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Abstract—Reputation and proof-of-work systems have been
outlined as methods bot masters will soon use to defend their
peer-to-peer botnets. These techniques are designed to prevent
sybil attacks, such as those that led to the downfall of the Storm
botnet. To evaluate the effectiveness of these techniques, a botnet
that employed these techniques was simulated, and the amount
of resources required to stage a successful sybil attack against it
measured. While the proof-of-work system was found to increase
the resources required for a successful sybil attack, the reputation
system was found to lower the amount of resources required to
disable the botnet.

Index Terms—botnet; sybil; reputation; proof-of-work

I. INTRODUCTION

The rise in botnets is a reflection of a shift towards writing
malware for profit, rather than out of curiosity. These botnets
are networks of infected machines, controlled by a single
entity, that provide their owner all the functionality required
to generate a profit. This profit is typically generated by using
the infected machines for malicious purposes such as sending
spam, stealing personal and financial details, and performing
denial of service attacks. For the bot masters, those who create
and operate these botnets, their livelihood depends on the
capability of the botnet to continue these malicious activities
and as such, it is in the best interests of the bot master to
ensure that their botnet operates for as long as possible. To
achieve this, the bot masters have been continually evolving
the defence mechanisms their botnets employ, to avoid having
their botnets disabled by new countermeasures.

One threat to the existence of peer-to-peer botnets is the
sybil attack [1], whereby thousands of fake peers are intro-
duced onto the botnet. These fake peers act as a collective
entity in order to manipulate botnet communications, or in this
case, disrupt them, such that the botnet can no longer function.
Reputation and proof-of-work systems have been highlighted
as the best methods available to botnets for preventing this sort
of attack in theory [2], but have yet to be evaluated empirically.

In this paper we have evaluated the impact that reputation
and proof-of-work systems will have on the capability of
the security community to disable botnets, by measuring the
amount of resources required to disable botnets employing
such techniques. This was achieved through the creation of
a botnet simulation framework, which was used to simulate
the hypothetical botnet described by Hund et al. [2], and

then perform sybil attacks against it. We found that the
reputation system made the botnet more vulnerable to the sybil
attack, contrary to its intended effect, making it unlikely to
be implemented in botnets in the near future. The use of the
proof-of-work system however was found to require signifi-
cantly more resources to disable, indicating that should this
system be implemented it would severely impact the security
community’s capability to disable peer-to-peer botnets.

The remainder of this paper is structured as follows. Sec-
tion II gives an overview of the current state of botnets and
the techniques available to disable them. Section III describes
the design of the simulated botnet, and how the techniques it
employs help to prevent the sybil attack. Section IV introduces
the simulation framework we employed, and describes the
methodology of our experiments. Section V provides the
results of these experiments, before concluding the paper in
Section VI.

II. BACKGROUND

In order for a botnet to function, the bot master and the
bots must be able to communicate. The way in which this is
achieved is known as the command and control structure. Early
botnets distributed commands by having infected machines
join a particular room on an Internet Relay Chat server [3].
The use of this chat room introduced a central point of failure,
that if shut down, would completely disable the botnet. This
weakness was heavily exploited by researchers, who studied
botnet infections to see where the bots connected to for
commands, and then had the servers shut down [4].

Bot masters soon learned their lesson, and began to imple-
ment more sophisticated command and control structures, such
as peer-to-peer (P2P) networks. By employing P2P techniques,
similar to those used in file-sharing networks, the single
point of failure that had previously been targeted no longer
existed [4]. However, while one vulnerability was removed,
another one was introduced, in that for the P2P network to
function, each peer must blindly trust other peers and the
information they send [5].

One method of exploiting this flaw is known as the sybil
attack, whereby the lack of identity verification is exploited
to create multiple identities [1]. This technique can be used
to create thousands of fake identities on the network, known
as sybils, to allow an individual to have a larger influence
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over the network than they would otherwise be entitled. In
P2P botnets, this technique can be used to disrupt the flow of
commands through the network, to the point where the botnet
is no longer able to function.

This kind of attack was successfully performed against
the Storm botnet, where sybils were used to publish benign
commands onto the botnet, preventing bots from retrieving the
malicious commands sent by the bot master [4]. This particular
method is known as the pollution attack, and is only effective
against botnets that are built on file-sharing P2P protocols.
Botnets that employ P2P techniques which are not built
using such file-sharing protocols, such as Conficker [6] and
Waledac [7], feature no publishing mechanism, and therefore
are unaffected by this technique.

Few studies have been performed on the effectiveness of
sybil attacks on peer-to-peer botnets. Two such studies, one
by Davis et al. [8], and one by Wang et al. [9], both focus on
disabling the Storm botnet, but provide conflicting results as
to which is the best strategy to use. While perhaps this is the
result of the different methods with which they went about
their studies, the end result is that there is some confusion
as to the best method of conducting sybil attacks against
P2P botnets. Unfortunately the differences in design between
the botnet we simulated and the Storm botnet are significant
enough to cause us to be unable to explore this area further.

Hund et al. [2] proposed that reputation and proof-of-work
systems were possible methods that bot masters will employ
in order to defend their botnets against the sybil attack. Their
paper outlined a theoretical botnet design, named Rambot, that
employed these techniques, which we have used as the spec-
ification for the botnet simulated in our experiments. While
the two proposed techniques employed different methods,
they both attempted to provide a method of distinguishing
legitimate bots from fake bots.

Various methods of creating artificial botnets have been at-
tempted. Barfod and Blodgett [10] created an isolated network
in which real botnet infections were run on virtual machines.
Only five instances per machine were achieved, limiting this
method to small simulations before significant expenses are in-
curred. In addition, no current botnets implement reputation or
proof-of-work systems, making acquiring the botnet infections
for this method impossible without developing a real botnet
ourselves.

Another option is to synthetically simulate a botnet, as was
done by Davis et al. [8] in their examination of the sybil attack
against the Storm botnet. To achieve this, the functionality of
the botnet relevant to the experiments, such as the command
and control structure, was abstracted out and simulated using
graph theory. This approach allowed the simulation of tens
of thousands of nodes on a single machine, making it a far
superior method for experiments on large populations than
that of Barfod and Blodgett [10]. While Davis et al. [8]
simulated their botnet using graph theory, with the inclusion
of the reputation and proof-of-work systems, this method was
deemed too complex and prone to error for our purposes.

The concept of abstracting out relevant behaviour is similar

to that used in agent-based models, which have been shown
to be a useful tool in modeling peer-to-peer networks [11].
However, their focus on agents reacting to the environment,
rather than other agents, made this an undesirable option. In
addition, other complex behaviour, such as the collaboration
and shared resources between sybils would have been difficult
to implement in these tools.

Since no botnet code existed, it was decided that developing
a synthetic botnet simulation would not only be faster than
developing a real botnet, but much more efficient for the
desired experiments. While we decided to utilise the concept
of abstracting out relevant bot behaviour for our experiments,
instead of using available tools we created our own botnet
simulation framework for this purpose.

III. BOTNET DESIGN

The botnet to be simulated features a peer-to-peer command
and control structure, based on the ideal botnet suggested by
Hund et al. [2], the paper that introduced the concept of using
reputation and proof-of-work systems in a botnet. This section
details the functionality of the botnet that was implemented,
and how the reputation and proof-of-work systems are de-
signed to hinder the sybil attack.

A. Peer-to-Peer Protocol
In this botnet’s peer-to-peer protocol, bots connect directly

to each other in order to form a distribution network for
bot master commands. When a bot receives a command, it
forwards the command to all the bots it is connected to.
These bots then forward the command to all the bots they
are connected to, and this process continues until all bots
have received the command. Since a bot only forwards a
command the first time it is received, once all bots have seen
the command the distribution process will automatically stop.
This allows the bot master to spread commands throughout
the botnet by simply selecting a bot at random and sending it
a command.

The command distribution process for this P2P protocol is
shown in Figure 1. In the first step, the bot master randomly
selects a bot from the botnet and connects directly to it.
This allows the bot master to send a cryptographically signed
command directly to the selected bot, as is indicated in step 2.
Upon receiving this command, the bot verifies the command,
and then forwards it to all the bots it is connected to in step 3.
The distribution process then continues in step 4, with all bots
that have received the command forwarding it to the bots they
are connected to, until all bots within the botnet have seen the
command.

All commands sent by the bot master are cryptographically
signed, in order to prevent the possibility of others inject-
ing commands onto the botnet. During the simulations, this
process was considered cryptographically secure, and there-
fore the commands themselves were considered immune to
exploitation. Instead of focusing on exploiting the commands,
the focus was on exploiting the way in which these commands
were distributed through the botnet using the P2P protocol.
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As part of the P2P protocol, each bot within the botnet
is responsible for maintaining a list of all other bots that it
knows. This list is used to randomly select peers to connect
to, both when the bot comes online, and when the number of
active connections does not exceed a set threshold. In this peer-
to-peer protocol, connections made between two bots persist
until one of the participating bots goes offline. This allows
commands to quickly propagate throughout the botnet, as each
bot is permanently connected to numerous other bots.

The implication of this design however is that these connec-
tions change only as a result of bots within the botnet turning
on and off, meaning that the structure of the botnet changes
very slowly over time. This allows the sybils the time to
position themselves in the network to block the propagation of
bot master commands. An alternative strategy, such as forming
the connections on demand when a command is received, and
closing them immediately after the command is sent, could
have a significant impact on the effectiveness and strategies
used to perform the sybil attack.

Bots initially only know the few bots that they are provided
with as part of the infection process, but learn about other bots
by exchanging a fragment of their peer lists upon successful
connection. Only a fragment is exchanged in order to prevent
crawling of the botnet, as was done against the Storm botnet
by Holz et al. [4]. In the event a connection initiated by a bot
is unsuccessful, either because the destination bot is offline, or
has reached the specified connection limit, the bot is removed
from the peer list. A new bot is then selected randomly from
the list, and the process continues until sufficient connections
to the botnet have been made.

Should a bot’s peer list be empty as a result of all previously
known bots being unreachable, a backup service is contacted
to retrieve a random list of peers. This backup service could
take the form of a web server on a certain address, or searching
for content on an existing P2P networking using specific
keywords. For the purposes of our simulations however, we
assumed that this service was easily reachable, and simply
produced a random selection of all known peers. Given the
focus on utilising the sybil attack, the use of this service was
considered immune to abuse.

At present, this P2P network design features no methods in
which to deal with a sybil attack. By introducing a number
of sybils onto the botnet, which behave similarly to regular
bots, except that they do not forward commands, it is possible
to isolate the botnet into numerous subgroups which cannot
communicate. This particular variant of the sybil attack is
known as the eclipse attack [12].

An example of the eclipse attack in action is shown in
Figure 2. Similar to the process shown in Figure 1, the bot
master connects to a bot at random in step 1, and sends the bot
a command in step 2. In step 3, the bot sends the command
to the bots it is connected to, to continue the command
distribution process. The difference however is shown in step
4, where the sybils intentionally do not forward the command,
resulting in bots within the botnet not receiving the command.
In all the botnets we simulated, this was how the sybils

� �

� �

Fig. 1. Command Distribution Process

� �

� �

Fig. 2. Eclipsing the Command Distribution Process

behaved, they would connect to multiple legitimate peers and
not forward botnet commands.

Since botnets rely on the bots receiving the commands
in order to function, by restricting the flow of commands
throughout the botnet, the capability of the botnet to function
can be severely crippled. While ideally it would be desirable
to perform the eclipse attack such that every legitimate botnet
node only connects to sybils, the size of modern botnets makes
this infeasible. Instead, the goal of eclipse attacks on the botnet
would be to minimize the number of bots that are able to
receive bot master commands, by approaching as close to the
ideal attack as possible.

It is in the best interests of the sybils to exploit the
botnet protocol wherever possible, in order to increase the
impact of each sybil node. This can be achieved by ensuring
that when sybils exchange peer lists only other sybils are
exchanged, and that the sybils maintain a shared peer list so
that all sybils know about as many bots as possible. Heavily
coordinating the sybil actions allows this to be taken further, as
by centrally controlling the sybils listed in peer exchanges and
the connections made by sybils, the knowledge of the sybils
by the botnet can be maximized.

B. Reputation System
One identified method to prevent such eclipse attacks is to

employ a reputation system [2]. Reputation systems introduce
a metric of trust between peers in the botnet, allowing peers
that do not follow the rules to be excluded. This is achieved
by prioritizing the peers that are connected to based on their
reputation, such that the peers with the highest reputation are
connected to first, thereby avoiding connections to peers with
lower reputations.
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In the reputation system implemented in the simulated
botnet, each bot is responsible for maintaining a list with the
reputations of all bots it has come into contact with. This list
is kept in addition to the peer list previously described for
forming connections, and is never shared, meaning that the
reputation system is not distributed. As such, reputation earned
by a bot is only relevant to the bot it has earned the reputation
with. While this makes the implementation of the reputation
system simple, it also prevents the possibility of protocol flaws
which allow reputation to be fraudulently earned.

Since no information in the reputation system is shared, only
information on positive contributions are available, meaning
that the reputation will be solely based on the amount of
good work done [13]. As such, points in the reputation system
are earned by correctly forwarding bot master commands. By
introducing a time frame into each command, which indicates
the period of time in which the command is valid, the failure
to receive a command from a bot within this time frame can
be used as an indicator that this good work was not done.
Consequently, should a bot not correctly forward a command,
it will lose points in the reputation system. Additionally, this
time frame can be used to prevent bots artificially inflating
their reputation by continually forwarding the same command.

In addition to providing a mechanism to gauge the trustwor-
thiness of a peer, the way in which reputation is earned allows
it to also function as an indication of the bot’s availability. It
is for this reason that bots to connect to are selected from the
reputation list based on their reputation, rather than randomly
as in the regular peer list. Rather than replace the regular
peer list entirely, the reputation peer list simply augments the
connection process, allowing bots from both lists to be selected
to connect to.

Bots are removed from the reputation list if their reputation
falls below a threshold value. This can be the result of bots
not forwarding commands correctly, or being unavailable for
extended periods of time. Unlike the regular peer list, bots that
are unable to be connected to are not immediately removed
from the list, but rather remain on the list until their reputation
drops enough to fall below the threshold.

The addition of the reputation system forms another hurdle
sybils must overcome in order to successfully cripple the
botnet’s capabilities. For the sybils to dominate all of a bot’s
connections, they must not only infiltrate the bot’s regular peer
list, but also the reputation list. Without rising to the top of
the reputation list, the bot will continue to form connections to
the same legitimate bots, preventing the sybils from isolating
the bots into subgroups.

In order to rise to the top of this list however, the sybils
must forward bot master commands, thereby contributing to
the structure and operation of the botnet. Not only does this
assist the botnet, but participating in such activities raises
ethical and legal issues [14]. While various sybil strategies
could be employed here, such as forwarding commands for a
limited period of time, we decided to have the sybils simply
not forward any bot master commands. This allows the effect
of the reputation system to be accurately measured and directly

compared to only employing the basic P2P protocol.

C. Proof-of-Work System
Proof-of-work puzzles are cryptographic puzzles that are

time consuming for a client to solve, but are able to be
easily and quickly verified by the server. These proof-of-work
puzzles can be used to validate the intentions of a machine
wishing to connect to a server, by forcing them to spend time
and resources solving the problem. For a botnet, these proof-
of-work puzzles can be used during the connection process
between bots, in an attempt to verify that the connecting
machine is a legitimate bot.

In the simulated botnet, the proof-of-work scheme takes
place during the connection process, before the exchange of
peer lists. The bot accepting the connection functions as the
server, generating the puzzle, and the bot that initiated the
connection is required to solve the proof-of-work task in order
to verify their intentions and complete the connection process.
Hund et al. [2] suggested a proof-of-work average solution
time of 5 minutes, so this is what was used in our simulations
unless specified otherwise.

Due to the length of the solution time, it is possible that
machines will not be able to solve the proof of work task
before going offline. In this case, after waiting for a sufficient
period of time, the bot functioning as the server simply drops
the connection. It is possible that machines could get infected
that are never online long enough to solve a single proof-
of-work task, and therefore can never connect to the botnet.
However, given their limited online time, such machines would
be of little use to the botnet.

While the addition of the proof-of-work puzzle in the
connection process will slow the rate at which bots are able to
form connections, it has significant impacts on attempting to
perform the eclipse attack on the botnet. As noted by Singh et
al. [12], nodes mounting an eclipse attack must have a higher
number of connections than a regular node. This means that in
order to be successful, sybils must solve more proof-of-work
tasks than regular bots.

This turns these proof-of-work tasks into a significant hur-
dle, as typically sybils are created by simulating huge numbers
of fake peers on a single machine. The addition of these proof-
of-work tasks means that each of these sybils will require the
same amount of computing power as a stand-alone machine,
if not more. This will impose a huge limitation on the rate
at which sybils can form connections, unless a prohibitively
expensive amount of computational resources can be acquired
to run the sybils on.

IV. SIMULATION DESIGN

As mentioned in Section II, it was decided that we would
synthetically simulate the botnet, on a framework of our
own creation. This would allow the simulation to place the
emphasis on the botnet defending itself against attack, rather
than simulating the attacks produced by botnets. This section
details the design of the simulation framework, and how it was
used in the experiments.
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A. Framework

The focus of this simulation framework was to evaluate
how the use of the reputation and proof-of-work systems
in a botnet impacted the effectiveness of the sybil attack.
All of this behaviour takes place at the application level of
the TCP/IP model, making the simulation of any lower-level
aspects superfluous. By abstracting out only the functionality
of the botnet relevant to the outcome of the experiment, the
process of creating and simulating the botnet was able to be
simplified.

Since only the application layer was relevant to the experi-
ments, the method in which packets passed between bots was
arbitrary, allowing bots to be modeled as objects under the
object-orientated programming paradigm. These objects would
recreate a bot’s behaviour by passing messages to other bot
objects, and react accordingly to receiving such messages. As
such, the simulation was effectively event driven, with bots
only acting as a result of the actions of others, similarly to
how the bots in a real version of this botnet would behave.

To coordinate the passing of messages between bots, a
queue to hold these messages was implemented. The use of
this queue would then allow the simulation to be run by simply
attempting to empty the queue. This would involve emptying
a message from the queue, passing it to the relevant bot,
allowing the bot to act, which could possibly involve queuing a
new message, and continuing this process until the queue was
empty. By using a queue, it ensured that all bots received an
equal chance to act, rather than have the simulation’s execution
gravitate around a small subset of the bots.

Since the botnet’s design caused connections to change only
as a result of bots coming online and going offline, this was an
important factor that required simulation. Population statistics
from the Torpig botnet showed that the number of bots online
at any one time followed a diurnal pattern, with the maximum
and minimum occurring regularly at specific times of the
day [15]. This pattern was caused by the physical machines the
bots had infected turning on and off, in accordance with when
people in different parts of the world were awake. Using this
information, as well as other statistics extracted from Torpig
such as the number of new machines infected and infected
machines disinfected over time, allowed the simulation to have
a realistic botnet population.

One aspect of the population for which no data was available
was the proportion of bots that are permanently online. This is
a particularly important consideration in the simulated botnet,
as connections only change as a result of machines turning on
and off. This means that if two machines that are permanently
online connect to each other, they will never disconnect. As
no information on what percentage of machines vulnerable to
botnets were permanently online was available, this value was
assumed to be 1% of the botnet population, however the effect
of this assumption was then later examined in more detail in
Section V-B.

However, for this population information to be included, the
simulation must incorporate a temporal aspect such that the

population can change as a function of the time of day. Thus
far in the simulation, the only factor which takes a known
period of time is the time taken to solve a proof-of-work
task. For this reason, the act of emptying the queue once was
considered equivalent to the period of time taken to solve a
proof-of-work task, and other factors such as the number of
connections a bot could form in this period of time scaled to
suit. Given the lack of information available for what number
of connections a bot would form in a specific period of time,
the study of an early P2P botnet by Grizzard et al. [16] was
used as a baseline for this value. For further information on
parameters please consult the full work [17].

As was discussed in Section III-A, it is in the best interests
of the sybils to maximize their exposure to the botnet. For this
reason, the sybils that were simulated acted as one collective
entity, utilising a shared set of knowledge to coordinate their
actions accordingly. This also facilitated the monitoring and
consequent limiting of the resources available to the sybils,
such that it could be varied during the experiments.

Although the botnet implemented in the simulation frame-
work was the hypothetical perfect botnet described by Hund
et al. [2], the framework was implemented such that other
P2P botnets could also be simulated. This would allow the
resilience of botnets to various attacks to be examined, rather
than the attack capabilities of the botnet as is common for other
simulation environments. Given the prototypal nature of this
framework however, it was developed in a high-level language
(Ruby) for rapid development. Preparing the framework for
widespread use would require a reimplementation of the
simulation in a more efficient language, to facilitate better
simulation performance.

B. Methodology
To evaluate the effects the reputation and proof-of-work

systems had on the resilience of the botnet to the sybil attack,
three distinct sets of experiments were performed, all of which
followed the same basic methodology. This involved the simu-
lation of four different botnets; a control botnet which featured
neither the reputation or proof-of-work systems but only the
basic P2P protocol, two botnets employing only one of the
systems on top of the P2P protocol, and a botnet employing
both systems on top of the P2P protocol. Comparing the results
of the experiments on these different botnets allowed the effect
of the reputation and proof-of-work systems to be determined.

Each of these botnets were randomly generated with the
same random seed, and allowed to run for three days of
simulation time without the presence of any sybils. This was
to allow the botnet to stabilize and represent a well established
botnet. Although only an hour of simulation time was enough
to have the botnet operate at full capacity, three days were
used to allow the peer lists of the bots to stabilize. The major
reason for this is that different bots are online at different parts
of the day, meaning that a few days were required for bots to
successfully establish reputations with each other. Throughout
this period, bot master commands were sent at regular intervals
to allow reputation building to occur.
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After the botnet had been successfully established, the sybil
nodes were switched on, in order to degrade the botnet’s
performance as much as possible within one simulation day.
The performance metric of the botnet was the command
penetration, which was measured as the percentage of bots that
received each of the bot master’s commands. Since the bots
must receive commands in order to perform their malicious
actions, this was regarded as an accurate measure of the effect
the sybils were having on the botnet.

The sybil attack was deemed a success if it could reduce
the command penetration of the botnet to below 10%, at
which point the botnet was considered disabled for the pur-
poses of our experiments. If the botnet was disabled, the
simulation would move onto testing the next botnet. If this
level of command penetration was not reached, the amount of
resources allocated to the sybil would be increased and the
simulation run again. This process would then be repeated
multiple times with different random seeds, to minimise the
effects of the randomisation present in the botnet protocol. In
all experiments the number of sybils was set to 10% of the
botnet’s total population, as this is what Davis et al. [8] found
to be the most efficient ratio of sybils to bots.

V. RESULTS

Three different sets of experiments were performed, each
focusing on a different aspect of the botnet. The first exper-
iment analysed the effect the use of the different techniques
had on the botnet’s resilience to the sybil attack. In the second
experiment, the impact of how many bots were permanently
online was examined. For the last experiment, the relationship
between the proof of work solution time and the resilience to
sybils was examined.

A. Effect of Reputation and Proof-of-Work Systems

Figure 3 shows the effect the use of the reputation and proof-
of-work systems had on the resources required for the sybils
to successfully disable the botnet. The Y axis represents the
command penetration of the botnet, that is what percentage
of the online bots received the bot master’s command. The X
axis indicates the amount of resources consumed by the sybils
in order to achieve this command penetration, represented as
a percentage of the botnet’s total resources. This means that
for a botnet of 1000 bots, the sybils consuming 10% of the
botnet’s resources would mean they used the bandwidth and
computational resources equivalent to 100 bots in the botnet.
Measuring the sybil resources in terms of the bot resources
was chosen as while no information on previous sybil attacks
was available, the amount of resources available to each bot
within the botnet was known. Additionally, since early results
indicated that the amount of resources required to disable the
botnet increased linearly with size, this method also allows the
results to be applied to a botnet of any size.

When the proof-of-work system is not used, the limiting
resource requirement for the sybils is the amount of available
bandwidth. This is because simulating the numerous sybils
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Fig. 3. Command Penetration 24 hours after Sybil Activation

required takes an insignificant amount of computational re-
sources, and only the bandwidth limits the rate at which sybils
form connections. However, when the proof-of-work scheme
is employed, the limiting factor is the amount of computational
power available to the sybils, as the introduction of the proof-
of-work task limits the rate at which connections are formed.

As can been seen from Figure 3, the introduction of the
proof-of-work system had the most significant impact on
the botnet’s resilience to the sybil attack. The reputation
system on the other hand appears to make the botnet more
vulnerable to the sybil attack. This is the case when comparing
the reputation system to the basic P2P protocol, and when
comparing the reputation and proof-of-work system combined
to only the proof-of-work system.

However, the proof-of-work system not only impacted on
the sybils’ ability to form connections, but legitimate bots as
well. Without the presence of sybils, the use of the proof-
of-work scheme alone lowered the command penetration of
the botnet by approximately 10%. This can be explained
by the fact that for bots within the botnet, it now takes 5
minutes to form each connection rather than being able to
form them almost instantaneously. Consequently, each bot
takes significantly longer to make a sufficient number of
connections to the botnet after it first comes online. With this
less efficient use of a bot master’s resources however comes
with significantly higher resilience to the sybil attack.

B. Effect of the Percentage of Permanently Online Peers

Due to the way in which the P2P protocol is designed, if
two bots that are permanently online connect to each other,
they will never disconnect. Should a sufficient amount of
such machines connect together, there is the possibility of
these machines forming a command distribution backbone
for the network. Due to the fact that these machines will
always be online, and should always be forwarding bot master
commands, the reputation system should prioritize connections
to these peers, making the botnet more resilient to sybils.

Figure 4 shows however that this is in fact not the case.
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Fig. 4. Effect of the Percentage of Permanently Online Machines on
Command Penetration

By comparing the effect the percentage of permanently online
machines has on both the basic P2P botnet, and the botnet
employing only the reputation system, it can be seen that
the reputation system’s command penetration is consistently
lower when 1% and 5% of the machines are permanently
online, and takes less resources to disable. As the percentage
of permanently online peers increases, the reputation system’s
negative impact on the command penetration decreases, to the
point where it appears to have no effect when 50% of the
peers are permanently online.

These results suggest that there is a significant flaw in the
design of the reputation system used in these simulations. The
use of the reputation system increases the chances that a bot
will reconnect to a bot it has already connected to before,
and prioritizes those with high reputations, rather than the
very low reputations the lack of command forwarding would
have earned the sybils. However, should these trusted nodes
be unavailable, possibly because sybils are occupying their
connections, the use of the reputation system makes bots more
likely to connect to sybils they have connected to before, even
if their reputation is low.

Another possible factor is that attempting to connect to the
same nodes every time the machine turns on could cause a
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bot to learn about less peers than if no reputation system
was used, which would increase the chances of connecting
to sybils once they are known. Additionally, the information
from the reputation system is only used in the selection of
peers to initiate connections with, meaning that although peers
which fall below the threshold reputation are no longer chosen
from the reputation list to connect to, current or incoming
connections from these peers are not proactively blocked. The
fact that these peers are also not removed from the regular
peer list also means that there is still the possibility that these
same peers will be chosen to connect to again.

While the actual cause of the reputation system’s poor per-
formance was unable to be determined, these ideas speculate
on some of the possible causes. Regardless of the reason
however, the reputation system still makes the botnet more
vulnerable to the sybil attack than no reputation system at all.
Therefore, the reputation system is in fact a technique unlikely
to be implemented by bot masters as was first anticipated.

C. Effect of Proof-of-Work Solution Time

Figure 5 shows the effect that variations in the proof of work
solution time had on the command penetration of the botnet.
Intuitively, increasing the proof-of-work solution time also
increased the amount of resources required for sybils to disable
the botnet. Since the sybils rely on rapidly forming a large
number of connections to the botnet, increasing the solution
time means that the sybils must increase their computational
resources to be able to continue forming connections at the
same rate.

While increasing the solution time increased the botnet’s
resilience to sybils, it also decreased the botnet’s command
penetration in their absence. This is due to the fact that
increasing the solution time decreases the rate at which bots
are able to form connection, causing them to require more
time to form a sufficient number of connections to the botnet.
Although at a solution time of 20 minutes the command
penetration of the botnet was still approximately 90% without
sybils, it can be seen that increasing this time too far would
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result in the botnet being unable to function, particularly if
a large portion of machines were not online long enough to
solve the proof of work tasks.

As a result, the value of the proof-of-work solution time
is essentially a trade-off for the bot master. Increasing the
solution time results in an improved resilience to the sybil
attack, at the cost of less efficient use of the bot master’s
resources. To the bot master, the best value for this parameter
therefore relies on how long they believe that increasing the
solution time will extend the lifespan of the botnet. With the
solution time set at a reasonable value, the use of the proof-of-
work system could significantly increase the amount of time
the botnet is able to operate before being disabled.

VI. CONCLUSIONS

While previous works have identified reputation and proof-
of-work systems as candidates for techniques botnets will
employ in the near future, it would seem that only the proof-
of-work system is up to the task. Overcoming the use of
the reputation system in the simulated botnet required less
resources than not using a reputation system at all, effectively
making the implementation of such a system pointless. This
however is only indicative of the reputation system utilized
in this botnet, as perhaps a different method would be more
successful.

The proof-of-work system however proved to be much more
successful in defending the botnet against the sybil attack. By
implementing such a system, it introduced a computational
resource requirement in addition to a bandwidth requirement
for participation in the botnet. For sybils, this meant that an
immense amount of computational resources were required, a
resource much more expensive to obtain than bandwidth, to
be able to disable the botnet successfully.

As a result, the use of such proof-of-work systems in botnets
is cause for serious concern. While overcoming the reputation
system is quite possible, overcoming the proof-of-work system
is much more infeasible. Should bot masters actually begin to
implement such systems, it would have significant impacts on
the capability of the security community to disable botnets.

A. Future work
While the simulation framework used proved to be suitable

for these experiments, the inefficiency of the implementation
language became a problem at larger botnet populations,
limiting the number of experiments that were able to be
performed. While a simulation on botnets of 1000 bots would
complete in seconds, 10000 bots would take hours, and 20000
bots more than a day. Additionally, the simulation framework
was single threaded, meaning it was not able to take advantage
of the multiple cores that have become commonplace on com-
puter hardware. A more efficient, perhaps even multithreaded
implementation in a different programming language, would
not only allow the simulation of these larger botnets, but also
allow experiments to be performed much more rapidly.

Further work on the reputation system is required to de-
termine the exact cause for its poor performance. While in

theory it should have prevented the sybils from being able to
overrun the botnet, in practice this was not the case. Perhaps
removing the regular list entirely, or actively avoiding peers
with bad reputations could provide the tweak necessary for
the system to work as intended.

The proof-of-work system provides the most avenue for
future research. Should a botnet actually implement such a
system, searching for implementation flaws would be the
first priority. Other possibilities however include intentionally
sending weak proof-of-work tasks, or attempting to hold all
of a bot’s possible connections without ever actually solving
such a task.
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