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Abstract—Smart contract is a special program that manages digital
assets on blockchain. It is difficult to recover the loss if users make
transactions through buggy smart contracts, which cannot be directly
fixed. Hence, it is important to ensure the correctness of smart contracts
before deploying them. This paper proposes a systematic framework
to mutation testing for smart contracts on Ethereum, which is currently
the most popular open blockchain for deploying and running smart
contracts. Fifteen novel mutation operators have been designed for
Ethereum Smart Contracts (ESC), in terms of keyword, global variable/-
function, variable unit, and error handling. An empirical study on 26
smart contracts in four Ethereum DApps has been conducted to evaluate
the effectiveness of mutation testing. The experimental results show that
our approach can outperform the coverage-based approach on defect
detection rate (96.01% vs. 55.68%). The ESC mutation operators are
effective to reveal real defects and we found 117 out of 729 real bug
reports are related to our operators. These show the great potential of
using mutation testing for quality assurance of ESC.

Index Terms—blockchain, Ethereum smart contract, mutation testing,
mutation operator

1 INTRODUCTION

Blockchain, the foundation of Bitcoin, has been gaining in-
creasing attention from both industry and research commu-
nity [1]. As an immutable ledger, the blockchain technology
allows transactions to take place in a decentralized manner
[2]. Many blockchain-based applications beyond cryptocur-
rencies like Bitcoin have been proposed. An emerging area
of blockchain technology is smart contract [3]. A smart
contract is a special program (running on blockchains) that
controls users’ digital assets. It could be automatically and
correctly executed by a network of mutually distrusting
nodes without the need of an external trusted authority
[1]. Smart contract has increasingly been finding numerous
important applications (e.g., crowdfunding, voting, gaming,
etc) in the real world [4]. More and more developers are
devoting themselves to developing various kinds of smart
contracts. For example, there have been as many as 1 million
smart contracts being deployed and running on Ethereum —
the most popular open blockchain platform for deploying
and running smart contracts [5].

Despite the increasing popularity of smart contracts
applications in practice, the quality of smart contracts was
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reported to be worrisome. According to Nikoli et al. study,
among the sampled 3,759 smart contracts, 3,686 smart con-
tracts had an 89% probability of containing vulnerabilities
[6]. Any potential vulnerability within a smart contract may
lead to a significant financial loss. For example, hackers stole
as much as $150 million from Ethereum by exploiting a
loophole within the DAO contract [7]. On the other hand,
due to the nature of blockchain, any transactions through
smart contacts could not be reverted. Which means if users
experience loss on blockchain, they cannot recover their
losses. In addition, the code of smart contract is immutable
once deployed onto blockchain. All these called for effective
approaches to guard/evaluate the quality of smart contracts
in practice.

Compared with conventional software systems, the en-
vironment for developing ESC is still immature, 16 and
most developers are young and lack of experience. Nikoli
et al. sampled 3,759 smart contracts, of which 3,686 smart
contracts had a 89% probability of containing vulnerabil-
ities [6], indicating that developing a high-quality ESC is
full of challenges. As stated, a small defect might result
in extremely serious consequences. Meanwhile, testing is
widely recognized as one of the most important means
of ensuring software quality [8]. Thus, the Smart Contract
Under Deployment (SCUD) must be given adequate testing,
regardless of cost, aiming to detect defects as more as
possible. Subsequently, the following question should be
answered, that is, how to evaluate the adequacy of ESC
test suites? Mutation testing provides a costly but effective
approach for test adequacy evaluation [9]. It achieves this
by checking the ability of the given tests to reveal some
artificial defects [10]. Currently, mutation testing has been
applied on a series of programming languages such as C
[11], C++ [12], Java [13] and JavaScript [14], and has also
been adapted for a set of programming paradigms such as
Object-Oriented [15], Functional [16] and Aspect-Oriented
[17] programming. Therefore, it is desirable to employ mu-
tation testing for evaluating ESC test adequacy.

Testing approaches were often used to guard/evaluate
the quality of software programs. As an effective testing
approach, mutation testing was commonly used within tra-
ditional software programs [11]-[13]. However, the potential
of mutation testing has not been explored in the context of
smart contracts. Towards this end, we proposed to apply
mutation testing on Ethereum Smart Contract (ESC). Specif-
ically, we designed a systematical framework for mutating
Ethereum smart contract. Our framework included four
parts. First, for a given Smart Contract Under Test (SCUT),



we firstly transformed it into an Abstract Syntax Tree (AST)
and performed mutation on the AST. Then, the mutated
ASTs were transformed back to their corresponding source
code version mutants. Next, we built a testnet for each
mutant, during which the testnets was initialized with the
same state and contracts that SCUT depended on or relied
on SCUT were deployed in a specific order. After that, we
executed each mutant, recorded their execution results on
the given test suite, and collected the mutation scores as the
final evaluation results.

An important part of mutation testing is to define mu-
tation operators, as mutation operators defined how to
introduce syntactic changes to the original programs [10].
The goal of mutation operators is to simulate the potential
threats as completely as possible, and different operators
are generally needed if different programming languages
are adopted to develop programs [10]. Unlike traditional
programs that were developed in general-purpose program-
ming languages such as Java and Python, smart contracts
were developed in specific-purpose languages such as Solid-
ity or Vyper [18]. To adapt to new programming languages
of smart contracts, we designed 15 novel mutation operators
(in addition to 10 existing mutation operators) in terms of
keyword, global variable/function, variable unit, and error
handling, to effectively mutate smart contracts.

Twenty-six smart contracts from four Ethereum Decen-
tralized Applications (DApps) were used to evaluate the
effectiveness of our proposed mutation testing framework.
We found that our approach could outperform the coverage-
based approach on defect detection rate (96.01% vs. 55.68%).
And the newly-proposed 15 mutation operators were effec-
tive to reveal real defects, where 117 real bug reports were
related to our 15 mutation operators. These results to a great
extent showed the great potential of using mutation testing
to guard the quality of Ethereum smart contract.

Our main contributions are as follows:

e Idea. We introduce the idea of applying mutation
testing to ensure the quality of ESC.

o Implementation. We implement the first ESC-
oriented mutation testing system, and design 15
novel mutation operators to simulate the potential
defects in ESC.

e Study. We carried out an empirical study on four
real-world DApps. The study results verified that
mutation testing could indeed help improve ESC
testing evaluation, and the novel operators were able
to simulate real ESC defects well.

The rest of this study is organized as follows. Section
IT describes the basics of Ethereum smart contract and mu-
tation testing. Our mutation testing approach is presented
in detail in Section III, and each novel mutation operator
is detailed in Section IV. Experimental design and results
analysis are presented in Section V. After that, we discuss
the threats to validity and give the related work in Section
VI and VII, respectively. Finally, Section VIII concludes the
paper and outlines directions for future research.

2 BACKGROUND
2.1 Ethereum Smart Contract

Smart contract encapsulates predefined state and transition
rules, scenarios that trigger contract execution (e.g. arrival
at a specific time or occurrence of a specific event), and
response actions under a specific scenario. It was first
proposed by Nick Szabo, who aims to flexibly create and
manage intellectual assets in a decentralized environment
[19]. Blockchain provides the first feasible decentralized
technique, making it possible to automatically and correctly
execute smart contracts without relying on a trusted au-
thority [1]. Currently, many mainstream blockchain sys-
tems (e.g., BitCoin and Ethereum) have supported smart
contract technique. With its Turing-complete programming
languages and a series of sophisticated building tools,
Ethereum has become a reasonably attractive blockchain
platform for constructing various kinds of Decentralized
Applications (Dapp).
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Fig. 1. ESC Deployment and Execution

Ethereum users rely on accounts to carry out transac-
tions. There are two types of accounts, External Account
(EA) and Contract Account (CA), in Ethereum. The for-
mer is controlled by the users with private keys, and
the latter is controlled by ESC code [20]. Both EA and
CA record the state information such as account balance,
and CA has an additional unchanged field, codeHash,
which points to the corresponding ESC. CA creation and
its corresponding ESC execution are transaction-driven.
An Ethereum transaction can be denoted by a quadruple
tr = (from,to,value,data), where from and to denote
the addresses of sender’s account and receiving account
respectively, and value denotes the number of Wei to be
transferred to to. tx is an CA creation transaction when
to = @. At this time, data denotes SCUD. Otherwise (i.e.,
to # ©), if to is a CA, data denotes the input to to’s
corresponding ESC code. ESC deployment can be deemed
as the process of CA creation. Fig[l] depicts the ways of
deploying as well as executing the ESC sc;,.

(1) ESC Deployment. EA eq, launches a CA creation
transaction tZcpeqte = (addry, @, valuey, sc;). Once
tZcreate has been packed into a block and the block
has been persisted in Ethereum, CA ca, creation as
well as sc, deployment are finished.

(2) ESC Execution. EA ea; launches a message call
transaction tz.q; = (addry,addr,,values, input,).
Once tx.qu has been packed into a block and the
block has been persisted in Ethereum, sc, takes
input, as input and starts to run. Executing sc,
results in two additional transactions, tx3 and txz4.



Ethereum provides four smart contract programming
languages (i.e., Solidity, Vyper, Bamboo and Flint), where
each of them is influenced by one or several popular
languages [18]. For example, Solidity is mainly influenced
by JavaScript. Among them, Solidity is the most popular
language on Ethereum. Different from JavaScript, which is
often used in developing Web applications and runs in the
Web browser, Solidity is specific to ESC and runs in the
Ethereum Virtual Machine (EVM). Thus, though JavaScript
and Solidity share a similar syntax, they still have a number
of differences, which are detailed as follows:

(1) Variable Type. Different from JS, Solidity is a stat-
ically and strongly typed language, indicating that
the variable’s type is specified during compilation
(executing for JavaScript) and implicit type conver-
sion is not allowed. Moreover, for ease of handling
blockchain data, some novel variable types (e.g.,
address) are added in Solidity.

(2) Variable Unit. Ethereum employs an intrinsic cur-
rency, Ether, to incentive computation within the
network [21]]. Then, as Table depicts, it defines some
sub-denominations of Ether. It also defines some time
units.

(3) Keyword. As Table[2depicts, Solidity defines a set of
novel keywords in terms of function visibility, func-
tion state, reference location, and lvalue to optimize
the storage and reduce the gas cost of ESC.

(4) Global Variable and Global Function. For ease
of accessing blockchain data (e.g., block number,
difficulty and gasLimit) and carrying out math-
ematical calculations (e.g.,, addmod, mulmod and
keccak256), Solidity provides a set of global vari-
ables and global functions.

(5) Error Handling. In addition to assert functions, So-
lidity provides require (condition) for handling
errors. ESC continues when condition is satisfied
and otherwise stops. Function require is used for
variable checking, while assert is mainly used to
detect unknown errors.

2.2 Mutation Testing

Mutation testing is a fault-based software testing technique
which can be used to evaluate the adequacy of test cases.
These so-called mutants are based on well-defined mutated
operators that either simulate typical application errors or
force a validity test. The goal is to help testers identify
limitations in the testing process or test suite.

When applying mutation testing, testers first design mu-
tation operators according to the characteristics of the pro-
gram under test. Generally, mutation operators only make
minor changes to the program under test in accordance
with the grammar. Applying mutation operators to the
program under test can generate a large number of defective
programs called mutants. Then the equivalent mutants (i.e.,
the mutants that have no effect on the execution result of the
program) are excluded. Next, the original program and each
mutant are tested with a given test suite. If the test result of
a mutant is different from the original program, it is said to
be killed. This indicates that existing test cases can detect the
defect. If the test result of a mutant is the same as that of the

3

original program, it is said to be survived, and new test cases
need to be designed to kill it. Finally, mutation testing calcu-

lates the mutation score accordin% to the following formula:

TotalNonEquivMutants—Surviving Mutants .
Total NonEquivMutants X 100% The hlgher

the mutation score, the higher the adequacy of test cases.

Mutation testing has been shown to subsume other
test criteria by incorporating appropriate mutation opera-
tors [22]-[25]. Thus, designing effective mutation operators
is one of the most important tasks when applying mutation
testing to a new field [26]. In this paper, we first summarize a
set of general mutation operators that can be used in Solidity
based on the existing mutation operators for JavaScript
[14], and then propose several specific mutation operators
according to the characteristics of Solidity.

Table [3| shows the general mutation operators. AOR is
divided into two kinds of mutation operators, AORp (Bi-
nary Arithmetic Operator Replacement) and AORg (Short-
cut Arithmetic Operator Replacement). The AOR operator
replaces basic binary arithmetic operators (+, —, %, /, and
%) with other binary arithmetic operators while the AORg
operator replaces short-cut arithmetic operators (op++,
++op, op——, and ——op). The ROR operator replaces re-
lational operators (>, >=, <, <=, ==, and !=) with other
relational operators or replace the entire predicate with true
and false. The COR operator replaces binary conditional
operators (&&, ||, &, |) with other binary conditional op-
erators. The ASR operator replaces short-cut assignment
operators (+=, *=, /=, %=, and &=) with other short-
cut assignment operators. The SDL operator can delete an
executable statement by commenting it out, and the CSC
operator can force the statement in a conditional judgment
to be true or false.

3 MUTATING SMART CONTRACTS

Traditional JavaScript mutation engine usually parses the
source file to an AST (Abstract Syntax Tree), and then
performs mutant generation on it [27]. The generated AST
mutants are then transformed back into source files for exe-
cution and testing. However, ESC mutation analysis cannot
be performed the same way as for JavaScript programs.
First, smart contracts must be deployed on a blockchain
before being executed. Second, different from JavaScript,
Solidity is not a scripting language. Thus, ESC must be com-
piled before being deployed. This significantly influences
the process of ESC mutation analysis. Fig. 2| illustrates how
our ESC mutation analysis engine works. It treats the Smart
Contract Under Test (SCUT) and a passed Test Suite (TS),
which contains n tests, as inputs, and finally outputs the
mutation score. Below are the steps of mutation analysis
on ESC. Note that steps (2) and (4) are different from the
traditional JavaScript mutation testing process.

(1) AST Generation. SCUT is parsed into AST format
for alleviating the loss of mutation precision, which
may cause by the redundant statements, such as
annotations and empty lines. To ensure the reliability
of parsing result, solidity-parser-antlr [28]], a Solidity
parser built on top of a robust ANTLR4 grammar, is
selected in this step.

(2) AST Mutation. The mutation is performed on the
AST formatted SCUT, creating a new copy of the



TABLE 1
Specific Variable Units in Solidity

Unit Type | Suffix | Description
Ether wei, finney, szabo, ether 1 szabo = 1el2 wei, 1 finney = 1el5 wei, 1 ether = 1e18 wei
Time seconds, minutes, hours, days, | 1 minutes =60 seconds, 1 hours = 60 minutes, 1 days = 24 hours, 1 weeks = 7 days
weeks
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Fig. 2. Performing Mutation Analysis on Smart Contracts
TABLE 2 (4) Compilation and Deployment. ESC works on the
Specific Keywords in Solidity Ethereum blockchain, and its execution result de-
pends on the blockchain state, such as account bal-
Specifier Type | Keyword| Description ance and block height. Thus, to avoid the influence of
public accessed by all blockchain state, for either SCUT or each source file
. ... | external | accessed by using this and externally version mutant, we should build a unique Ethereum
function visibility | . t 1 d by this and derived tract . . ;
nternal ) accessed by tus and derived contracts testnet before its being compiled and deployed. Mu-
private accessed by only this contract tants that lati di ded
pure 1ot view and modify state tants that cause compilation errors are discarde
function state view not modify state immediately and not used in the following testing.
payable | receive ethers ' (5) SCUT and Mutants Testing. Once an ESC has been
__| memory | lifetime is limited to a function call successfully deployed, tests in TS can be executed.
reference location | storage persisted into the blockchain itself h di . Its (i
calldata | required for params of external func- For each mutant, we record its execution results (i.e.,
tions passed or failed) in every test. Given a mutant m;
Ivalue delete assigns the initial value for its type and a test tj, m; is marked as have been killed by tj
if it failed on t;.
TABLE 3 (6) Mutation Score Calculation. After collecting all the
General Mutation Operators execution results, we can get a ¢ x n matrix M of
execution results, where M, ; depicts the execution
Operator | Description result of mutant m; on test ;. Finally, the mutation
AOR Arithmetic Operator Replacement score is computed as a percentage of the mutants
AOI Arithmetic Operator Insertion killed by the tests to the number of non-equivalent
ROR Relational Operator Replacement mutants
COR Conditional Operator Replacement ’
LOR Logical Operator Replacement
ASR Assignment Operator Replacement
SDL | Statement Deletion 4 SMART CONTRACT MUTATION OPERATORS
RVR Return Value Replacement
CsC Condition Statement Change To improve the effectiveness of mutation testing for smart
contracts, we defined a new set of mutation operators for
Ethereum smart contract. We read the Solidity documen-
file for each AST mutant. In addition to thirteen new tation and look over the issues related to smart contracts
ESC mutation operators, which defined in@ we also on GitHub and Stack Exchange to design the mutation
reuse nine JavaScript-oriented operators [27] for ESC ~ operators for the specific defects that may be generated by
mutation. smart contracts. Details are as follows:
(3) Mutant Generation and Filtration. Each AST mu-

tants will be transformed into a source file version,
which has the identical semantic with SCUT ex-
cepting has been injected with a pre-defined fault.
Subsequently, an equivalence checking is conducted
to filter out the equivalent mutants.

4.1 Keyword Operators

There are several keywords in Solidity that cannot be found
in JavaScript. Six mutation operators are designed for these
keywords.



4.1.1 Function State Keyword Change (FSC)

Functions can be declarable as view, which means that
function will not modify the state of the contract, i.e. not
modify variables, not emit events, etc. Functions can also be
declarable as pure, which means that function can neither
read from nor modify the state. Pure functions can only call
other pure functions [29].

FSC operator change the state of a function by replace
keyword view to pure. Table |4 shows an example FSC
mutant, if such mutant survives, it means you should use
pure instead of view (ESED#28504).

TABLE 4
Example of FSC Mutant

s1 | function func(uint x, uint y) view returns (uint){
52 return x * (y + 42);

53

s1 | function func(uint x, uint y) pure returns (uint){
52 return x * (y + 42);

s3

4.1.2 Function Visibility Keyword Change (FVC)

Since Solidity has two kinds of function calls (internal ones
that do not create an actual EVM call and external ones
that do), there are four types of visibility for functions and
state variables. external functions are part of the con-
tract interface, which means they can be called from other
contracts and via transactions. public functions are part
of the contract interface and can be either called internally
or via messages. internal functions can only be accessed
from this contract and contracts deriving from it. private
functions can only be visible for the contract where they are
defined (ESE#32353). It is important to note that incorrect
use of visibility keywords does not always lead to errors
initially, but it can lead to faulty behavior when the contract
is integrated with other classes, modified, or inherited from
[30].

We design the FVC operator by imitating the Access
Modifier Change operator in MuJava [31]. Table [5 shows
an example FVC mutant where the visibility keyword
internal is changed into private, which makes it impos-
sible to call function setData () from C’s derived contracts.

TABLE 5
Example of FVC Mutant

s1 | contract C{

2 function f(uint a) private pure returns (uint b){}
S3 function setData(uint a) internal{data = a;}
S4 uint public data;

S5
s1 | contract C{

S function f(uint a) private pure returns (uint b){}
s3 function setData(uint a) private{data = a;}
S4 uint public data;
S5 }
1. Ethereum Stack Exchange (ESE):

https:/ /ethereum.stackexchange.com/

4.1.3 Data Location Keyword Replacement (DLR)

Every reference type, i.e. arrays and structs, has an addi-
tional annotation in Solidity, the data location, about where
it is stored. There are three data locations: memory (whose
lifetime is limited to a function call), storage (the location
where the state variables are stored and is persistent be-
tween function calls) and calldata (special data location
that contains the function arguments, only available for
external function call parameters) [32].

Data locations are not only relevant for the persistence
of data, but also for the semantics of assignments. For
example, Assignments between storage and memory (or
from calldata) always create an independent copy while As-
signments from memory to memory only create references
(ESE#1231). Uninitialized local storage variables can point
to unexpected storage locations in the contract, which can
lead to intentional or unintentional vulnerabilities [33]. Ta-
ble[|shows an example DLR mutant where the data location
of mySandwich is replaced from storage to memory. This
mutant turns mySandwich from a reference into a copy.
DLR mutants challenge testers to design test cases to check
whether the original variables have changed.

TABLE 6
Example of DLR Mutant

51 | function eatSandwich(uint _index) public{

S2 Sandwich  storage mySandwich =  sand-
wiches[_index];

s3 mySandwich.status = “Eaten!”;

54

s1 | function eatSandwich(uint _index) public{

52 Sandwich memory mySandwich = sand-
wiches[_index];

S3 mySandwich.status = “Eaten!”;

S4 }

4.1.4 Variable Type Keyword Replacement (VTR)

Since Solidity is a statically and strongly typed language,
the type of each variable needs to be specified. Solidity
supports three fixed-size types, fixed-size integers, fixed-
point numbers and fixed-size byte arrays. All these types are
restricted to a certain range. For example, an 8-bit unsigned
integer can store values between 0 and 255 (28-1). When the
result of some arithmetic falls outside that supported range,
an overflow occurs (ESE#7293).

Integers in Solidity are divided into signed integers and
unsigned integers of various sizes. The consequence of an
integer overflow is that the most significant bits of the result
are lost, which can cause real-world vulnerabilities such
as batchOverflow [34]. Fixed point numbers and fixed-size
byte arrays are no difference. To ensure that the correct value
keywords are used, we define a series of VIR operators such
as replace uint to int and replace bytes32 to bytes8.
Table [7] shows an example of VIR mutant. This kind of
mutants requires testers to consider negative number and
truncation.

4.1.5 Payable Keyword Deletion (PKD)

payable is a modifier that allows a function to be called
with a non-zero value (that you can access via msg.value).
If a function needs currency operation, it must have a



TABLE 7
Example of VTR Mutant

s1 | for (uint256 i=0; ijlength; i++){
S9 A.push(B[i]);

83 }

s1 | for (uint8 i=0; ijlength; i++){
S9 A.push(B[i]);

S3 }

payable keyword, so that it can receive Ethernet cur-
rency normally (ESE#20847). The PKD operator deletes the
payable keyword of a function at a time, and then any
transaction trying to send ether will be rejected. The sample
program is shown in Table

TABLE 8
Example of PKD Mutant

s1 | function deposit() payable{

B deposits[msg.sender] += msg.value;
53

s1 | function deposit(){

52 deposits[msg.sender] += msg.value;
53

4.1.6 Delete Keyword Deletion (DKD)

In Solidity, delete a assigns the initial value for the type
to a. For integers, it is equivalent to a = 0, but it can also be
used on arrays, where it assigns a dynamic array of length
zero or a static array of the same length with all elements
set to their initial values (ESE#58495). It is important to note
that deleting a really behaves like an assignment to a, i.e.
it stores a new object in a. Table 9] shows an example of
DKD mutant which makes the return value change from 0
to 3. The DKD operator is similar to the Member Variable
Initialization Deletion (JID) in MuJava [31].

TABLE 9
Example of DKD Mutant
s1 | function testDel() returns (uint){
So uinta = 3;
S3 delete a;
S4 return a;
S5 }
s1 | function testDel() returns (uint){
So uinta = 3;
S3 /ldelete a;
S4 return a;
S5 }

4.2 Global Variables and Functions Operators
There are some special variables and functions which al-

ways exist in the global namespace [35]. Thus, we define
three mutation operators for them.

4.2.1 Global Variable Change (GVC)

Solidity uses several global variables to provide informa-
tion about the blockchain (ESE#2664). For example, now is
the current block timestamp (alias for block.timestamp),
block.number shows the current block number, and
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msg.value shows the number of wei sent to the contract.
A GVC operator changes a global variable by assigning
it a format-compliant random value, and thus may cause
different execution results. The sample program is shown in
Table [10} testers can kill the mutant by executing function
getNow ().

TABLE 10
Example of GVC Mutant

s1 | function getNow() public constant returns (uint){
Ep) return now;

S3 }

s1 | function getNow() public constant returns (uint){
S92 return 0;

S3 }

4.2.2 Mathematical Functions Replacement (MFR)

addmod and mulmod are two mathematical global func-
tions in Solidity. addmod(uint x, uint y, uint k)
computes (z + y)%k where the addition is performed
with arbitrary precision and does not wrap around at
2**256. Similarly, mulmod (uint x, uint y, uint k)
computes (z * y)%k [36]. We design MFR operators to
exchange them to keep developers from accidentally using
incorrect functions. Table shows an example of MFR
mutant, testers can kill the mutant by testing the return
value of the function.

TABLE 11
Example of MFR Mutant

s1 | function Test(uint x, uint y, uint k) view public returns
(uint){

592 return addmod(x, y, k);

83 }

s1 | function Test(uint x, uint y, uint k) view public returns
(uint){

So return mulmod(x, y, k);

S3 }

4.2.3 Address Variable Replacement (AVR)

There are three global variables related to address in Solid-
ity. block.coinbase is the current block miners address,
msg.sender is the sender of the message (current call), and
tx.origin is the sender of the transaction (full call chain).
The different between msg. sender and tx.origin is that
msg.sender can be a contract but tx.origin can never
be a contract. In a simple call chain, A - B — C — D,
msg.sender in D will be C, and tx.origin will always
be A (ESE#1891).

An AVR operator replaces an address variable with
another one. For example, in Table msg.sender is
replaced with tx.origin. To kill this mutant, a test case
needs to be designed where msg. sender is not equal to
tx.origin.

4.3 Variable Unit Operators

Solidity has two unique variable units, Ether Units and Time
Units. We defined the following two mutation operators to
simulate the defects caused by using the wrong unit.



TABLE 12
Example of AVR Mutant

s1 | function sendTo(address receiver, uint amount) public{
52 require(msg.sender == owner);

53 receiver.transfer(amount);

S4 }

s1 | function sendTo(address receiver, uint amount) public{
2 require(tx.origin == owner);

s3 receiver.transfer(amount);

S4 }

4.3.1 Ether Unit Replacement (EUR)

Units are indispensable whether it is to construct transac-
tions for the transfer of Ethernet currency or to invoke intel-
ligent contracts for the issuance of tokens. Ether’s unit suf-
fixes are wei, finney, szabo, ether. The conversion for-
mat is lether = 1103 finney = 1% 10%szabo = 1x10'8wei
[37]. Table shows an EUR mutant where the unit keyword
finney has been replaced by szabo. To kill this mutant,
this.balance should be set between 70 finney and 70
szabo.

TABLE 13
Example of EUR Mutant

s1 | if(this.balance >= 70 finney){
S uint sendProfit = this.balance;
83 }

sy | if(this.balance >= 70 szabo){
$o uint sendProfit = this.balance;
83 }

4.3.2 Time Unit Replacement (TUR)

Time is also one of the characteristics of smart contracts. The
time units supported in solidity are seconds, minutes,
hours, days and weeks, where seconds is the default
unit [38]]. The TUR operator replace a time unit suffix with
another one, the sample program is shown in Table

TABLE 14
Example of TUR Mutant

s1 | function f(uint start, uint timeAfter){

S if (block.timestamp >= start + timeAfter * 1 days){}
S3 }

s1 | function f(uint start, uint timeAfter){

So if (block.timestamp >= start + timeAfter * 1
weeks){}

53

4.4 Error Handling Operators

Solidity uses state-reverting exceptions to handle errors.
Such an exception will undo all changes made to the state
in the current call. The convenience functions assert and
require can be used to check for conditions and throw an
exception if the condition is not met [39]. We define two
kinds of mutation operators related to error handling.

4.4.1 Require Statement Deletion (RSD)

The require function is often used to ensure valid condi-
tions on inputs or contract state variables, or to validate re-
turn values from calls to external contracts. If the condition
in require () is not satisfied, the state change is revoked
to check for errors caused by input or external components,
and an error message can be provided at the same time.
The RSD operator is inspired from the mutation operators
related to if statement, but the difference is that require
reverts the entire state changes in the function while if
doesnt (ESE#60585).

As is shown in Table the RSD operator deletes the
whole require statement by commenting them out to
ensure that the following statements always execute. In
addition, change the statement in require () to false is
another operator, named Require Statement Change (RSC),
which ensures the following statement will never get exe-
cuted.

4.4.2 Assert Statement Deletion (ASD)

The assert function works in a similar way to require,
but require is used to check conditions on inputs while
assert is used for internal error checking (ESE#16457).
The assert statement operators are also divided into two
kinds. The ASD operator can enforce the execution of the
following statements by deleting the assert statement (for
example, line s5 in Fig. [I5). Relatively, the Assert State-
ment Change (ASC) operator can make the following state-
ments never execute by changing the condition statement to
false.

TABLE 15
Example of RSD Mutant

s1 | function sendHalf(address a) public payable returns
(uint){

S require(msg.value%?2 == 0, “Even value required.”);

s3 uint balanceBefore == this.balance;

S4 addr.transfer(msg.value / 2);

S5 assert(this.balance == balanceBefore - msg.value / 2);

S return this.balance;

s4 | }

s1 | function sendHalf(address a) public payable returns
(uint){

52 /lrequire(msg.value%2 == 0, “Even value re-
quired.”);

S3 uint balanceBefore == this.balance;

54 addr.transfer(msg.value / 2);

S5 assert(this.balance == balanceBefore - msg.value / 2);

S6 return this.balance;

sq | }

4.5 Summary

In summary, as depicted in table we proposed 15 ESC
specific mutation operators, including six corresponds to
keyword, three corresponds to global variable/function,
two corresponds to variable unit, and four corresponds to
error handling in Ethereum smart contract.

5 EMPIRICAL STUDY

In this section, we assess the proposed mutation testing
approach and the value of each mutation operator for ESC.



TABLE 16
Specific Mutation Operators

Type Operator | Description
FSC Function State Keyword Chang
FvC Function Visibility Keyword Chang
Kevword DLR Data Location Keyword Replacement
yw VIR Variable Type Keyword Replacement
PKD Payable Keyword Deletion
DKD Delete Keyword Deletion
. GVC Global Variable Change
C;lgzaél}ﬁlcr;iaob;e MEFR Mathematical Functio%ls Replacement
AVR Address Variable Replacement
. . EUR Ether Unit Replacement
Variable Unit TUR Time Unit Reglacement
RSD Require Statement Deletion
Error Handling RSC Require Statement Change
ASD Assert Statement Deletion
ASC Assert Statement Change

To that end, we first present the addressed research ques-
tions followed by the experimental subjects and experiments
performed.

5.1

The goal of this section is to answer the following research
questions:

Research Questions

e ROQ1: Are mutation testing effective in evaluating
the adequacy of ESC test-suite? For a test-suite, its
test adequacy can be measured by its defect detect
capability. We aim to verify that mutation testing
performs well in measuring the adequacy of ESC
test-suite, and expect mutation testing is stronger
than coverage based approach.

e RQ2: Are the specific mutation operators work
well in mutation testing for ESC? For each specific
mutation operators, we intend to know (1) the non-
equivalent mutant generation rate when applying it
in ESC mutation testing and (2) if they lead to real
bugs in practice. This fact would allow us to analyze
the correlation between mutants and real defects.

5.2 Experimental Subjects

TABLE 17
Experimental Subjects

DApp LOC BOC STS
SkinCoin 225 66 35
Smartldentity 180 34 87
AirSwap 330 76 17
CryptoFin 348 58 44

Our study regards a set of smart contracts in four
different real-world Ethereum DApps (i.e., SkinCoin [40],
Smartldentity [41], AirSwap [42] and CryptoFin [43]) as ex-
perimental subjects. SkinCoin is a universal cryptocurrency
for instant trading skins in games and making bets on e-
sports events. Smartldentity relies on Ethereum blockchain
to represent an identity using a smart contract. CryptoFin
is a collection of Solidity libraries, with an initial focus on
arrays. AirSwap is a peer-to-peer trading network built on
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Ethereum. These DApps are selected because each of which
provides not only a set of ESCs but also accompanies a
well-designed test-suite. Thus, we do not need to manually
design an ESC test-suite, which is too subjective to generate
a fair experimental result and conclusion. Tools for auto-
mated ESC test generating such as ContractFuzzer [44] and
MTG [5] are also not used because the generated results are
not complete, i.e., missing assert statements. Tests that failed
on the original DApp are removed from the subject (e.g., we
removed 15 tests from AirSwap’s test-suite, which contains
32 tests). Table [17| summarizes the characteristics of DApps
used in the experiments. For each DApp, its name (col. 1),
lines of code (col. 2), branches of code (col. 3), and size of
test-suite (col. 4) are described. All the smart contracts have
been open sourced on GitHub.

5.3 Experiment 1: Mutation Testing Effectiveness

In this experiment, we compare mutation testing to coverage
based approach for evaluating the effectiveness of mutation
testing.

5.3.1 Setup

Mutants Generation. Given DApp under test, we first gen-
erated all the possible mutants by using the total of 25 muta-
tion operators, of which 10 are general mutation operators,
and 15 are proposed by us. After removing the equivalent
mutants and those were failed during compiling, we got
n useful mutants. Mutants Partition and Execution. Then,
we randomly selected 4 useful mutants to build mutant set
M, and the remaining useful mutants build mutant set M.
Each mutant in M; was tested by the accompanying Test-
Suite T'S = {t;|i € [1,n]}. TScoy, Generation. T'S¢,, was
generated by randomly selecting a subset of 7'S that satisfies
test targets w.r.t. line coverage and branch coverage, i.e., line
coverage and branch coverage of T'S¢,, are equal to that of
TS respectively. TSy;, Generation. T'S);, was generated
by randomly selecting a subset of 7'S that had the same
mutation score with 7S on M;. Comparison Regarding M5
as the verification set and finally calculating the mutation
scores of T'Sce, and TSy, on My for comparison. For
accurately, we ran the analysis ten times to obtain the results
on average to reduce bias introduced by randomization.

5.3.2 Results

TABLE 18
Mutant Number of Each DApp

DA General ESC Specific Total
pp ALL | NEQ | ALL | NEQ | ALL | NEQ
SkinCoin 314 | 274 | 106 | 106 | 420 | 380
Smartldentity | 267 | 225 36 36 353 | 311
AirSwap 406 | 363 | 175 | 175 | 581 | 538
Cryptofin 464 | 406 | 214 | 183 | 678 | 589
Total T451 | 1268 | 581 | 550 | 2032 | 1818

Table [18] summarizes the generated mutants. For each
DApp, numbers of mutants (col. 2, 4 and 6) that were
generated by general operators, ESC specific operators and
total operators are presented, together with the ones of non-
equivalent mutants (col. 3, 5 and 7). The former five columns
show an 84.27% to 89.41% non-equivalent mutating rate



for general operators and a comparable 85.50% to 100%
non-equivalent mutating rate for ESC specific operators,
indicating the proposed operators will not increase the cost
of detecting equivalent mutants during mutation testing.
In total, 1818 mutants were selected from the mutant pool,
which contains 2032 compilable mutants, to conduct the first
experiment.

Table 19| presents the results of line coverage and branch
coverage of T'S (col. 2-3) and T'Scy (col. 10-11) when apply-
ing ESC under test, as well as the mutation scores of T'S (col.
4-5), T'Scoy (col. 8-9) and T'Syss, (col. 13) when applying

MS; and MS,. For the mutants that were killed by 7'S,

T'Snrs, can kill most of them (i.e., 96.01% = %{?gl)

in average), whereas T'Sc,, can only kill half of them
(ie., 55.68% = %ﬁ%‘;”) in average), indicating that
TSnrs, outperforms T'Sc,, in defect detection. To deter-
mine whether the observed difference is statistically sig-
nificant or not, we applied the paired Wilcoxon test and
carried out the two-tailed alternative hypothesis. The value
of the test is 0.005. Therefore, we can accept the alternative
hypothesis that T'Sysg, significantly outperforms T'Sc.,
and can make a conclusion that mutation testing is more
effective in evaluating the adequacy of test-suite.

5.4 Experiment 2: Mutation Operator Effectiveness

In this experiment, we assessed each mutation operator by
rates of survival and equivalent. We also conducted a survey
on open-sourced communities to analysis the corresponds
between real defects and mutants.

5.4.1 Setup

Mutants Classification. For both general mutants and ESC
specific mutants, we further classified them and their testing
results based on their mutation operators. Besides experi-
ment, we inspected real defect reports for evaluating oper-
ator effectiveness. Defect Reports Collection. We searched
the defect reports from GitHub [45]-[49], DASP [50] and
PeckShield [51], and finally collected 729 closed reports w.r.t.
ESC. For each report, we determined it into one type of
mutation operator.

5.4.2 Results

Table 20| presents the statistics for each mutation operator,
where columns 2-5 respectively depicts the numbers of all,
equivalent, killed and live mutants and the last column
depicts the mutation score. The first group is the mutants
generated by general mutation operators. In addition to
LOR, other general mutation operators generate at least one
mutant. Among them, COR has the lowest mutation score of
17.2, but this only shows that the test cases are not sufficient
in this respect, and does not mean that COR operator is
ineffective. AOI generates the most mutants. However, 108
of the 416 mutants generated by AOI are equivalent, this is
because the inserted arithmetic operators do not work on
variables that have an impact on the execution results. The
10 traditional mutation operators generate a total of 1451
mutants, of which 1247 were non-equivalent, so the non-
equivalent mutant generation rate is 85.94%.

The second group corresponds to ESC specific mutation
operators. FSC, PKD and TUR have the lowest mutation
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scores of 0, indicating that none of their mutants was
killed by T'S. These three operators only generated eleven
mutants, so this low percentage probably isn’t meaningful.
FVC and AVR generated 136 and 127 mutants respectively,
accounting for nearly half of all mutants. In addition, VIR
generated 101 mutants, but 31 of them are equivalent mu-
tants. For example, VIR can replace uint in (uint i =
0; 1 < 20; i++) with int and uints8, thus resultin two
mutants. However, both mutants will not affect the result of
program execution, so they are logically equivalent. ASC
generated 19 mutants and got the highest mutation score
of 68.4, while ASD generates 19 mutants with the lowest
mutation score of 10.5. This probably indicates that many
test cases only trigger assert (true) without considering
assert (false), which may lead to a hidden defect. The
average mutation score of the special mutation operators
on T'S is 35.2, which is lower than that of the general
mutation operators (42.6). This shows that testers pay less
attention to the problems caused by solidity characteristics
when writing test cases. This reflects the significance of our
mutation operators.

Further, we conducted a survey to look up various issues
and bug reports related to ESC from open source commu-
nities. Among 729 reports, 117 are related to our mutation
operator, including 41 Keyword Operators bugs, 35 Global
Variables and Functions Operators bugs, 9 Variable Unit
Operators bugs and 32 Error Handling Operators bugs.
Representative samples are as follows:

e SWC-100 (FVC) Functions that do not have a func-
tion visibility type specified are public by default.
This can lead to a vulnerability if a developer forgot
to set the visibility and a malicious user is able to
make unauthorized or unintended state changes.

e SWC-109 (DLR) Uninitialized local storage variables
can point to unexpected storage locations in the con-
tract, which can lead to unintentional vulnerabilities.

o DASP#item-3 (VTR/MFR) An overflow condition
gives incorrect results and, particularly if the pos-
sibility has not been anticipated, can compromise a
programs reliability and security.

e SWC-120 (GVCQ) block.timestamp is insecure, as
a miner can choose to provide any timestamp within
a few seconds and still get his block accepted by oth-
ers. Use of blockhash, block.difficulty and
other fields is also insecure, as they’re controlled by

the miner.
o DASP#item-2 (AVR/RSD/RSC) Access Control
vulnerabilities can occur when contracts use

tx.origin instead of msg.sender to validate
callers, handle large authorization logic with lengthy
require and make reckless use of delegatecall
in proxy libraries or proxy contracts.

e SWC-123 (ASD/ASC) The Solidity assert () func-
tion is meant to assert invariants. Properly function-
ing code should never reach a failing assert state-
ment. A reachable assertion mean that a bug exists in
the contract that allows it to enter an invalid state
or the assert statement is used incorrectly (e.g. to
validate inputs).

The result shows that our newly proposed Solidity mu-
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TABLE 19
Coverage Results and Mutation Scores of T'S, T'Sco, and T'Sar s,

DA TS TScow TSnvs,
PP LCov | BCov | MS; | MS; | LCov | BCov | MS; | MS; | LCov | BCov | MS; | MS;
SkinCoin 80.44 63.33 34.7 43.1 - - 15.2 23.6 79.33 59.98 - 40.3
Smartldentity 91.67 85.29 63.6 47.4 - - 25.7 235 91.67 85.29 - 44.6
AirSwap 45.45 17.11 32.2 28.8 - - 19.3 17.6 45.45 17.11 - 28.8
Cryptofin 89.78 76.47 47.8 53.2 - - 28.4 31.3 88.71 76.47 - 51.7
Average 76.84 60.55 44.6 43.1 - - 22.2 24.0 76.29 59.71 - 41.4
TABLE 20 have an impact on our experiment (for example, low-quality

Experimental Results of Mutation Operators

Number of Mutants
Operator 4T Fgu. | Killed | Live |
General Mutants
AOR 257 4 117 136 46.2
AOI 416 108 128 159 44.6
ROR 410 41 148 221 40.1
COR 29 0 5 24 17.2
LOR 0 0 0 0 0.0
ASR 34 0 18 16 52.9
SDL 229 30 78 121 39.2
RVR 36 0 11 25 30.6
CSC 40 0 26 14 65.0
Subtotal 1451 183 531 716 42.6
ESC Specific Mutants
FSC 4 0 0 4 0.0
FVC 136 0 67 69 49.3
DLR 6 0 1 5 16.7
VTR 101 31 16 54 229
PKD 1 0 0 1 0.0
DKD 6 0 2 4 33.3
GVC 65 0 34 31 52.3
MFR 55 0 19 36 34.5
AVR 127 0 35 103 25.4
EUR 20 0 4 16 20.0
TUR 6 0 0 6 0.0
RSD 13 0 3 10 23.1
RSC 13 0 5 8 38.5
ASD 19 0 2 17 10.5
ASC 19 0 13 6 68.4
Subtotal 581 31 201 370 35.2
[ Total [ 2032 | 214 | 732 | 1086 | 403 |

tation operator can inject real defects, and thus can help
developers avoid some common mistakes.

6 THREATS TO VALIDITY

Internal validity. There are two main internal threats to
validity. Firstly, whether we mutate the smart contract cor-
rectly. Our mutation operations are implemented at the
AST level, where AST is generated with solidity-parser-
antlr, the mutation and restoration of AST are implemented
by ourselves. To verify that our operators were correctly
implemented, we checked every mutant by hand to ensure
it was mutated as expected. Secondly, due to the constant
update of the solidity version, the parser and mutation tool
need to be updated accordingly. Meanwhile, the design of
mutation operators should also consider the impact of the
version update to meet the latest test requirements.
Construct validity. There are two construct threats to va-
lidity. Firstly, the test code of all smart contracts is attached
to original the project, while the quality of test cases will

test cases will make all the generated mutants survive). Sec-
ondly, the identification of equivalent mutants is performed
manually, so we can not ensure that all equivalent mutants
are excluded.

External validity. Our experiments were conducted on
26 smart contracts from four DApps, so it is not possible to
guarantee the representative of selected subjects. We man-
aged to select DApps from four different areas to maximize
the representation of the experiment.

7 RELATED WORK

In this section, we will describe related work in two areas:
Mutation Testing and Smart Contract Testing.

7.1 Mutation Testing

Mutation testing was first discovered and made public by
DeMillo, Lipton and Sayward [52]], and explored extensively
by Offutt and others [53]]. It is based on two premises: the
competent programmer hypothesis [52] and the coupling
effect hypothesis [54]. The skilled programmer hypothesis
assumes that the defect code written by the programmer
is very close to the correct code, and that the defect can
be removed with only minor modifications. Based on this
assumption, mutation testing can simulate the actual pro-
gramming behavior of skilled programmers only by modify-
ing the amplitude code of the program under test. Coupling
effect [54] hypothesis points out that complex faults are
coupled with simple faults, so a test data set that detects
simple faults (such as those introduced by mutation) will
detect complex faults, i.e., the combination of several simple
faults.

Mutation testing has been applied to many program-
ming languages such as C [11], C++ [12], C# [55], Java
[13], JavaScript [14], Ruby [56], Android [26] and web
applications [57]. It has also been adapted for some very
popular programming paradigms such as Object-Oriented
[15], Functional [16], aspect-oriented and declarative pro-
gramming [17] [58]. However, to the best of our knowledge,
there is no research paper that introduce mutation testing to
the smart contract.

With appropriate mutation operators exposing potential
defects, mutation testing can provide a strong standard for
evaluating test adequacy [10]. In addition to the adequacy
evaluation of a test suite, mutation testing can also simulate
the real defects of the software under test by applying
mutation operators, thus assisting the validity evaluation
of the test methods proposed by researchers. For example,



Andrews et al. [24] and Do et al. [59] have proved that mu-
tation defects generated by mutation operators are similar
to real defects in effectiveness evaluation.

7.2 Smart Contract Testing

Chia et al. list four approaches to help blockchain test
engineers in his paper [60]. The first approach is to improve
the Documentation on smart contract for developers and
testers, the second approach is to fuzz the inputs of the
smart contracts, the third approach is to mutate the code
of smart contracts, and the fourth approach is to search the
blockchain for traces of already deployed smart contracts.
There are already some research results in these areas. For
example, Jiang et al. [44] proposed the ContractFuzzer for
the fuzzing test, which can detect vulnerabilities in smart
contracts through random fuzzing. Wang et al. [5] guides
the automatic generation of efficient test cases by tracking
the execution information of smart contracts on the chain.
As for mutation testing, as far as we know, there has been
no existing literature on the application of mutation testing
for smart contracts. It has been proposed before to develop
a mutation tool for smart contracts [61], but the attempt
has been abandoned. The challenge is for the mutation
generator to understand enough of the semantics of the
smart contract language to generate only useful mutants.

Currently, we have found two mutation testing tools
available for smart contract on GitHub, eth-mutants [62]
and universalmutator [63]. However, eth-mutants only im-
plements boundary condition mutation operators, which
means that it can only replaces < and > for <= and >= and
vice-versa. And universalmutator is a regexp based tool for
mutating generic source code across numerous languages, it
has designed several mutation operators for solidity, but its
not enough. Therefore, it is necessary to conduct an in-depth
research to improve the effectiveness of mutation testing for
smart contracts.

8 CONCLUSION AND FUTURE WORK

As an effective method of improving the adequacy of test-
ing, mutation testing is hard to be widely used in industry
because of its high cost. But in the field of Ethereum, muta-
tion testing can work well because ESC is almost impossible
to be modified on Ethereum. In this paper, we proposed
a novel mutation approach for ESC, together with a set of
ESC specific mutation operators. The empirical study on a
set of smart contracts in four real-world DApp verified that
mutation testing works well in evaluating the adequacy of
ESC test-suite and the proposed ESC operators can reflect
real defects in practice. We believe that these mutation
operators can indeed help testers discover potential defects
in smart contracts and write more adequacy test cases to
ensure the security of blockchain applications.
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