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Abstract—Edge computing is a novel paradigm designed to
improve the quality of service for latency sensitive cloud appli-
cations. However, the state-of-the-art edge services are designed
to specific applications, which are isolated from each other.
To better improve the utilization level of edge nodes, public
resource sharing among edges from distinct service providers
should be encouraged economically. In this work, we employ the
payment channel techniques to design and implement EdgeToll,
a blockchain-based toll collection system for heterogeneous pub-
lic edge sharing. Test-bed has been developed to validate the
proposal and preliminary experiments has been conducted to
demonstrate the time and cost efficiency of the system.

Index Terms—edge, blockchain, pricing, system, testbed

I. INTRODUCTION

Cloud computing has transformed everything as a service
[1] nowadays. Nevertheless, latency sensitive cloud applica-
tions, e.g. interactive multimedia systems, are still struggling
from the unacceptable delay introduced by the network round-
trip time (RTT). Edge computing [2], an emerging computing
paradigm in future 5G network [3], is designed to improve the
quality of services (QoS) for time-critical cloud applications,
especially in the mobile scenarios. In contrary to the remote
cloud server, edge nodes are nearby infrastructures, a.k.a.
cloudlet, providing software services to the end users. On the
other words, edge serves as an intermediate between a terminal
device and the cloud to facilitate computing at the proximity
of data sources.

However, the state-of-the-art edge platforms are specifically
designed for customized applications, rather than a public
service for various applications and distinct user groups. For
example, an edge node deployed for power plants will not
handle video processing requests from a mobile game player,
even it has been staying in an idle status for a long time. The
isolation among different applications significantly reduces
the utilization level of edge resource, which still requires
continuous maintenance work. Despite security considerations,
one critical issue in preventing public edge resources sharing is
the lack of motivation for the edge infrastructure provider. An
incentive mechanism is still facing challenges and technical
issue from a real-world implementation. First, there is no
public third-party trustworthy proxy to collect toll fees for
multiple edge service providers. The heterogeneous nature
of edge deployments requires a transparent resource bidding
platform operated independently. Second, the toll fee for a
general service request is relatively small. It may be hard to use

legal tender for resource pricing. Third, distinct edge platforms
may adopt different pricing schemes and credit systems, which
prevent the resource consumers from leveraging available
edges nearby.

On the other hand, the blockchain system [4] has introduced
a transparent, trustworthy and unformed ecosystem for multi-
ple independent parties. This feature makes it a perfect solution
to the toll collection problem in heterogeneous public edge
sharing. The immutable and open source smart contracts [5]
driven by blockchain enables a transparent profit distribution
scheme among multiple edge service providers in an au-
tonomous manner. In addition, by leveraging cryptocurrency,
the edge nodes from multiple service providers are able to
use a unified, fine-granularity, and transparent pricing method
to charge users. From the users’ perspective, it is convenient
to spend one cryptocurrency in consuming resources from
multiple parties, which highly increase the availability of
edge services. In fact, the blockchain-based toll system can
minimize the cost for both providers and the users, given the
business rules are well-defined: there will be no centralized
operators to pocket the difference as its profit.

Nevertheless, existing blockchain systems are still in their
preliminary stages. Most well-known blockchain systems are
suffering from the high cost of gas fee and unacceptable
latency introduce by the Proof-of-Work (PoW) [6], while the
others, who minimize the overhead by adopting other con-
sensus models (e.g., Delegated-Proof-of-Stake from EOS1),
are not well recognized as full decentralized platforms. This
imposes a big challenge for the toll collections systems for
frequent but small amount transactions, e.g. the one we are
proposing. In this work, we design and implement EdgeToll,
an open source toll collection system for heterogeneous public
edge sharing. By leveraging the technique of payment chan-
nel, EdgeToll provides a transparent, quick and cost-efficient
solution to encourage participation of edge service providers.

The remainder of this paper is organized as follows. We
reviewed related work in Section II and presented the overview
of the proposed system in Section III. We then present the
technical design and test-bed implementation in Section IV
and Section V, respectively. Based on our development, the
experiments are conducted to validate our system in Sections
VI. Section VII concludes this paper.

1https://eos.io/
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II. RELATED WORK

A. Cloud and Edge Integration

Integrating edge to cloud platform involves a series of re-
search topics in data and computational offloading. Traditional
approach offloading schemes adopt virtualization techniques
to host multiple copies of virtual machines in both cloud and
edges [7], while another group of researchers has investigated
the possibility of dynamic code partitioning [8] [9]. However,
despite the form of offloading, the edge nodes intrinsically
provide resource services for end users through direct net-
work connectivity. In this work, we assume the end users
are requesting micro-services installed in the edge nodes to
simplify our model.

B. Blockchain and Decentralized Applications

A blockchain is a data structure designed to resist mod-
ifications [4]. With the help of peer-to-peer (P2P) system
and proof-of-work (PoW) [6] consensus model proposed in
BitCoin [10], the decentralized ledger for cryptocurrencies
became a reality. In order to add more values to the blockchain
ecosystem, Ethereum [11] was implemented to facilitate de-
centralized smart contracts, which are immutable and transpar-
ent executable programs hosted by the blockchain. Nowadays,
the blockchain-based decentralized applications (dApps) [12]
have been extended to various areas, including initial coin
offerings, social networks, networked games, and IoT. In this
work, we write smart contracts to develop a decentralized toll
collection system for edge service sharing among multiple
parties, which perfectly demonstrate the benefits of dApps.

C. Payment Channel

A payment channel [13] is a technique designed for “off-
chain” payments, which allows users to make multiple token
transactions with a minimum number of smart contract in-
vocations. With a typical payment channel, the payer will
deposit a certain amount of tokens to the smart contract
and continuously send signed micropayment to the payee
without notifying the smart contract. Once the payer and the
payee decided to terminate their payment process, a final
signed message agreed by both parties will be posted to
the smart contract, which splits the balance. In this case,
only opening and closing payment channel transactions will
be executed by the decentralized nodes, while an unlimited
number of transactions can be performed off-chain between
the participants. The state-of-the-art payment channels can be
classified into two types: uni-directional payment channel and
bi-directional payment channel. An uni-directional payment
channel only allows single directional transactions, while a bi-
directional payment channel [14] allows both parties to send
transactions. The duplex payment channel is composed of two
uni-directional payment channels, which allows transactions to
be sent from both directions.

III. SYSTEM OVERVIEW

In this section, we present the overview for the proposed
system.

As illustrated in Fig. 1, edge nodes, and end users should
register corresponding addresses in the blockchain before they
can participate in the proposed system. These addresses, being
accessed with the private keys known to their owners, are the
destinations of cryptocurrency tokens. From the perspective of
the end user, he/she need to discover nearby edge nodes that
provide the services and pay the corresponding cost after the
services are delivered. In case of multiple edge nodes available,
the user can choose one from these candidates, in terms of
their performance and offered price. On the other hand, the
edges can select their service recipients from the perspective
of task complexity and bidding price, if there are multiple
end users competing for the same resources. Note that, all
payments should go through a smart contract to guarantee the
transparency of the system.

Fig. 1. The System Architecture for EdgeToll

However, the proposed system will consume significant
tokens as gas fee when the users pay their toll to the edge
nodes. Also, the long transaction delay will also disable high
frequent service delivery to the users. Therefore, we may
need to create payment channels to minimize the overhead
of payment transactions. Nevertheless, it is impossible for a
user to establish payment channels to a lot of edge nodes,
since there will be another overhead here: the users need to
lock certain among of tokens to open the channel, while he/she
may only interact with one edge once.

IV. SYSTEM DESIGN

In order to solve the above issue, we employ an open
source proxy as a service matching server and the payment
intermediate. The first functionality of the proxy is to match
the appropriate service provider and recipient. This process
can be optimized with artificial intelligence (AI) algorithms.
Alternatively, this process can be a result of a series of compe-
titions and cooperation to be modeled with game theory. In our
implementation, the proxy always adopts greedy algorithms
to minimize users’ cost and maximize the edge nodes’ profit



under different scenarios. The second role of the proxy is
the intermediate of users and the edges. An end user only
opens one payment channel to the proxy, while the proxy open
payment channels to the edges. Of course, different edge nodes
from the same service provider may share the same blockchain
wallet, which can significantly reduce the number of payment
channels. In this work, since the payment from users to the
proxy, from the proxy to the edge service providers, are uni-
directional, we adopt the uni-directional payment channel.

Fig. 2. Sequential Diagram for EdgeToll

Fig. 2 illustrates the sequential diagram for the propose
EdgeToll system. Edges can be deployed by any companies
or individuals. For any edge who want to join in the EdgeToll
public sharing platform, a registration to the proxy is required
as its initialization process. Through the registration, an edge is
requested to provide its blockchain address and its IP address:
the former one is serving as the destination of toll fees and
the later one is how the end user’s device identify the edge.

After proxy receives edge’s address, the proxy will evaluate
edge’s condition and invoke a smart contract to open a pay-
ment channel for the registered edge. The proxy deposits to-
kens into that contract and set the recipient to be the registered
edge so that only the edge can withdraw the token. On the
other hand, the end users are usually mobile terminals whose
locations are changed over time. Once a user has a demand
for edge resources, he/she needs to open the payment channel
for the proxy through smart contracts. At the same time, the
user also needs to discover nearby edges and notify the list of
available candidates to the proxy. After the service requirement
is sent from the user to the proxy, service matching process
will be conducted to find the suitable pairs. After that, the user
needs to sign a signature on an agreement to split the tokens
and send it to the proxy. The signature contains transaction
information, including the recipient’s address, the sender’s
address and the amount of payment. The proxy, the recipient of

the signature, can validate the agreement with blockchain data,
which is a no-cost operation, since it is a simple blockchain
data reading function. After the validation, the proxy notifies
the corresponding edge to deliver its service to the user. Once
the user acknowledges the completion of service, the proxy
will sign its token splitting agreement with the edge to deliver
the edge’s profit. Note that, this is another signed agreement
from the proxy to the edge, which is different from the one
the proxy received from the user, though the two agreements
may have the same amount of tokens. In practice, the proxy
may charge a small amount of transaction fee to cover its
operational cost in providing service matching and payment
channel intermediate service. However, the transaction fee
should be written in an open source program that is agreed
by both parties.

After a series of payment, the users, the proxy or the edges
may choose to withdraw the tokens by closing the payment
channel, which will introduce a gas fee overhead, since it is
an on-chain operation. However, all payment channel based
off-chain transactions, as depicted in the loop of Fig. 2, are
fast data exchange without any cost.

A debatable issue for our design is that we introduced
a centralized proxy which handles payments among users
and edges, which violates the decentralization spirit of the
blockchain. In fact, a simple trick on software engineering
can minimize the impact of this concern: the proxy is a
completely open source and the proxy code will be hashed
and recorded in the blockchain. Any third party can audit the
proxy by comparing the hash value of the running system to
the blockchain recorded data, thus, maintain the transparency
of the system.

V. TEST-BED IMPLEMENTATION

In this section, we present our implementation of an open
source test-bed following the above design.

A. Enabling Software Packages

To facilitate the development process, we adopt a series
of cutting-edge software to implement constructing compo-
nents for the system. We select Ethereum2 as our blockchain
platform, due to its popularity and maturity in technical and
commercial community. In our implementation, we utilize
Truffle Suite3 to simulate a private blockchain environment
for software development and the Rinkeby Testnet4 to conduct
empirical experiments.

Ethereum offers Solidity5, a Turing-complete programming
language for smart contract development. With solidity, we
implement an uni-directional payment channel to support the
transactions among users, edges and, proxy. The smart contract
will be invoked by web3.py6 library, which is a python7

2https://www.ethereum.org/
3https://truffleframework.com/
4https://www.rinkeby.io/
5https://github.com/ethereum/solidity
6https://github.com/ethereum/web3.py
7https://www.python.org/



interface for interacting with the Ethereum blockchain and
ecosystem. The reason for choosing web3.py rather than the
web3.js framework is that our user client program and proxy
server are implemented with Python.

To integrate our EdgeToll system to an edge-terminal envi-
ronment, we leverage the edge platform from Jiangxing Intel-
ligence Inc.8, an edge computing start-up located in Shenzhen,
China. Each Jiangxing edge node provides a Wi-Fi signal as
the portal to access its AI applications, including real-time
face recognition and positioning.

To facilitate dynamical edge service discovery, we adopt
pywifi9, a python library to search available edge services.
The list of available edge access points will be updated to
the proxy in real-time. After connecting to the edge, the
client will initialize a TCP/IP request through the Application
Programming Interface (API) offered by Jiangxing edges to
submit the user’s image in base64 format, and the edge will
return the location of the face in the image in a JSON file10.

The versions of software packages are listed in Table I.

TABLE I
SOFTWARE VERSIONS

Name Web3.py Truffle Solidity
Version 4.8.2 v4.1.14 0.424

B. Hardware Specifications
Jiangxing edges used in our test-bed are Acorn RISC

Machine architecture (ARM) computers with 8 GB RAM
and Intel i5-7300 CPU. The edge is also equipped with
a TP-LINK WDR5620 wireless access point, which adopts
IEEE802.11G/802.11B standard with 1200 MB wireless rate
and 2.4G/5G radio frequency.

Fig. 3. Demonstration of the Implemented EdgeToll Test-bed

Fig. 3 illustrates a running demonstration of our proposed
system, which consists of three edge nodes and one terminal
for the end user. All experiments described in following
sections are conducted over the test-bed.

8http://www.jiangxingai.com/
9https://github.com/awkman/pywifi
10https://www.json.org/

VI. EXPERIMENTS AND ANALYSIS

In this section, we validate the design and implementation of
the proposed EdgeToll system with preliminary experiments.

A. Experiment Design
Because there are transaction latency and gas fee in

Ethereum blockchain, overall service time and the monetary
cost should be measured in our experiments. In addition, due
to the resource competition among multiple users or multiple
edges, the impact of the service requests frequency should
be an important factor to be considered as well. Therefore,
we design the following three experiments from different
perspectives.

• Benefit of Payment Channel: the experiment compares
the time and cost efficiency with and without the utiliza-
tion of payment channel technology. Our hypothesis is
that with more transactions posted, payment channel will
save more time and monetary cost, due to its off chain
nature.

• User Cost Minimization: this experiment is designed
from the perspective of end users, when there are multiple
available edge nodes to use. In this scenario, the user
proposes an expected price for their tasks, while proxy
analyzes the status of edges to match the optimal one
for the users. In fact, the edges may offer dynamic prices
according to its capacity and workload, similar to the spot
instance pricing11 available in cloud computing. Accord-
ing to this, we simplify our experiment by adopting the
price as the only factor, thus, the proxy will match the
edge with the lowest price, which is usually lower than
the price proposed by the users. We denote the difference
between the proposed price and the final price as the
saved cost.

• Edge Revenue Maximization: this experiment considers
the scenarios when multiple users are competing for
limited edge resources, in which the users will post their
expected prices together with their task requirements and
the proxy may help edge to decide which user to serve
first. The result may be determined by many factors,
including task complexity and available resource in the
edge. In this experiment we simplify the selection by
adopting price users offered as the only factor, thus, to
maximize the edges’ own revenue.

B. Experimental Settings
Here we present the default parameter settings for our

following experiments. The default block rate in Rinkeby,
approximately one block per 15 seconds, is adopted if no
specific settings are imposed. The mobile terminal is a single
board computer with Ubuntu 16.04 Linux operating system.
By default, we iterate the numbers of users’ tasks from 1 to 50
with a step of 5. With payment channel, we assume the users
will not close the channel until they complete all of their tasks.
Each set of experiments has been repeated for 100 times and
their average values were derived as our final results.

11https://aws.amazon.com/ec2/spot/pricing/



C. Result Analysis

Fig. 4 and Fig. 5 illustrate the performance comparisons
between the system with and without the support of the
payment channel. We set up different parameters as depicted in
the legends, where PC represents using the payment channel,
while WPC represents the system without using a payment
channel. The value of 5s, 10s, and 15s represent the different
block intervals used in Fig. 4, while 1 Gwei, 4 Gwei, and 7
Gwei in Fig. 5 represent different gas fee required for posting
one transaction to the blockchain.

Fig. 4. The impact of task number on the total complete time

Fig. 5. The impact of task number on the transaction gas fee

In Fig. 4, we study the impact of users’ task numbers on
the total completion time, which consists of edge service time
and the blockchain transaction delay for the toll payment when
applicable. From the results, it is obvious that the total time
cost increases linearly as the growth of numbers of users’
task. When the total number of users’ tasks is small, e.g. 1
task, the total time cost of EdgeToll may be no different to
that of systems without payment channel. However, the total

waiting time values for conventional approaches, who directly
pay tokens through blockchain transactions, are increased at
a much higher speed, especially when the block interval is
relatively high. For example, the difference of total service
time cost between two schemes is 1185 seconds when the
block time is set 15 seconds, a common Rinkeby scenario,
which means the payment channel can reduce the time cost
by more than 110% from PC. In fact, the largest overall latency
reduction in different block time can be up to 31.8%, 39.6%,
110% in the ratio of PC, respectively.

A similar phenomenon can be observed in Fig. 5, which
shows the difference of gas fee the system need to consume
between the two paradigms. One significant feature is that, the
gas fee for payment channel based experiments is a constant,
no matter how many tasks are posted by the users. This is
because all payments for their tasks are sent through the
channel, which is a no-cost off-chain process. In fact, the
only gas fees they need to pay are the opening and closing
transactions in the beginning and the end of their service usage.
Things are completely different without the help of payment
channel: the total gas fee may increase as the total number of
tasks increase. And if the price for the gas increase, the slope
will become larger as well. For instance, when a user has a
heavy workload e.g. 50 tasks and high gas price ( gas price
= 7 Gwei), the total gas fee without payment channel will
be nearly 40 times larger than that of the proposed EdgeToll
system. In fact, even in the low gas price, e.g., gas price =
1 Gwei, the gas fee without payment channel can also be 6
times larger when user’s workload is heavy as 50 tasks.

Fig. 6. The impact of task number on the saved cost

Fig. 6 shows the result of user cost minimization. In the
figure, CM represents the cases using user cost minimization
algorithms in the proxy, while WCM represents the scenarios
that the end users randomly select one nearby edge to post their
requests. Regarding the dynamic pricing data proposed by the
edges in our experiment, we are not able to find corresponding
data set for a trace-drive simulation. However, we believe the
spot instance price from Amazon Web Service (AWS) can



be a reference for us, since they are intrinsically the same
mechanism: unit prices are subject to the available resources
can be provided. Therefore, we choose a number of random
functions to generate dynamic prices for edge nodes, while
the mean values of the normal random distribution function
can be attained from observing the mean of price history in
amazon web service, Linux/Unix d2.xlarge products. In Fig.
6, different schemes are corresponding to different random
function. The numeric value 1 indicates a normal distribution
with mean = 0.207 and standard deviation = 0.01, the value 2
implies a uniform distribution with interval = [0.17, 0.23], and
the value of 3 means another normal distribution with mean =
0.207 and standard deviation = 0.005. As shown in the figure,
the system can bring remarkable benefits to the user. When
the price is relatively stable, for example, when the standard
deviation is 0.005, the improvement of the system is relatively
insignificant. However, when the price vacillates in a uniform
random function, the overall saved cost for the users with 50
tasks is around 0.73 ether, nearly 50% reduction in comparison
to a traditional system.

Fig. 7. The impact of task number on the revenue of edges

Fig. 7 depicts the results of edge revenue maximization.
In this figure, RM represents the scenario that using revenue
maximization of the proposed system, while WRM represents
the case that an edge will pick users’ proposal in random. The
numeric value after the scheme abbreviation is the number of
competing users in the experiments. For example, RM:15 in-
dicates the result of resource maximization with 15 competing
users. Our hypothesis is that fiercer competition may introduce
more space for the revenue maximization. To simplify our
simulation, the proposed price of users is generated by normal
function with mean = 0.23 and standard deviation = 0.01.

Similar to the graph measuring in user cost minimization,
overall revenue derived by the edges increases along with the
growth in the number of users’ tasks. However, given the
edges randomly select their service recipients, there will be
no difference in overall revenue no matter how many users
are competing for the resource. This is well illustrated by

the three overlapping lines for the three WRM schemes. In
contrast, the greedy revenue maximization algorithm can bring
distinct profits for the edges, given the numbers of the users
are different. Given the cases of 50 tasks to be completed, the
profit enhancement for 15 competitors case is about 1 ether
(nearly 100 %), while that of 5 competitors is around 0.7 ether
(nearly 70 %). This result conforms to the supply and demand
rule in a free market.

VII. CONCLUSION

An efficient toll collection system is the key to motivate the
heterogeneous edge platforms to share their vacant resource
from a commercial point of view. In this work, we design
and implement a blockchain-based system to fill the blank in
this area. By leveraging the payment channel technique, we
provide a quick and cost-efficient solution for a decentralized,
transparent and trustworthy toll collection. The system is sig-
nificant and powerful because it can reduce the cost of gas fee
and total time, benefits both users and edges from economic
perspective. Most importantly, the successful building of the
system will contribute to the public popularization of edges,
which can reduce the computational pressure in cloud service
and accelerate the future of the Internet of Things (IoT).
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