → ∞ when we set ε to be small
enough such that (1− 2ε)g − λe > 0.

Substituting these bounds in (63) we finally get:

P (Ê0|U0) > [1− (ān + b̄n)]P (Gn|U0) (67)

By setting n sufficiently large such that ān and b̄n are sufficiently small, we
conclude that P (V̂0) > 0.

F Growth rate of c-correlated adversary tree

We set λa = λ in this section to simplify notations.
The adversary is growing a private chain over the genesis block, under the

c-correlation. As illustrated in Fig. 16, the common source of randomness at a
block is only updated when the depth is a multiple of c (Algorithm 1 line:19).
We refer to such a block b with depth(b)%c = 0 as a godfather-block.

RandSource(b) :={
VRFprove

(
RandSource(parent(b)), time,VRF.sk(b)

)
, if depth

(
b
)
%c = 0,

RandSource(parent(b)), otherwise

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 61

The randomness of a block changes only at godfather-blocks. In other words, for
n ∈ Z, blocks along a chain at depths

{
nc, nc+ 1, nc+ 2, · · · , nc+ c− 1

}
share

a common random number. Two blocks are called siblings-blocks if they have
the same parent block. Given this shared randomness, the adversary now has a
freedom to choose where to place the newly generated blocks. The next theorem
provides a dominant strategy, that creates the fastest growing private tree.

Lemma 13. Under c-correlation, the optimal adversarial strategy to grow the
tree fast is to only fork at the parents of godfather-blocks.

Proof. Note that under the security model, several types of grinding attacks are
plausible. First, at depth multiple of c, the adversary can grind on the header
of the parent of the godfather block, and run an independent election in every
round. Secondly, for blocks sharing the same source of randomness, once an
adversary is elected a leader, it can generate multiple blocks of the same header
but appending on different blocks. However, adding multiple blocks with the
same header cannot make the tree any higher than the optimal scheme.

Genesis

depth=5

depth=10

depth=0

Genesis

(5)

v0=0

(6) (7)

(5,5) (6,5) (6,6)

Fig. 16: An example of T (a)(t) with c = 5 under the optimal strategy to grow the private
NaS tree. Blocks forking from the same godfather-block share the same common source
of randomness, as shown by the colors. To grow the tree fast, it is optimal to grow a
single chain until the next godfather block. Circles with black outlines indicate blocks
that are currently mined on.

Sibling non-godfather blocks share a common source of randomness and thus
“mining events” on these blocks are completely dependent. Specifically, for sib-
ling non-godfather blocks, there is only one leader election in each round. As a
result, for a particular non-godfather block b, the child-block of b’s any younger
sibling (a sibling block mined after block b) should share the same header and

62 Bagaria et al.

identical source of randomness with one of b’s child-block. Thus it is not neces-
sary for a non-godfather block to have sibling blocks, that is, mining a sibling to
a non-godfather block does not increase the growth rate of the longest chain in
the adversarial block tree. However, sibling god-father blocks have independent
sources of randomness and thus mining multiple such block increase the growth
rate of the longest chain.

Here we use the representation in Fig. 16, whose growth rate is the same as
the full NaS adversarial tree as shown in Lemma 13. We can transform the tree
T (a)(t) in Fig. 16 into a new random tree T 0(t). Every c generations in T (a)(t)
we can view as a single generation in T 0(t); in the example of Fig. 16, we have
depth 0, 5, 10 etc (i.e., all the godfather depths) as the generations in T 0(t).
T 0(t) corresponds to a branching random walk. For example, the genesis block
B0 is the root of T 0(t) at depth 0 with arrival time 0. The children blocks of
B0 in T 0(t) are the descendant blocks at depth 5 in T (a)(t). We can order these
children blocks in their arrival times. Consider block B1 to be the first such
block, then the arrival time of block B1 is

S1 = X1 +X2 + . . .+Xc,

where Xi is the inter-arrival time between block at depth i − 1 and block at
depth i in T (a)(t). Note that all the Xi’s are exponential with parameter λ, and
they are all independent. Similarly, the arrival time Si of the i-th child of root
in T 0(t) is a sum of i+ c− 1 i.i.d exponential random variables with parameter
λ.

Let the depth of the tree T a(t) and T 0(t) be denoted by Da(t) and D(t)
respectively defined as the maximum depth of the blocks in the tree.

Similar to §5, each vertices at generation k can be labelled as a k tuple
of positive integers (i1, . . . , ik) with ij ≥ c for 1 ≤ j ≤ k: the vertex v =
(i1, . . . , ik) ∈ Ik is the (ik − c+ 1)-th child of vertex (i1, . . . , ik−1) at level k− 1.
Let Ik = {(i1, . . . , ik) : ij ≥ c for 1 ≤ j ≤ k}, and set I = ∪k>0Ik. For such v we
also let vj = (i1, . . . , ij), j = 1, . . . , k, denote the ancestor of v at level j, with
vk = v. For notation convenience, we set v0 = 0 as the root of the tree.

Next, let {Ev}v∈I be an i.i.d. family of exponential random variables of pa-
rameter λ. For v = (i1, . . . , ik) ∈ Ik, let Wv =

∑
j≤ik E(i1,...,ik−1,j) and let

Sv =
∑
j≤kWvj . This creates a labelled tree, with the following interpretation:

for v = (i1, . . . , ij), the Wvj are the waiting for vj to appear, measured from the
appearance of vj−1, and Sv is the appearance time of v.

Let S∗k = minv∈Ik Sv. Note that S∗k is the time of appearance of a block at
level k and therefore we have

{Da(t) ≥ ck} = {D(t) ≥ k} = {S∗k ≤ t}. (68)

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 63

S∗k is the minimum of a standard BRW. Introduce, for θc < 0, the moment
generating function

Λc(θc) = log
∑
v∈I1

E(eθcSv) = log

∞∑
j=c

E(e
∑j
i=1 θcEi)

= log

∞∑
j=c

(E(eθcE1))j = log
Ec(eθcE1)

1− E(eθcE1)
.

Due to the exponential law of E1, E(eθcE1) = λ
λ−θc and therefore Λc(θc) =

log(−λc/θc(λ− θc)c−1).
An important role is played by θ∗c , which is the negative solution to the

equation Λc(θc) = θcΛ̇c(θc) and let ηc satisfy that

sup
θc<0

(
Λc(θc)

θc

)
=
Λc(θ

∗
c)

θ∗c
=

1

ληc
.

Indeed, see [28, Theorem 1.3], we have the following.

Proposition 1.

lim
k→∞

S∗k
k

= sup
θc<0

(
Λc(θc)

θc

)
=

1

ληc
, a.s.

In fact, much more is known, see e.g. [17].

Proposition 2. There exist explicit constants c1 > c2 > 0 so that the sequence
S∗k − k/ληc − c1 log k is tight, and

lim inf
k→∞

S∗k − k/ληc − c2 log k =∞, a.s.

Note that Propositions 1,2 and (68) imply in particular that Da(t) ≤ cηcλt
for all large t, a.s., and also that

if cηcλ > 1 then Da(t) > t for all large t, a.s.. (69)

Let us define φc := cηc, then φcλ is the growth rate of private c-correlated
NaS tree. One can check that φc is the solution to the same equation as in [31],
where the same problem is solved with a differential equation approach. [31]
also proves the uniqueness of φc and provides an approximation for large c:
φc = 1 +

√
ln c
c + o

(√
ln c
c

)
.

We will need also tail estimates for the event D(t) > ηcλt + x. While such
estimates can be read from [28], we bring instead a quantitative statement suited
for our needs.

Theorem 3. For x > 0 so that ηcλt+ x is an integer,

P (Da(t) ≥ φcλt+ cx) = P (D(t) ≥ ηcλt+ x) ≤ eΛc(θ
∗
c)x. (70)

64 Bagaria et al.

Proof. We use a simple upper bound. Write m = ηcλt+ x. Note that by (68),

P (D(t) ≥ m) = P (S∗m ≤ t) ≤
∑
v∈Im

P (Sv ≤ t). (71)

For v = (i1, . . . , ik), set |v| = i1 + · · ·+ ik. Then, we have that Sv has the same
law as

∑|v|
j=1 Ej . Thus, by Chebycheff’s inequality, for v ∈ Im,

P (Sv ≤ t) ≤ Eeθ
∗
cSve−θ

∗
c t =

(
λ

λ− θ∗c

)|v|
e−θ

∗
c t. (72)

And

∑
v∈Im

(
λ

λ− θ∗c

)|v|
=

∑
i1≥c,...,im≥c

(
λ

λ− θ∗c

)∑m
j=1 ij

=

∑
i≥c

(
λ

λ− θ∗c

)im

= eΛc(θ
∗
c)m. (73)

Combining (72), (73) and (71) yields (70).

G Nakamoto-PoS Protocol Pseudocode

Proof-of-Stake Longest Chain Protocols: Security vs Predictability 65

Algorithm 1 Nakamoto-PoS (c, s, δ)

1: procedure Initialize()
2: BlkTree← genesis . Blocktree
3: parentBk ← genesis . Block to mine on
4: unCnfTx ← φ . Blk content: Pool of unconfirmed txs
5: procedure PosMining(coin)
6: while True do
7: SleepUntil(SystemTime % δ == 0) . System time is miner’s

machine time
8: time ← SystemTime
9: (KES.vk,KES.sk),(VRF.pk,VRF.sk) ← coin.Keys()

10: // Update the stake according to the stake distribution in the s-th
last block in the main chain.

11: stakeBk ← SearchChainUp(parentBk, s)
12: stake← coin.Stake(stakeBk)
13: ρ←UpdateGrowthRate(parentBk)
14: // Three sources of randomness: a common source (par-

entBk.content.RandSource), a private source (coinSecretKey), and time.
15: header← 〈parentBk.content.RandSource , time〉
16: 〈hash,proof〉 ← VRFprove(header,VRF.sk) . Verifiable Random

Function
17: if hash < ρ× stake then . Block generated
18: // Update common source of randomness every c-th block in a

chain as per c-correlation scheme
19: if parentBk.Height() % c == c− 1 then RandSource ← hash
20: else RandSource ← parentBk.content.RandSource
21: state ← Hash(parentBk)
22: content ← 〈 unCnfTx, coin, RandSource, hash, proof, state 〉 and

break
// Return header along with signature on content

23: return 〈header, content,Sign(content,KES.sk)〉
24: // Function to listen messages and update the blocktree
25: procedure ReceiveMessage(X) . Receives messages from network
26: if X is a valid tx then
27: undfTx ← unCnfTx ∪ {X}
28: else if IsValidBlock(X) then
29: Xfork ← the highest block shared by the main chain and the chain

leading to X
30: Lfork ← min(parentBk.Height(), X.Height()) - Xfork.Height()
31: if Lfork < s then . If the fork is less than s blocks
32: if parentBk.Height() < X.Height() then
33: ChangeMainChain(X) . If the new chain is longer
34: else . check s-truncated longest chain rule
35: MainChainBk ← SearchChainDown(parentBk, Xfork, s) . find

the s-th block down the main chain from fork
36: NewChainBk ← SearchChainDown(X, Xfork, s) . find the s-th

block down the new chain from fork
37: if NewChainBk.header.time < MainChainBk.header.time then
38: ChangeMainChain(X) . If the new chain is denser
39: procedure IsValidBlock(X) . returns true if a block is valid
40: if not IsUnspent(X.content.coin) then return False
41: if X.header.time > SystemTime then return False
42: if VRFverify(X.header, X.content.hash,X.content.proof,X.content.coin.VRF.pk)

then
43: return True
44: else
45: return False
46: procedure Main()
47: Initialize()
48: StartThread(ReceiveMessage)
49: while True do
50: block = PosMining(coin)
51: SendMessage(block) . Broadcast to the whole network

	Proof-of-Stake Longest Chain Protocols: Security vs Predictability

