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Abstract—In contrast to traditional contracts, cryptocurrency-
based smart contracts can provide improved business automation
and more transparency. However, not all cryptocurrencies
support expressive contracts. For example, Bitcoin only supports
a restricted scripting language that is not expressive enough to
realize many contracts. Ethereum supports a Turing-complete
programming language, but the types of contracts that can be
implemented are still severely constrained due to gas limits.
Recent research has explored ways to add contract support to
legacy currencies like Bitcoin or enable more complex contracts
on systems like Ethereum, but such previous solutions have
significant security and functional limitations.

In this paper we propose Bitcontracts, a novel solution
to enable generic and expressive smart contracts on legacy
cryptocurrencies. The starting point of our solution is a common
off-chain execution model, where the contract’s issuers appoints
a set of service providers to execute the contract’s code; the
contract’s execution results are accepted if a quorum of service
providers reports the same result; and clients are free to choose
which such contracts they trust and use. The main technical chal-
lenge of this paper is how to realize such a trust model securely
and efficiently without modifying the underlying blockchain.
Bitcontracts achieves this using two main techniques. First, the
state of each contract is stored on the chain which avoids the
need to run expensive consensus protocols between the service
providers. Second, the validity of each execution result is bound
to the latest state of the chain to prevent double-spending
attacks. Bitcontracts can be used to retrofit contracts to
currencies like Bitcoin or to extend the contract execution
capabilities of systems like Ethereum. We also identify a set of
generic properties that a blockchain system must support so that
expressive smart contracts can be added safely and efficiently,
and analyze existing blockchains based on these criteria.

I. INTRODUCTION

Smart contracts, popularized by systems like Ethereum,
allow nearly arbitrary (Turing-complete) business logic to be
implemented without a trusted third party. Smart contracts are
programs whose code and execution results are recorded on
the chain. A typical smart contract enables the contract partici-
pants to load money to an address or account that is controlled
by the contract. The contract’s code defines the logic and
conditions based on which the loaded money can be moved out
of the contract, typically to one of the contract’s participants.

Currently, the industry envisions the usage of smart
contracts in many applications beyond exchange of cryptocur-
rencies, IOU payments, or financial settlements. Commonly
suggested use cases include financial services, identity man-
agement, insurance, and supply chain governance. Such signif-
icant business interest is driven by the expectation that, in con-
trast to traditional contracts and business applications, smart
contracts can offer better business process automation, stronger
guarantees for the contract parties, and more transparency.

Adding contracts to currencies. While the concept of smart
contracts has shown great promise, many currently popular
cryptocurrencies, such as Bitcoin, Litecoin, Ripple [2] or
Stellar [3], do not natively support them. Therefore, it becomes
relevant to investigate if contract execution capabilities can be
added to such blockchains. Since such blockchain platforms
have already attracted significant amounts of investment, users
and developers, in many cases it is preferable to extend those
platforms with contract execution rather than try to migrate
the existing users, assets, and investments to other platforms.

Another reason for extending existing blockchains with new
contract execution capabilities is the fact that even if some of
the existing platforms support contracts, the types of contracts
that can be implemented on these systems may be severely
limited. For example, Ethereum is based on a Turing-complete
programming langue, but the types of computations that can
be implemented as contracts are highly restricted, due to the
built-in gas limits that are needed for the consensus process.

An additional limitation of currently popular blockchains
is that they typically support dedicated, niche programming
languages. For example, Ethereum contracts must be written
in languages like Solidity that can be compiled to EVM
bytecode. Most programmers are more familiar with general-
purpose programming languages like Python and Java which
also have better tools, documentation, and have runtime
environments that have been long optimized over decades.

In this paper, our main goal is to design a solution that adds
expressive smart contract execution capabilities to existing
blockchain systems. The primary usage of our solution is
to enhance systems like Bitcoin that have no built-in smart
contract support. The secondary usage is to extend the contract
execution capabilities of platforms like Ethereum that support
contracts but have severe limitations on the complexity of al-
lowed computations. We also want to enable contract develop-
ers to write contracts in their favorite programming language.
Previous work. Recent research has explored different ways
to add contract execution capabilities to existing blockchains.
However, all such solutions suffer from significant security,
deployment, and functional limitations.

For instance, Arbitrum [20] proposes an off-chain execution
model, where the contract issuers appoint a set of managers
who are responsible for executing the contract code off-chain
and then communicating the contract execution results back
to the chain, where they are included if they are signed by
all managers. The main drawback of such solutions is that
they require changes to the consensus protocol, and therefore
such systems cannot be deployed to legacy systems without
modifying the underlying blockchain platform.
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Other proposals, such as FastKitten [14], rely on enclaved
execution and collaterals. In FastKitten, contracts are executed
inside a single SGX enclave and each contract participant, as
well as the enclave’s operator, must place a deposit during the
contract’s initialization to prevent misbehavior. While such
solutions are compatible with unmodified legacy currencies,
they only support short-lived contracts that are restricted to
known participants. In many practical smart contract use cases,
the set of contract participants is not known at the time of
the contract’s deployment. In addition, such a system cannot
tolerate enclave compromise. The recently discovered SGX
side channels [9], [29], [32], [36], [24] and micro-architectural
attacks [11], [10] have shown that TEE compromise is a
relevant threat that should be considered. We discuss the lim-
itations of previous solutions in more detail in Section III-B.

Our solution. In this paper, we propose a novel system called
Bitcontracts that adds expressive smart contract execution
capabilities to legacy cryptocurrencies and overcomes the
main limitations of previous solutions.

The starting point of our solution is an off-chain execution
model, similar to previous systems like Arbitrum. In
Bitcontracts, the contract issuer appoints a set of service
providers that execute the contract’s code. The appointed
execution set is recorded on the chain together with the
contract’s code and the contract participants are free to
choose if such a set is acceptable. Instead of requiring that all
service providers agree on the execution result (as is done in
Arbitrum) or trusting the execution environments fully (as is
required in FastKitten), we leverage a more flexible quorum-
based trust model, where execution results are acceptable
when t out of n service providers report the same result.
Such a model can provide both strong security (up to t − 1
service providers can be compromised) and good availability
(up to n− t service providers can be unresponsive).

The main technical challenge that we solve is how to realize
such trust model securely and efficiently without requiring any
modifications to the underlying legacy blockchain platform.
To achieve this, Bitcontracts leverages the following two
ideas. Our first observation is that by storing the state of
each contract on the chain, the service providers can remain
stateless which simplifies deployment and they do not have
to run expensive consensus protocols to agree on the current
state of the contract which makes our solution more efficient.
Our second observation is that by binding the validity of each
execution result to the latest valid state of the chain, we can
enable arbitrary quorum sizes and prevent double-spending
attacks where the adversary obtains two acceptable quorums
for two different execution results affecting the same coins.

Bitcontracts requires no changes to the underlying legacy
blockchain, as long as it supports four generic blockchain
properties. The first property is auxiliary storage which is
needed to store contract state on the chain. Auxiliary storage
is possible, e.g., by encoding data to transactions. The second
is collective authorization like multi-signature transactions
supported by most blockchains. The third is state dependency

which prevents double-spending attacks in our solution.
State dependency is implicitly supported in all UTXO-based
systems and can be explicitly enforced in many account-based
systems. The fourth required property is transaction atomicity
which enables contracts to perform complex operations safely.

We analyze the currently popular cryptocurrencies,
including Bitcoin, Litecoin, Zcash, Ethereum, Ripple, and
Stellar and show that these properties are supported by most
existing blockchains. In few cases when one of the properties
is missing, we explain how they could be easily added.

We implemented a prototype of Bitcontracts on top of
Bitcoin that supports contracts written in Python. We also
evaluated the costs of executing contracts on popular legacy
blockchains and show that in most cases the involved trans-
action fees are small (e.g., few USD cents per contract call).
Contributions. To summarize, in this paper we make the
following contributions:

• New solution: We propose Bitcontracts, a novel system
that adds smart contract execution capabilities to legacy
cryptocurrencies in a secure and efficient way.

• Requirement analysis: We identify the minimal set of
properties that a blockchain needs to provide to allow
expressive smart contracts and analyze the existing
blockchains based on this criteria.

• Implementation and evaluation: We implemented
Bitcontracts such that it runs on Bitcoin and supports
Python contracts, and evaluated contract execution costs
across many popular blockchain platforms.

II. BACKGROUND

In this section, we provide background on blockchain-based
cryptocurrencies and smart contracts.

A. Cryptocurrencies

Bitcoin [30] introduced the concept of blockchains to solve
the double-spending problem for digital currencies in a fully-
decentralized way. Bitcoin uses the so-called UTXO model,
where funds are bound to transaction outputs that are created
either as new coins through mining or as a result of previous
transactions. Transactions consume inputs (one or multiple
unspent transaction outputs, or UTXO) and create new outputs
that sum up to the same value as its inputs. Each output is
associated with a script that specifies the conditions to spend
it. For example, an output can specify a hash of a public key
and its spending is authorized when the transaction containing
it is signed by a key that corresponds to the hash. Other
conditions, such as requiring signatures by multiple listed
keys (multi-signature transaction) can be specified as well.
Several other blockchain currencies, such as Litecoin, ZCash,
Dash, and Cardano, have adopted the same UTXO model.

The second common approach to express transactions
in blockchain-based cryptocurrencies is the account model.
Ripple, Stellar and Ethereum are examples of blockchain
systems that adopt this approach. In such blockchains, funds
are stored in accounts that are controlled by keys. A transaction
does not specify inputs and outputs, but instead specifies a
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source and a target account as well as the transaction amount.
The transaction then transfers the specified amount from the
source to the target account. While the basic model associates
one key with every account, such cryptocurrencies can also
support other types of spending authorizations, such as shared
accounts that require a multi-signature to approve a payment.

Most permissionless blockchain systems use a P2P network
for message dissemination. The network is assumed to be
well connected and free of eclipse attacks [19], [38]. Other
trust assumptions depend on the consensus scheme. For
example, in Proof-of-Work (PoW) cryptocurrencies, an honest
majority of the mining power is assumed. Temporary forks
can happen, and thus the most recent transaction history may
change and only eventual consistency is guaranteed.

B. Smart Contracts

Smart contracts [35] are decentralized and self-enforcing
digital contracts. A typical smart contract enables contract
participants to load money or other assets to an account that
is controlled by the contract. The contract’s code defines the
logic and the conditions based on which the contract may
then transfer the loaded money or other assets to different
parties, such as the contract’s participants.

Smart contracts can offer multiple advantages over
traditional contracts and business applications. One advantage
is improved availability and integrity, because contract
execution cannot be unilaterally blocked or changed by any
contract party. Another is increased transparency, as the
contract’s code is publicly recorded on the chain and its
execution results can be verified by anyone.

Most blockchain-based currencies like Bitcoin support sim-
ple scripts that are primarily used to authorize payments. In
this paper, we do not consider such scripts expressive smart
contracts. Few blockchains, like Ethereum, provide built-
in support for Turing-complete programming languages, and
thus, in principle, enable developers to write arbitrary con-
tracts. However, in practice the types of computations that can
be realized as Ethereum contracts are constrained by gas limits,
which are needed to keep the consensus process efficient
because all miners need to execute all contracts sequentially.

Ethereum’s trust model allows users to choose which par-
ticular contracts they decide to trust. If a user participates in a
smart contract (e.g., by loading funds to it), he implicitly trusts
and agrees with the specification of that contract, which is de-
fined by the contract’s code. Such trust decisions are contract-
specific, as the same user does not need trust other contracts in
the same system and is not affected by their execution results.

III. PROBLEM STATEMENT

In this section, we motivate our work, explain the limitations
of previous solutions, and define the focus of our work.

A. Motivation

During the last few years, blockchain technology has
gathered significant business interest that is largely focused
on smart contracts and their applications. Three basic

options for deploying smart contracts exist: the first is to
use an existing blockchain platform like Ethereum that
provides built-in contract support; the second is to create a
new blockchain platform; and the third option—which we
investigate in this paper—is to retrofit contract execution
capabilities to an existing legacy blockchain.

There are several reasons to enhance existing platforms
with new contract execution capabilities. The first reason is
that platforms like Bitcoin have already gathered significant
investment and user base. At the time of writing (June 2019),
the market cap of Bitcoin is more than half of the entire
blockchain market [1]. Migrating all the invested funds and
existing users to a new platform is expensive and complicated.

The second reason is that creating new blockchain
platforms is hard. A fully-functional blockchain platform
requires an entire ecosystem, including developers, tools,
miners, investors, users, clients and more. Bootstrapping all
of this from scratch is very expensive and likely to fail.

The third reason is that existing blockchain platforms that
support contracts have significant restrictions on the types of
computations that can be implemented. For example, the gas
limits of Ethereum restrict contracts to very simple and short
computations. In many business use cases, it would be desir-
able to run more complex and time-consuming computations
as smart contracts that what is allowed by Ethereum currently.

And finally, the existing smart contract platforms are based
on dedicated (often niche) programming languages such as
Solidity for Ethereum. Most developers are more familiar with
general-purpose languages like Python or Java. Developers
would benefit if they could use their favorite programming lan-
guage for writing smart contracts and if the same contract code
could be re-used across different smart contract platforms.

Our main goal in this paper is to add expressive smart
contract execution capabilities to existing legacy blockchains,
with a secondary goal of enabling developers to write
contracts in their favorite programming language.

B. Limitations of Previous Solutions

Next, we outline the main limitations of previous solutions.

Side-chain execution. One known approach to extend legacy
currencies with contracts is to use a side-chain. For example,
Rootstock (RSK) [25] enables smart contracts for Bitcoin
using a side chain that is based on its own currency (RBTC)
that is pegged to the value of a Bitcoin. This is achieved by
issuing an amount of RBTC only when the same amount of
BTC was previously locked under a multisig condition to a
threshold set of trusted parties. Smart contracts can then be
run on the RSK side chain and perform payments on RBTC
currency. The main limitation of such solutions is that they
require users to migrate their funds to a separate currency,
although one that is pegged to the original currency.

Off-chain execution. Another approach is to run contract
code off-chain in few chosen execution nodes. Arbitrum [20],
ACE [40], and Yoda [15] follow this approach. In Arbitrum,
the contract issuer appoints a set of managers who are respon-
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sible for executing the contract. Once a contract call is com-
plete, the managers send the execution results to miners who
accept them only if all managers report the same execution
result (otherwise the system falls back to an expensive dispute
resolution protocol). In ACE, contracts are executed by sets of
service providers, of which a quorum is required to commit
results. Because of this, ACE does not require dispute resolu-
tion and its trust model is closest to that of Bitcontracts. Since
contracts are executed decoupled from the consensus process,
systems such as ACE, Arbitrum, and Yoda enable execution
of complex contracts without slowing down the consensus
process. However, the main drawback of such solutions is they
require changes to miners and thus such solutions cannot be
deployed to legacy blockchains without modifications.

Enclaved execution. The next known approach is to
outsource contract execution into a trusted execution
environments (TEEs) like SGX enclaves. Ekiden [12] is an
example system that follows this approach. The main problem
with such solutions is that if the adversary compromises the
enclave where the contract is executed, he can arbitrarily
violate its integrity and, e.g., steal all the loaded funds. Recent
research on SGX side channels [9], [29], [32], [36], [24] and
micro-architectural attacks [11], [10] has shown that TEE
compromise is a practical threat that should be considered.

Blockchain multiparty computation. Recent research has
also explored how to run secure multiparty computation
(MPC) on blockchains. The main goal of such works is
to improve fairness of existing MPC protocols, rather than
adding contract execution to legacy blockchains, but such
schemes can also be seen as specific types of smart contracts.

In MPC, a set of parties provide private inputs and jointly
evaluate a function over them. A common challenge is that
malicious parties can stop participating once they learn the
function output and prevent other parties from learning the
output and thus violate fairness. An impossibility result from
Cleve [13] proves that no MPC protocol can be fair without
an honest majority. In recent research, it has been shown that
this fairness problem can be alleviated, to an extent, using
blockchain. Andrychowicz et al. were the first to show how to
implement fair 2-party lottery on Bitcoin [6]. Soon after, this
was extended to n-party lotteries [7], playing poker [23] and
other MPC protocols that leverage distributed ledgers [21]. In
all of these schemes, each party must place a deposit on the
blockchain. If a participant stops participating, he loses his
deposit (i.e., these systems create monetary incentives against
fairness violation but cannot completely prevent it).

If such MPC protocols are treated as smart contracts, they
have several limitations. First, these solutions are customized
to very specific computations and extending the same ideas to
arbitrary business contracts and applications is hard. Second,
all contract participants and the duration of the contract have
to be known in advance which is not true for many smart
contracts in systems like Ethereum. And third, some of these
solutions require modifications to the underlying blockchain,
such as adding new instructions to the scripting language [23].

Enclaved multiparty computation. A recent work called
FastKitten [14] combines techniques from Ekiden [12] and
blockchain-based MPC [6], [7], [23], [21] to enable contract-
like computations on top of unmodified Bitcoin. Similar to
Ekiden, FastKitten also uses an SGX enclave to execute the
smart contract. Similar to MPC schemes, all participants
must place a deposit to the contract before its execution. In
addition, the operator of the TEE has to post a deposit that
equals the sum of all user deposits. If the protocol fails (e.g.,
because one of the users misbehaves), all parties except the
misbehaving get their initial deposit back.

From a functional point of view, FastKitten has the
same problems as MPC schemes (contracts must have
fixed participants and limited lifespan). While our goal
is to enable more expressive smart contracts, FastKitten
actually enables more restricted contracts. FastKitten also has
security problems. One example is an attack where multiple
participants collude. For example, if it becomes clear from an
execution up to the last round that Bob and Charlie will lose all
of their deposit to Alice, the first two can collude such that Bob
stops sending messages. While Bob will still lose his deposit,
Charlie will receive his full collateral back and Alice is cheated
out of her gain. Thus, smart contracts in FastKitten are not
completely self-enforcing under malicious behavior. Finally,
FastKitten is vulnerable to TEE compromise similar to Ekiden.

IV. BITCONTRACTS OVERVIEW

In this section, we provide an overview of our solution
Bitcontracts. We start by explaining what type of contracts
we want to support. After that, we describe our execution
model and discuss the challenges of realizing it. Finally, we
explain the main ideas of Bitcontracts and define common
properties that a blockchain must provide to support it.

A. On Contract Type

The notion of “smart contracts” was introduced more than
two decades ago [35] and later popularized by permissionless
blockchains like Ethereum. In Ethereum, smart contracts can
perform Turing-complete computations (constrained by gas
limits) and perform payments using cryptocurrency that is
loaded to a contract-controlled account. Such smart contracts
can have an unlimited lifespan and arbitrary many participants
who do not have to be known from the beginning.

Blockchains in general can be viewed as providing a trusted
third party (TTP) with public state. In the case of Bitcoin and
similar cryptocurrencies that provide payments that can be
extended with some limited conditions (Bitcoin script), this
TTP is very restricted, but can e.g. allow for constructions such
as payment channels [31], [16]. By adding Ethereum-style
smart contracts that allow for Turing-complete computations,
the resulting TTP becomes much more powerful, but it is still
limited due to not allowing for secret computation and state.

Because of this, Ethereum-style smart contracts cannot
implement all possible contracts, as is discussed in more
detail in [37]. One example is contracts that require fairness
for revealing input values, i.e. Alice learns Bob’s secret if and
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only if Bob learns Alice’ secret. Another limitation of purely
digital smart contracts (even with secret computation) is that
they cannot enforce control over physical items [39]. Despite
such limitations, Ethereum-style smart contracts are widely
seen as very useful enablers for various business applications
and use cases. Thus, in this paper, we focus on enabling
Ethereum-style contracts on legacy blockchains.

If contracts with private computation are needed, the first
option is to complement Bitcontracts with known secure mul-
tiparty computation (MPC) techniques. MPC protocols allow
a set of participants to jointly evaluate a function over private
inputs. While classical MPC system cannot guarantee fairness
without honest majority [13], blockchain-based solutions that
leverage deposits and penalize malicious behavior can alleviate
such fairness concerns [6], [7], [23], [21]. Such privacy protec-
tions can be implemented by the contract developer manually
or one can use automated contract compilers like HAWK [22].

The second option to support private contracts is to leverage
TEEs, similar to Ekiden [12] and FastKitten [14]. The main
benefit of this approach is that it applies to any type of
contract without extra developer burden. Enclaved contract
execution is also efficient, in contrast to cryptographic
primitives used in MPC protocols and systems like HAWK.
The drawback is that information leakage even from a single
TEEs violates privacy (see Section X-B).

B. Execution and Trust Model

The starting point of our work is an off-chain execution
model in which the execution of contracts is decoupled from
the consensus process. Perhaps the simplest such solution
would be one where a single service provider that has full
access to the funds of a smart contract, on request executes that
contract and then performs the resulting payments. However,
such a solution requires clients to fully trust this single service
provider. While trust concerns could be somewhat addressed
using trusted execution environments (TEEs) such as Intel
SGX, as used by Ekiden [12] and FastKitten [14], recent re-
search has shown that compromise of TEEs is a very practical
threat that needs to be considered. In addition, availability of
such a solution would be poor, regardless of TEE compromise.

To improve such a simple solution, an obvious approach is
to distribute trust among several service providers, i.e. instead
of assuming that one entity behaves honestly, one trusts a set
of service providers collectively, as is done in system like Ar-
bitrum [20]. In Bitcontracts, we follow this approach as well.

However, unlike Arbitrum, where all service providers
must unanimously agree on the contract execution results,
we adopt a more flexible trust model, in which the contract
creator can choose the requirements for acceptable execution
results per contract. Namely, the creator of a contract chooses
a set E of service providers and a threshold t of required
authorizations. A state transition caused by contract call is
considered valid if the transaction committing the results
is authorized by at least t members of the executing set E .
Contract participants are free to take part in contracts only if

they agree with the chosen specification, i.e., they agree with
the assumption that fewer than t members of E are malicious.

Such a model allows flexibility depending on the
requirements of the use case. For example, if strong integrity
is required, but high availability is not crucial, one may choose
a large E with t close to |E|. If on the other hand, E is chosen
such that all of the members are trusted and high availability
is required, one can choose a low threshold such as t = 1.

Our trust model modifies the typical trust assumptions of
smart contract systems slightly. For example, in Ethereum, the
specification of a smart contract is defined by its code (cf. Sec-
tion II-B). In our system, the specification also includes a set of
service providers and the threshold. Importantly, all users can
still decide if they trust and agree with this specification. And
similar to Ethereum, they only need to trust the specification
of contracts they participate in and are not affected by the
execution of other contracts. For example, if one contract’s
executing set is compromised, other contracts remain secure.

C. Challenges

The primary technical challenge that we solve in this
paper is how to realize the above outlined execution and trust
model securely and efficiently. Next, we discuss why simple
solutions fail to solve the problem.

We start by considering the storage of a contract’s state.
The first possible option is to store the state of each contract
off-chain at the service providers. Due to our quorum-based
execution authorization, not every service provider needs to
be involved in every contract call, and thus some service
providers might not have the latest state of the contract.
Therefore, in this approach, the service providers would
need to run a consensus protocol between them to ensure
consistency of the contract’s state. This is a costly process,
adds unnecessary overhead to the service providers, and
incurs restrictions on the size of the quorum as it needs to be
more than 2

3n given n service providers.
The second option is to store the state of each contract

on-chain, i.e., publish it on the blockchain of the underlying
cryptocurrency. This option leverages the consensus
mechanism of the underlying cryptocurrency, instead of
requiring that the service providers need to run an expensive
consensus protocol separately. This option also increases
transparency towards the clients, as they can individually
verify the correctness of every execution result.

At first glance, it may seem that storing the state on the
blockchain is enough to ensure consistency between the
service providers (and thus the integrity of the smart contracts
they execute); this is however not the case. We illustrate this
with a simple example attack.

Assume an idealized blockchain where transactions cannot
be reorganized and every created block is final. Also assume
that the contract’s issuer sets the authorization threshold
to t = 2

3n and the adversary controls 1
3n of the service

providers. The adversary triggers two contract calls to two
distinct sets of honest service providers, sized 1

3n each. Both
sets authorize the contract call based on the current state of
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Fig. 1. Bitcontracts overview. Bitcontracts extends existing blockchain
systems without changing their protocol, i.e. existing nodes such as clients
and miners are agnostic to Bitcontracts. Bitcontracts clients interface with
the blockchain and Bitcontracts service providers. Service providers are
stateless and do not need to interact with the blockchain system.

the contract that is stored on the chain. The adversary then
authorizes both contract calls with the 1

3n service providers
that he controls, and thus both contract calls have the required
t = 2

3n authorizations. Then, the adversary publishes the
first execution result that updates the contract’s state and, for
example, transfer funds out of the contract. After that, the
adversary publishes the second execution result that updates
the contract’s state based on the previous stale state which
means that the results of the first contract call are reverted,
except for their side effects such as money transfers.

A simple solution to this problem would be to mandate
that the threshold t must always be sufficiently large to
prevent such attack, i.e., t > 2

3n. This simple solution has two
problems. First, it prevents deployments where low thresholds
should be used for best possible availability. And second, it
would not prevent the above outlined attacks in blockchains,
where temporary forks are possible (e.g., ones based on PoW).

D. Overview of Bitcontracts

Next, we explain the main ideas of our solution,
Bitcontracts that is illustrated in Figure 1. We combine off-
chain execution of contracts with on-chain storage for contract
state. This design allows the service providers to be completely
stateless, avoids the need to run expensive consensus protocols
and provides transparency towards the contract’s client.

In Bitcontracts a smart contract account is a normal
blockchain account managed jointly by multiple service
providers using (1) multiparty authorization like multi-
signature transactions. The current state of each smart
contract is stored on the chain using another common feature
of blockchains, (2) arbitrary data storage.

Because the contracts’ state is recorded on the chain, the
contracts’ clients can assemble the latest contract state from
the chain at any time. For each contract call, the client that
initiates the call assembles the contract’s state and sends it
to the service providers that are registered for this contract
together with the contract’s code and call input parameters.

The service providers execute the contract call and encode
the execution results as a signed state update transition that
they return to the client. The client combines the received
signatures from t service providers that report the same result
so that the required multipart authorization is fulfilled and

broadcast the complete transaction to the P2P network. The
miners accept the state change transaction if it signed by at
least t service providers who control that contract’s account.

It might seem counterintuitive to have the client assemble
and broadcast the final transaction, as he can then choose
not to broadcast it if e.g. the results are unfavourable to him.
However, this is not an issue, since contract execution is
deterministic, i.e. the client can already know the results of the
contract execution before initiating the contract call. This is
the same as in other smart contract systems such as Ethereum.

To prevent the attacks described in Section IV-C where the
adversary obtains two valid quorums for the same contract
state, in Bitcontracts we require that the contract’s state used
as input in a contract call is always the latest on-chain state of
the called contract. Such enforcement is possible if the validity
of a transaction can be conditioned on the current state of the
blockchain, a property that we call (3) state dependent trans-
action validity. Such a referencing mechanism is available in
many existing cryptocurrencies, for example, in UTXO-based
cryptocurrencies, transactions reference UTXOs that must be
outputs of previous transactions which have not yet been used
as inputs in a transaction. This mechanism in our solution
prevents attacks, where the same coins can be spent more than
once, even if the blockchain experiences short-lived forks and
at the same time allows usage of arbitrary quorums.

Finally, Bitcontracts enables contracts where a single
transaction perform multiple separate money transfers. This is
possible, when the underlying blockchain supports (4) atomic
multitransactions, i.e. transactions that atomically execute
payments from multiple sources to multiple recipients.

E. Cryptocurrency Properties

Above we informally introduced four properties that the un-
derlying cryptocurrency must provide to support Bitcontracts.
These properties are necessary to support our execution and
trust model, securely and efficiently, on unmodified legacy
blockchains. We do not claim that these properties are
necessary or sufficient for every contract execution system.
For example, if a different trust model, e.g. a single executing
node, is chosen, fewer properties can be sufficient.

Next, we specify these four properties more precisely in the
format of interfaces. This allows us to keep our system design
(Section V) agnostic of the underlying blockchain platform.
Later, in Section VI, we analyze how these properties are
supported in existing, widely-used cryptocurrencies.

(1) Multiparty authorization. To allow a distributed set of
service providers to perform state transitions for a contract,
the cryptocurrency must support a form of multiparty
authorization, i.e. a mechanism that allows a set of n entities
to collectively authorize a transaction with signatures from a
threshold number t of them. An example of such authorization
is multi-signature outputs in systems like Bitcoin. This ensures
that changes to the smart contract state are only committed
to the chain, if enough service providers authorized the state
transition. The threshold is set per account, i.e. if funds are
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being transferred from multiple sources, each of them may
have their own threshold that needs to be met.

We abstract authorization for a transaction Tx as an
interface σ = sign(Tx, sk), where sk is a secret key of the
authorizing entity and a transaction Tx is valid if the threshold
condition is met for every source of transferred funds. To
verify authorization on a transaction for an account, miners
and other nodes use a predicate verify(Tx,Σ, PK, t) where
Σ = f(σ1, . . . , σt) is some function1 on a list of signatures,
PK = (pk1, . . . , pkn) is the list of public keys and t is the
threshold value associated with the account.

(2) Arbitrary data storage. The cryptocurrency must allow
storing auxiliary (non-financial) information in a transaction
in order to support stateful contracts with stateless service
providers. Storing the contract state on chain ensures that all
contract participants receive the latest state and are able to
continue interacting with the smart contract. An example for
this property is the ability to store data in Bitcoin scripts.

For a transaction Tx we abstract appending some data
d to this storage as an interface Tx.append_data(d) and
reading as d = Tx.read_data(loc, len), where loc specifies
the location and len specifies the length of the data to read.

(3) State dependent transaction validity. As the service
providers should remain stateless, the transaction validity rules
of the cryptocurrency must allow the validity of a transaction
to be conditioned on a state references in the transaction. That
is, the transaction should reference a previous transaction
to be valid if and only if that previous transaction has been
included in the chain and resulted in the currently valid state.
In Bitcoin and similar currencies, this is trivially supported
through the UTXO model, since a transaction is only valid if
all inputs are outputs of a previous transaction (i.e. included
in the chain) and have not been spent (i.e. represent the
current state). In Section VI we discuss how this property is
provided in account-based systems.

For a transaction Tx, we abstract this condition as an
interface Tx.require_previous(id) where id is a unique
identifier for a state or previous transaction and where Tx
will only be accepted as valid if id refers to the most recent
associated state or transaction.

(4) Atomic transactions. A smart contract should be able
to receive and send funds within a smart contract call. This
necessitates that atomic transactions with multiple origins and
multiple destinations must be possible, i.e. the smart contract
should be able to receive and send funds in a single contract
call. In UTXO-based cryptocurrencies this can simply be done
by creating a transaction that uses UTXOs from different
parties as inputs and creating multiple outputs. In other
cryptocurrencies, one atomic transaction may require creating
multiple transactions for which atomicity is guaranteed
through other mechanisms (see Section VI).

1This can for example be the identity function, which would be the case in
Bitcoin multisignatures. However, this could also be some form of signature
aggregation such as BLS [8] signatures.

For a transaction Tx, we abstract this property as an
interface Tx.add_transfer(src, dest, val) that adds a
transfer of funds with value val from src to dest to the
transaction. If a transaction contains multiple transfers, this
interface is called multiple times. All fund transfers are then
executed atomically.

V. BITCONTRACTS SPECIFICATION

In this section, we describe the Bitcontracts system in
detail. We start with our system model, and then explain the
contract deployment and execution.

A. System Model

There are three types of entities in Bitcontracts, as shown
in Figure 1:
Existing Blockchain System. Bitcontracts extends existing
blockchain systems with smart contracts. Existing entities
such as blockchain clients and miners (or stakers in Proof-of-
Stake systems), as well as the P2P infrastructure are agnostic
to Bitcontracts and thus do not need to be modified.
Bitcontracts Clients are participants and creators of smart
contracts. They connect to the blockchain’s P2P network and
to service providers for contracts in which they are participat-
ing. Bitcontracts clients can create smart contracts by creating
a transaction that sets an initial state and initial funds for the
contract and specifies the responsible service providers and
broadcasting this transaction to the blockchains P2P network.
Service Providers. A set of service providers called provider
set (P) that can execute smart contracts. Service providers are
stateless and do not need to connect to the blockchain. Service
providers get requests from clients to execute a contract based
on a given state, execute this contract and send the result back
to the client. Each provider creates a keypair for receiving and
sending transactions on initialization and publishes the public
key. This can be done in several ways; a provider can publish it
on the blockchain, he can make it accessible on some publicly
available website, or he can send it to clients directly if he
does not intend to make the service available to every entity.

B. Contract Deployment

Smart contracts in our system consist of a piece of
code written in an arbitrary language, some funds and a
contract state stored on the blockchain as a key-value store,
which allows for easy retrieval of the state during contract
execution. The smart contract account can be viewed as an
account managed by a quorum of service providers that can
collectively authorize transactions.

In order to deploy a smart contract, the client chooses an
executing subset E ⊆ P of an arbitrary size n and a t-out-of-n
trust model that describes which number t of the providers out
of the set E have to attest to the correctness of smart contract
execution. The client then creates a transaction Tx whose
recipient is a new account that is managed by E collectively,
i.e. a subset of E of size t can authorize transactions from
this account. For example, in UTXO based currencies, this
would correspond to a t-out-of-n multisig output.
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Fig. 2. Contract call. To call a smart contract, the client first assembles the
state from the blockchain and then sends the state, the previous transaction,
and his inputs to the service providers. The service providers then execute
the contract call and send the resulting transaction as well as their signatures
to the client, who finalizes the transaction and broadcasts it.

In addition to any initial funds going to the contract
account, this transaction contains a hash of the contract code,
a hash of its initial state, and the initial state itself in its
auxiliary storage. This is added to the transaction by the
client before broadcasting using the append_data interface.
The client then broadcasts the transaction and makes the code
available to any other party that should be able to interact
with the smart contract. If the contract should be publicly
available, he could even publish the contract code in the
contract creating transaction as well. Alternatively, he can
publish it on some publicly available website.

C. Contract Execution

To execute a smart contract, a client has to contact at least
t of the n providers in E to execute the smart contract. If
one of the contacted providers does not respond, he needs
to contact an additional one. A sequence diagram for the
contract call and execution is shown in Figure 2.

1 The client first fetches the current state of the contract
from the blockchain by going through the contract’s past
transactions and assembling the state from all state changes
stored in them.

2 To each of the contacted providers, the client then sends
the current state, the previous contract transaction Txprev ,
the smart contract code, any inputs for the smart contract
execution, and any information required to send funds from
the client to the smart contract (e.g. UTXOs from the client).

3 Each provider Pk then proceeds as follows:

(i) The provider computes the hash of the contract code,
retrieves the hash of the contract code from Txprev using
the read_data interface and compares the two values.
If the values match, he continues otherwise he aborts.

(ii) The provider does the same for the state, i.e. he retrieves
the state hash from Txprev , compares it to the computed
hash of the state received from the client, and aborts if
the values do not match.

(iii) Given the state, parameters, and additional inputs, the
provider executes the smart contract. This contract

execution can change the state of the contract and can
initiate transfer of funds to other addresses.

(iv) The service provider creates a raw transaction Tx and
makes it dependent on the previous transaction using
Tx.require_previous(Txprev.id).

(v) The provider hashes the new state and appends the hash
of the contract code as well as the state hash to the
transaction using the append_data interface.

(vi) The provider computes the list of state changes from
the previous state to the new state, serializes this list
and appends it to the transaction storage using the
append_data interface.

(vii) If the smart contract receives funds from the client or
the execution causes funds to be transferred to another
address, the service provider uses the add_transfer
interface to add the transfers to the transaction Tx.

(viii) Finally, the service provider Pk creates a signature
on the transaction as σPk

= sign(Tx), and sends the
transaction and signature back to the client.

4 The client receives the transactions Tx as well as a
signature σPk

from each provider Pk. Since the contract
execution is deterministic, each of the providers creates the
same transaction and provides a signature over it. The client
then assembles the multiparty signature Σ from all received
signatures σP1 , . . . , σPt . If the client is sending funds to the
contract (or is providing funds to pay for fees), he also
provides his own signature σC on Tx.

5 Finally, the client broadcasts the signed transaction
(Tx,Σ, σC) and it can be included in the blockchain.

D. Contract Dependencies

For contracts calling other smart contracts, we need to
ensure that (i) the whole call (including subcalls) is executed
atomically, and (ii) that execution integrity is guaranteed given
the chosen trust model of each contract. This requires that
state changes for all contracts are committed with a transaction
(or sequence of transactions executed atomically) signed by a
quorum of the executing set of each involved smart contracts.

In order to execute a contract call with subcalls, the client
must send the state, the latest transaction, and the code of all
involved contracts to all service providers, together with the
inputs to the contract call. The service providers then perform
the same steps as listed above in Section V-C, checking
the code and state hashes for every involved contract and
executing the full call chain. Since the resulting transaction
can only be included in the chain if it fulfills the multisignature
condition of all involved contracts, this ensures that all state
changes are only applied if all of the quorums are reached.

VI. PROPERTY ANALYSIS

In this section we analyze currently popular blockchain
systems and explain how they provide the properties that Bit-
contracts needs. Table I summarizes our analysis showing that
most popular cryptocurrencies provide all required properties,
or, in the few exceptions, could be easily extended to do so.
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Table I. Supported Properties. This Table shows which of the required prop-
erties are supported by the most prominent cryptocurrencies. (Í = provided

property, + = partially provided property, é = not provided property).

Model System
Storage of

Auxiliary data
Multiparty

Authorization
State dependent

Tx validity
Atomic

Transactions

UTXO

Bitcoin Í Í Í Í

Litecoin Í Í Í Í

Zcash Í Í Í Í

Dash Í Í Í Í

Cardano Í Í Í Í

Monero Í + Í Í

Account

Ethereum Í Í Í Í

Ripple Í Í Í é

Stellar Í Í é Í

EOS Í Í Í Í

A. Storage of Arbitrary Data

Some account based cryptocurrencies, such as Stellar and
Ripple, offer explicit mechanisms to store arbitrary data.
Others, such as Ethereum and EOS, support this through their
smart contract system, as arbitrary data can simply be sent
as a parameter to a contract call. In Ripple, this is supported
using a Memos field that adds data to a transaction, while
Stellar allows writing to a key value store of the account
using a Manage Data operation.

Most Bitcoin forks support specific outputs that only
store data using the OP_RETURN instruction. This allows
only a small amount of data to be stored per transaction
since at most one output using this instruction can be used
per transaction. There exist several workarounds for this
that allow storing more data per transaction with some
overhead [34] for currencies supporting Bitcoin script. We
explain one of them in Section VIII-B. In general, arbitrary
data can usually be stored in transaction fields reserved for
addresses, as addresses generally resemble a random string
and have no constraints that can be checked. For example,
in Monero, to store more than 32 bytes of data (which can
be stored as payment id) in a transaction, one has to create
dummy outputs that store the data in the field for the stealth
address. This has quite a large overhead, however, since it
requires a range proof of 2kB [33] for every 32 bytes of data.

B. Multiparty Authorization

A mechanism for multiparty authorization is often desired,
e.g. for wallets from companies, to enhance security and there-
fore usually supported in cryptocurrencies. Most UTXO-based
cryptocurrencies, such as Litecoin, Zcash, and Dash, are forks
of the Bitcoin protocol and also support Bitcoin script, which
enables multisignatures. Even though Cardano is not a fork of
Bitcoin, it also supports script and allows for multisignatures.
Stellar and Ripple (using the account model) implement mul-
tisignatures differently, but still support them, while Ethereum
and EOS already support expressive smart contracts that can
and have to be used to implement multisignatures.

Monero is a special case since it does not explicitly support
multisignature accounts. Instead, multiparty signatures have
to be created by splitting keys among multiple parties and
running an interactive signing protocol. In addition, they
are not well supported in software which makes them

cumbersome to create [4], [26]. While this is enough to
be compatible with our system, it requires that the service
providers interact, instead of just communicating with clients.

C. State Dependent Transaction Validity

In the UTXO-model, state dependent transaction validity
is an implicit consequence of the model, as inputs to a
transaction must be unspent outputs of a previous transaction,
which makes validity of a transaction directly dependent on
the previous transaction. All UTXO-based cryptocurrencies
therefore support this property.

In account based cryptocurrencies, such policies have to be
supported explicitly. This is the case in Ripple, for example,
that provides a special mechanism that allows specifying
the hash of the previous transaction from an account in the
AccountTxnID field of a transaction. The transaction will
then only be accepted by the ledger if this value is the hash
of the latest transaction of that account. Such a mechanism is
missing in Stellar, but could easily be added the same way,
to enable support for Bitcontracts.

As another possibility, state dependent transaction validity
can be implemented within an existing smart contract system,
as is the case with Ethereum and EOS.

D. Atomic Transactions

As with state dependent transaction validity, all UTXO-
based cryptocurrencies support atomic transactions as an
implicit consequence of the model: transactions must support
multiple inputs and outputs, since otherwise transactions
could not have variable amounts. In currencies supporting
smart contracts, such as Ethereum and EOS, this is again
supported through the smart contract system.

Stellar allows adding multiple payments to a transaction.
If the payment is from a different source than the sending
account, the respective account also needs to sign the
transaction. Ripple does not support atomic transactions with
multiple sources and destinations, however this could easily
be added, similar to Stellar.

VII. SECURITY ANALYSIS

In this section, we analyze the security, safety, and liveness
of Bitcontracts contracts. We show that Bitcontracts guar-
antees correctness if less than a quorum of an executing set is
compromised and liveness if an honest quorum is reachable.

A. Security & Safety

We first consider security and safety for contract calls.
We say that a contract execution is correct if all calls to that
contract that appear in the chain are serializable and each call
provides control-flow integrity based on the resulting state of
the call immediately preceding in the serialization of all calls.

Based on this, we make the following claim:

CLAIM 1. Given the specification of contract A, which
defines an executing set EA that consists of nA service
providers and quorum size tA, the following holds: If fewer
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than tA service providers from E are compromised, the
contract is executed correctly.

PROOF. We consider the following cases:
1. Correct client inputs. Assuming that the contract code

and state provided by the client are correct, all honest service
providers will only sign a transaction if the contained state
transitions are correct, i.e. the new state is the correct result
of the smart contract execution, given the state they received
as input. It follows that if fewer than tA service providers are
compromised, a transaction containing false state transitions
cannot gain a quorum for contract A and thus cannot be
committed to the blockchain, i.e. we have control-flow
integrity based on the state provided by the client.

2. False previous state or contract provided by the
client. For this case, we assume that the client provides the
correct previous transaction Txprev . Even though we know
from above that the state transitions themselves must be
correct, they are based on a state and contract code provided
by the client. The client could therefore send a forged state
as input state. However, the previous transaction Txprev that
led to this state contains the hashes of the state and the
contract. The service providers check that the provided state
and contract correspond to these hashes and abort if this is
not the case, i.e. a state transition based on a mismatched
state or contract code cannot reach a quorum for A.

3. False or outdated previous transaction provided
by the client. The above does not take into account that
the client could also provide a forged or outdated previous
transaction Txprev . A transaction can be outdated even in
the absence of an attack, simply because two clients call
the contract at approximately the same time. However, our
system needs to ensure no state transitions based on such an
outdated state are committed to the chain. Before signing the
resulting transaction Tx and sending it back to the client, the
service providers condition the validity of the new transaction
Tx on Txprev , i.e. Tx will only be accepted if Txprev was
committed to the blockchain, and it was the most recent
transaction of the contract account. This ensures that even
though a transaction based on an outdated (or false) previous
transaction may reach a quorum, it cannot be committed to
the blockchain since the validity criteria are not fulfilled.

It follows that a transaction with a quorum of signatures
must provide control-flow integrity, directly references a single
valid previous state, and if it is accepted into the chain, is the
only such transaction, which provides a unique serialization.

Since a contract call that involves multiple contracts
requires a quorum for each involved contract, the above
applies to all contracts independent of whether they involve
other contracts or not.

Finally, we note that our system does not have any security
implications on parties that are not participating in a contract,
even if said contract has a malicious quorum. This follows
directly from the fact that Bitcontracts does not change the
protocol of the underlying cryptocurrency.

1 from btsc.scexecution.base.CSmartContractBase import (
2 CSmartContractBase, public, private)
3 import ISmartContractUtility as util
4
5 class Faucet(CSmartContractBase):
6
7 def __init__(self):
8 super(Faucet, self).__init__()
9 self.withdrawals = 0

10
11 @public
12 def fill(self, amount):
13 util.IncreaseBalance(self.current_contract, amount)
14
15 @public
16 def drain(self, amount, address):
17 balance = util.GetBalance(self.current_contract)
18 assert(balance >= amount)
19 util.TransferFromBalance(
20 self.current_contract,
21 amount,
22 address
23 )
24 self.withdrawals += 1

Fig. 3. A simple faucet smart contract.

B. Liveness

Since liveness is clearly not achievable if no honest quorum
of service providers is reachable by the client, we add an
additional requirement regarding reachability in comparison
to safety, and make the following claim:

CLAIM 2. Given the specification of contract A, which
defines an executing set EA that consists of nA service
providers and quorum size tA, the following holds: If at least
tA uncompromised service providers are reachable by the
client, then contract A provides liveness.

PROOF. Here, we need to consider two cases. First, for
contract calls that do not involve other contracts, if at least
tA service providers of EA are honest and reachable, requests
from clients will be completed. If a client does not publish the
results, this has no effect on the availability of the contract,
since the service providers are stateless, i.e. they can still
complete requests from other clients based on the state that
is currently committed to the blockchain.

If contract calls involve other contracts, they may not be
completed, if the executing set of the other contract does
not have an honest quorum. However, this does not affect
other calls to contract A, since the providers are stateless
and therefore contract A can continue to make progress, i.e.
liveness is provided.

VIII. IMPLEMENTATION AND EVALUATION

In this section, we first describe a Bitcontracts Python
library for creating and running smart contracts that can
be used with a backend implementation for arbitrary
cryptocurrencies supporting the requirements listed in
Section IV-E. Second, we describe a Bitcontracts backend
for cryptocurrencies compatible with Bitcoin script. Finally,
we evaluate our implementation with regards to required
on-chain storage and transaction cost.

A. Python Library

Our Python library provides a base class from which all
smart contract classes must be derived. Once deployed, the
smart contract is an object that is stored serialized on the
blockchain. When a contract is run on a service provider,
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the library (after checking the code and state hashes) first
re-instantiates the contract object based on the state provided
by the client and then calls the method specified by the client
on this object with the provided inputs. Once the method
terminates, the library creates a list of state changes from the
previous state to the new state, serializes them, and stores
them in a transaction, which the service provider then signs.

The library also provides an API to smart contracts. In
our prototype, this API is limited to basic functions, such as
getting the smart contract balance, creating transfers of funds,
or calling other smart contracts, as well as decorators that
allow declaring functions as private (i.e. only callable by other
functions of this contract) or public (i.e. callable by anyone).
Other API functionality, e.g. some primitives such as getting
the caller identity can easily be added. Other functions sup-
ported in Ethereum, such as retrieving the current block hash
or the identity of the miner would require support from the
underlying cryptocurrency, and cannot be added for Bitcoin.
For notions of time, such as block height or block timestamps
in Ethereum, there are different possibilities for adding similar
primitives to the API that we discuss in Section X-C.

For the execution of the smart contract, a separate execution
environment is set up. In our prototype, this is currently a
simple subprocess. However, in a production environment,
contract execution needs to be executed in a sandboxed
environment, e.g. by running the code in a Docker container,
since the contract code is not trusted by the service provider.

An example for a simple faucet smart contract is shown in
Figure 3. The contract allows anyone to top up the faucet with
some funds or withdraw money, if funds are sufficient. For
each withdrawal, it also increments a counter that is stored
in persistent storage. The code shows how API functions
for retrieving the contract balance (Line 20) and for sending
funds (Lines 22-26) can be used.

B. Instantiation for Bitcoin-like Currencies

Transactions in UTXO-based cryptocurrencies consist of
multiple inputs and multiple outputs (that can later again be
inputs to a transaction). A chain of three Transactions resulting
from contract deployment and different calls is shown in Fig-
ure 4. Transactions resulting from a contract execution using
Bitcontracts have the components described in the following.

Contract Input. The contract input is an output from the
previous contract call. We describe it in more detail below. A
contract creation transaction does not have any contract inputs.

Client Inputs. Any Bitcontracts transaction can have zero
or more client inputs. These inputs are used to send funds to
the contract.

Contract output. This output holds the balance of the smart
contract and is locked by a Bitcoin script specifying a multisig
condition. We use a P2SH output with a redeem script contain-
ing an m-out-of-n-multisig condition. The parameters m and
n as well as the public keys included in it, are chosen by the
creator of the smart contract and maintained by the providers
throughout calls to it. The rules for standard transactions
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Fig. 4. Contract Transactions in UTXO-based cryptocurrencies. In the
transaction on the left, Bob creates a smart contract and funds it with $65,
which results in a transaction containing a contract output with the funds
stored in the contract, several state outputs for persistent storage and an
output returning the change to Bob. In the second transaction, Charlie calls
the smart contract and sends some funds to it. The contract execution causes
the contract to pay out money to Alice and Bob, i.e. in addition to the
contract and state outputs, the transactions contains outputs for Alice and
Bob, as well as a change output for Charlie. In the transaction on the right,
Bob called contract A, which then called contract B. The contract and state
outputs of contract A are listed first, then the same for contract B, and the
change output to Bob is listed last.

of Bitcoin and related cryptocurrencies allow for n ≤ 15 in
such redeem scripts. The redeem script also contains the hash
of the code and the hash of the current state of the smart
contract.These values are pushed to the stack and dropped,
thus no additional efforts are required to redeem the balance
output. They must still be included, s.t. the provider can check
the code and state of the smart contract, received alongside
the previous transaction against the hashes contained in it.
State Outputs. These outputs hold the state changes of
the contract call, i.e. all variables in the state that were
altered during this execution. State changes are stored as a
key-value-mapping from variable names to their new values.
Using Bitcoin’s OP_RETURN opcode, up to 80 bytes can be
stored in an output that is marked as non-redeemable, i.e. not
stored in the UTXO set of a Bitcoin client. However, due to
Bitcoins transaction propagation rules only one OP_RETURN
output per transaction is allowed which is rather limiting.

Several workarounds to this limitation are known and were
discussed by Sward et al. [34]. Our implementation uses mul-
tisig outputs with three fake public keys containing our data.
Bitcoin allows storage of up to three public keys (65 bytes
each) in standard multisig outputs (i.e. non-P2SH), which al-
lows storing 195 bytes with an overhead of 15 bytes per output.
By arranging the state outputs contiguously, data recovery is
straight forward and no additional overhead is incurred do to
specifying data locations. With a maximum transaction size of
100KB in Bitcoin we can store up to 92KB of state updates.
Client Outputs. These outputs pay money to clients. They
can be payouts from the smart contract, or change outputs
for a client using an input larger than the value he intended
to send to the contract.

To create a smart contract, the client uses one or multiple
of his UTXOs as inputs to a transaction that has a contract
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output with the initial contract funds, state outputs containing
the initial state and client outputs, e.g. a change output for the
client. In Figure 4 on the left, we show an example transaction,
in which Bob creates and funds a Bitcontracts contract.

To call a smart contract, the client first has to assemble the
contract state. He does that by iterating through the contract
transactions and applying the state updates from each of them.
Note, that this can even be done using a lightweight client,
i.e. the client does not need to download the full chain of the
underlying cryptocurrency. Once the state is assembled, he
calls the smart contract by contacting the service providers as
described in Section V-C and shown in Figure 2. The service
providers perform the required checks (e.g. matching contract
and state hashes), execute the contract and then assemble a
transaction. The transaction again contains a contract output
as described above, state outputs containing the state changes
and potentially client outputs. An example is shown in
Figure 4 in the middle, where Charlie sends some funds to a
smart contract, which causes a payout to Alice and Bob and
the return of some change to Charlie.

A smart contract call may include subcalls to other smart
contracts. In such a case, the client provides all required infor-
mation for all involved smart contracts to the service provider
and contacts the necessary service providers from all executing
sets (cf. Section V-D). The service providers execute the con-
tract as described above and when assembling the transaction
ensure that the contract and state outputs are ordered in the or-
der in which the contracts appeared in the call chain. For exam-
ple, in the last transaction in Figure 4 contract B was called by
contract A, therefore the outputs for contract A are listed first.

C. Evaluation

We analyzed the storage requirements and fees for on-chain
storage of persistent data. We do not evaluate the speed of
smart contract execution since the contracts are simply Python
programs. We also do not evaluate the throughput, since it
is equal to the throughput of the underlying cryptocurrency
in terms of data (except for some overhead as described
below) and highly contract dependent in terms of transactions
per second. For example, some contracts could result in
transactions barely larger than standard Bitcoin transactions,
while others might could use up to 100KB, leading to
throughputs that are orders of magnitude apart.

The maximum amount of data (i.e. state changes) that
can be stored depending on the cryptocurrency is shown in
Table II. Since we can store 195 bytes per 210 byte output,
the maximum storage is limited to at most 92KB in Bitcoin,
Bitcoin Cash, Litecoin, Dash, and Dogecoin, due to their
standardness rules that won’t propagate transactions larger
than 100KB2. In Zcash, the maximum transaction size is only
limited by the maximum block size (2MB), which allows
storing data of up to 1.86MB per transaction. Note that
these limits do not restrict the overall size of the state of a

2In the case of cryptocurrencies implementing segregated witness, this is
defined by a maximum weight. Since the storage in our case is in outputs,
this is de facto equivalent to a 100KB transaction size limit.

contract, but only the number of state changes per contract
call. In addition, these limits are affected by other parts of
the transaction, e.g. if a transaction has a lot of client inputs
or outputs, the limit for data storage is reduced accordingly.

In contrast, a current Ethereum contract can only change
between 13 and 51KB of storage (depending on whether
values are set from zero to non-zero) in one transaction given
the current block size limit. However, using Bitcontracts on
Ethereum would allow increasing this. Since Bitcontracts
does not require the state transitions to be stored in storage
and only requires them to be visible in a transaction, they
could simply be sent as transaction data, which requires
much less gas and thus would theoretically allow to store up
to 117KB of data per transaction. In practice this would be
slightly less, depending on the quorum size and the resulting
signature verification cost.

To compare the viability of using Bitcontracts in different
cryptocurrencies, we compare the cost for storing state
changes in Table II. The fees are given per KB of state
changes (i.e. taking into account overhead) based on the fees
for next block inclusion as of 2019-06-27. For comparison,
current transaction fees are also shown in the table, which
demonstrate the low overhead of Bitcontracts. In current
Ethereum contracts storing 1KB of data would cost between
$0.95 (if no values are changed from zero to non-zero) and
$3.81 (if all changed values are from zero to non-zero),
which does not include any computation. Compared to this,
the fees for on-chain storage using Bitcontracts are cheaper
in all compatible currencies except for Bitcoin, showing that
Bitcontracts is a viable solution in practice.

IX. FURTHER RELATED WORK

We already discuss closely related work and their limitations
in Section III-B. Here, we briefly discuss other related work.

Hyperledger Fabric [5] is a permissioned blockchain system
that uses a similar execution model to ours in that contracts
are executed first, then signed by a set of endorsers (similar
to service providers) and only ordered afterward. In contrast
to our solution, Fabric requires endorsers to be stateful and
base the execution on their local state. Because of this, Fabric
adds an additional validation phase that checks that the read
and write sets of concurrent executions are not in conflict,
which is neither required nor possible in our case. In addition,
Bitcontracts can extend the functionality of many existing
blockchains, including those in the permissionless setting,
while Fabric is a full standalone system.

Other related work includes work on state channels [28],
[17], [18], [27] that optimistically move on-chain execution of
smart contracts to off-chain execution. Contracts are executed
by unanimous consent of the contract participants. Such
constructions always require a fallback mechanism on-chain
and joining such a channel requires an on-chain execution. In
contrast, our solution is on-chain regarding the state storage,
but off-chain regarding execution, and execution is delegated
to service providers that do not need to agree unanimously.
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Table II. Bitcontracts cost evaluation. The table shows 1) transaction fees in popular
cryptocurrencies and 2) the cost of Bitcontracts transactions per state change for each currency. The table also shows 3) maximum transaction size for

each currency and 4) the maximum state change per transactions for Bitcontracts on each currency. In 5) these costs and limits are compared to Ethereum.

Bitcontracts
Bitcoin Bitcoin Cash Litecoin Dash Dogecoin Zcash 5) Ethereum

1) Transaction fee ($/KB) 14.8 0.01 0.14 0.02 0.00 0.12 -
2) Bitcontracts state-change cost ($/KB) 16.0 0.01 0.15 0.02 0.00 0.13 0.95 - 3.81
3) Maximum transaction size 100KB 100KB 100KB 100KB 100KB 2MB -
4) Bitcontracts max state-change per tx 92KB 92KB 92KB 92KB 92KB 1.86MB 13 - 51KB

X. DISCUSSION

In this section, we discuss service provider remuneration
and hardening, as well as providing a notion of time.

A. Remuneration of Service Providers

To incentivize service providers to participate in
Bitcontracts, several remuneration models are possible:
Subscription model. When the service providers are well-
established entities, they can provide a subscription model for
smart contract execution, similar to existing cloud providers.
In this case, they could receive regular payments through
arbitrary means, e.g. from the contract creator, to compensate
them for their responsibility of executing the smart contract.
This could be combined with service level agreements.
Built-in transaction fees. The system can be deployed with
fixed (per amount of computation) transaction fees, similar
to the gas model of Ethereum, where each operation in
the smart contract language is assigned a value based on
its computational complexity. For this scenario, similar to
Ethereum, the client can specify a “price per computational
unit” (the equivalent to gas in Ethereum) which will convert
the total computational complexity into an amount in the
underlying cryptocurrency, which will get paid to the service
providers in the transaction resulting from the execution.
Flexible remuneration. Since smart contracts are written in
an expressive language, handling fees can be implemented
within the contract itself, i.e., the terms of execution are itself
a part of the smart contract. Service providers can inspect
these terms and execute the smart contract if the resulting
fees are agreeable. The smart contract then initiates payments
to the service providers as part of the resulting transaction.

B. Hardening of Service Providers

In order to increase the security of each service provider,
they can execute contract code inside TEEs like SGX enclaves.
In such deployment, Bitcontracts clients, and all other parties,
can verify that the enclave is correctly initialized using remote
attestation. The remote attestation evidence, a signed statement
by Intel’s IAS service, can be recorded on the chain for public
verifiability. The attested enclave can create a key pair such
that the private key is only known to that enclave and the
public key is bound to the attestation evidence so that external
parties can then verify signatures made by the enclave.

If TEEs are used on each service provider responsible
for a given contract, Bitcontracts provides the following
security guarantee. To violate contract execution integrity, the
adversary must be able to compromise at least t enclaves. We

consider this a difficult task and note that it is a stronger secu-
rity guarantee than provided by previous solutions like FastKit-
ten [14]. If contract privacy relies on the use of TEEs, then it
is sufficient for the adversary to compromise just one enclave
to violate privacy (see below). For this reason, we recommend
that enclaved execution is complemented with cryptographic
protections when th strongest level of privacy is required.

C. Notion of Time

Many smart contracts benefit from having a notion of
time, e.g. for commit-reveal schemes that could be used in
an auction. Ethereum provides such a notion in two different
ways. One of them is a block timestamp, which is added by
a miner and does not necessarily show the exact time the
block was mined, and the other is the block number. Both
of these are coarse-grained, but they still allow clients and a
smart contract to share a notion of time.

In Bitcontracts there are different ways of achieving a
similar notion. The first assumes that honest service providers
are loosely synchronized (i.e. their local clocks are not too
far off from the real time), which is a reasonable assumption
in practice. In that case, the contract developer (or the API)
can use the local clocks of the service providers to provide
the time. E.g. if some operation is conditioned on the current
time being after some threshold, they can simply use the
time directly. For other functions, the client could supply a
timestamp and the API on each service provider would check
if this timestamp is within some range of the local time.

Another less generic possibility is to rely on primitives
provided by the underlying cryptocurrency. For example,
Bitcoin-like currencies provide timelocks that could be used
for many applications that require a notion of time, e.g.
auctions. However, this makes the API blockchain-dependent
and is thus less preferable than the first option.

XI. CONCLUSION

Smart contracts show great promise for various business
applications, but unfortunately most cryptocurrencies do
not support contracts and those currencies that do support
them have serious functional limitations. In this paper, we
have proposed a novel system called Bitcontracts that
extends existing cryptocurrencies with contract execution
capabilities. Our solution enables expressive Ethereum-style
smart contracts for unmodified legacy currencies and supports
a flexible trust model that can be adjusted to meet the security
requirements of various contract deployments.
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