SoK: Communication Across Distributed Ledgers

Alexei Zamyatin
Imperial College London and
SBA Research

Eleftherios Kokoris-Kogias
Ecole polytechnique fédérale de
Lausanne

Mustafa Al-Bassam
University College London

Pedro Moreno-Sanchez
TU Wien

Dionysis Zindros
University of Athens and IOHK

Aggelos Kiayias
University of Edinburgh and IOHK

William J. Knottenbelt
Imperial College London

Abstract

Enabling secure communication across distributed systems is usu-
ally studied under the assumption of trust between the different sys-
tems and an external adversary trying to compromise the messages.
With the appearance of distributed ledgers or blockchains, numer-
ous protocols have emerged, which attempt to achieve trustless
communication between distrusting ledgers and participants. Cross-
chain communication (CCC) thereby plays a fundamental role in
cryptocurrency exchanges, sharding, bootstrapping of new and
feature-extension of existing distributed ledgers. Unfortunately, ex-
isting proposals are designed ad-hoc for specific use-cases, making
it hard to gain confidence on their correctness and composability.

We provide the first systematic exposition of protocols for CCC.
First, we formalize the underlying research problem and show that
CCC is impossible without a trusted third party, contrary to common
beliefs in the blockchain community. We then develop a framework
to evaluate existing and to design new cross-chain protocols. The
framework is based on the use case, the trust model, and the security
assumptions of interlinked blockchains. Finally, we identify security
and privacy challenges faced by protocols in the cross-chain setting.

This Systematization of Knowledge (SoK) offers a comprehensive
guide for designing protocols bridging the numerous distributed
ledgers available today. It aims to facilitate clearer communication
between academia and industry in the field.

1 Introduction

Why Cross-Chain Communication is Worthy of Research.
Since the introduction of Bitcoin [140] as the first decentralized
ledger currency in 2008, the topic of blockchains (or distributed
ledgers) has evolved into a well-studied field both in industry and
academia. Nevertheless, developments are still largely driven by
community effort, resulting in a plethora of blockchain-based digi-
tal currencies being created. Taking into account the heterogeneous
nature of these systems in terms of design and purpose, it is un-
likely that there shall emerge a “coin to rule them all", yielding
interoperability an important research problem. Thereby, cross-
chain communication is not only found in currency transfers and
exchanges [18, 19, 93-95], but is a critical component of scalabilty
solutions (synchronization in sharded systems [22, 23, 26, 116, 175]),

Contact email: azamyatin@imperial.ac.uk

feature extensions (sidechains [37, 85, 112, 124] and cryptocurrency-
backed assets [165, 177]), as well as bootstrapping of new and
migration between existing systems [3, 51, 104, 158]. In addition,
numerous competing projects aiming to create a single platform
for cross-chain communication have recently emerged [20, 97, 121,
157, 166, 167, 170]. However, in spite of the vast number of use
cases and solution attempts, the underlying problem of cross-chain
communication has neither been clearly defined, nor have the as-
sociated challenges been studied or related to existing research.

Historical Background and Difference to Databases. The need
for communication among distributed processes is fundamental to
any distributed computing algorithm. In databases, to ensure the
atomicity of a distributed transaction, an agreement problem must
be solved among the set of participating processes. Referred to as
the Atomic Commit problem (AC) [45], it requires the processes to
agree on a common outcome for the transaction: commit or abort.
If there is a strong requirement that every correct process should
eventually reach an outcome despite the failure of other processes,
the problem is called Non-Blocking Atomic Commit (NB-AC) [36].
Solving this problem enables correct processes to relinquish locks
without waiting for crashed processes to recover. As such, we can
relate the core ideas of communication across distributed ledgers to
NB-AC. The key difference hereby lies within the security model of
the interconnected systems. While in classic distributed databases
all processes are expected to adhere to protocol rules and, in the worst
case, may crash, distributed ledgers, where consensus is maintained
by a committee, must also consider and handle Byzantine failures.

Contributions. In this work, we provide the first systematic anal-
ysis of communication across distributed ledgers. We formalize the
underlying problem of Correct Cross-Chain Communication (CCC)
(Section 2) and show it is impossible without a trusted third party
(TTP) by relating CCC to the Fair Exchange problem (Section 3).
With the impossibility result in mind, we propose a framework
to design new and evaluate existing CCC protocols, focusing on
the inherent trust assumptions thereof (Sections 4-5). Next, we
overview CCC protocols proposed in literature and introduce a
classification based on our framework (Section 6). Finally, we dis-
cuss implications for the blockchain, network, and threat models,
and examine transcendence for privacy (Section 7).

2 The CCC Problem

In this section, provide a formal definition of the Correct Cross-
Chain Communication (CCC) problem and introduce the model for
blockchains involved in CCC.

2.1 Distributed Ledger Model

We use the terms blockchain and distributed ledger as synonyms
and introduce some notation, based on [85] with minor alterations.
Ledgers and State Evolution. When speaking of CCC, we con-
sider the interaction between two distributed systems X and Y,
which can have distinct consensus participants and may employ
different agreement protocols. Thereby, it is assumed the major-
ity of consensus participants in both X and Y are honest. The
data structures underlying X and Y are blockchains (or chains),
i.e., append-only sequences of blocks, where each block contains
a reference to its predecessor(s). We denote a ledger as L (Ly and
Ly respectively) and define its state as the dynamically evolving
sequence of included transactions (TXI, .., TX,,). We assume that
the evolution of the ledger state progresses in discrete rounds in-
dexed by natural numbers r € N. At each round r, a new set of
transactions (included in a newly generated block) is written to the
ledger L. We use LP[r] to denote the state of ledger L at round r,
i.e., after applying all transactions written to the ledger since round
r — 1, according to the view of some party P (in a properly working
blockchain system, all parties will eventually have agreeing ledgers).
A transaction can be written to L only if it is consistent with the
system’s consensus rules, given the current ledger state LF [r]. This
consistency is left for the particular system to define, and we de-
scribe it as a free predicate valid(-) and we write valid(Tx, Li [r])
to denote that Tx is valid under the consensus rules of L, at round
r according to the view of party P. To denote that a transaction Tx
has been included in / successfully written to a ledger L as position r
we write TX € LP[r]. While the ordering of transactions in a block
is crucial for their validity, for simplicity, we omit the position of
transactions in blocks and assume correct ordering implicitly.
Notion of Time. The state evolution of two distinct ledgers Ly
and L, may progress at different time intervals: In the time that Ly
progresses one round, Ly may, for example, progress forty rounds
(e.g., as in the case of Bitcoin [140] and Ethereum [56]). To correctly
capture the ordering of transactions across Ly and L, we define a
clock function 7 which maps a given round on any ledger to the
time on a global, synchronized clock 7 : r — t. We assume that
the two chains are nevertheless synchronized and that there is no
clock drift between them. We use this conversion implicitly in the
rest of this paper. For conciseness, we will use the notation L¥ [¢] to
mean the ledger state in the view of party P at the round r = 771 (¢)
which corresponds to time ¢, namely LPI=1(1)].

Persistence and Liveness. Each participant P adopts and main-
tains a local ledger state LP [t] at time ¢, i.e., her current view of
the ledger. The views of two distinct participants P and Q on the
same ledger L may differ at time ¢ (e.g., due to network delay):
LP[¢] # L9[¢]. However, eventually, all honest parties in the ledger
will have the same view. This is captured by the persistence and
liveness properties of distributed ledgers [81]:

DEFINITION 1 (PERSISTENCE). Consider two honest parties P, Q
of a ledger L and a persistence (or “depth") parameter k € N. If a

transaction TX appears in the ledger of party P at time t, then it will
eventually appear in the ledger of party Q at a time t' > t (“stable"
transaction). Concretely, for all honest parties P and Q, we have that
¥Vt e N:Vt' > t+k: LP[t] < LO[¢'], where LE[f] < LO[¢']
denotes that L at time t is a (not necessarily proper) prefix of L2[#']
at timet’.

As parties will eventually come to agreement about the blocks
in their ledgers, we use the notation L[] to refer to the ledger state
at time ¢ shared by all parties; similarly, we use the notation L[r]
for the shared view of all parties at round r. This notation is valid
when t is at least k time units in the past.

DEFINITION 2 (LIVENESS). Consider an honest party P of a ledger L
and aliveness delay parameter u. If P attempts to write a transaction
TX to its ledger at time t € N, then Tx will appear in its ledger at
timet’, ie,3t’ € N:t’ > t A Tx € LP[t’]. Additionally, we require
the interval t’ — t to be upper bound by u.

Transaction Model. A transaction TX, when included, alters the
state of a ledger L by defining operations to be executed and agreed
upon by consensus participants Py, ..., P,. The expressiveness of
operations is thereby left for the particular system to define, and
can range from simple payments to execution of complex pro-
grams [171]. For generality, we do not differentiate between specifics
transactions models (e.g. UTXO [140] or account-based models [171]).

2.2 CCC System Model

Consider two independent distributed systems X and Y with un-
derlying ledgers Ly and Ly, as defined in Section 2.1. We assume a
closed system model as in [123] with a process P running on X and
a process Q running on Y. A process can influence the state evolu-
tion of the underlying system by (i) writing a transaction TX to the
underlying ledger L (commit), or (ii) by stopping to interact with the
system (abort). We assume that P possesses transaction TXp, which
can be written to Ly, and Q possesses TXQ, which can be written to

Ly. A function desc maps a transaction to some “description” which
can be compared to an expected description value, e.g., specifying
the transaction value and recipient (the description differs from
the transaction itself in that it may not, for example, contain any
signature). P possesses a description dg which characterizes the
transaction X5, while Q possesses dp which characterizes Tx,.
Informally, P wants TX , to be written to Ly and Q wants T, to be
written to Ly. Thereby, dp = desc(1x},) implies T, is valid in X
(at time of CCC execution), as it cannot be written to Ly otherwise
(analogous for dp).

For the network, we assume no bounds on message delay or
deviations between local clocks, unless the individual blockchain
protocols require this. We treat failure to communicate as adversar-
ial behavior. We note that, in the anonymous blockchain setting,
more synchrony requirements are imposed than in the byzantine
setting. Our construction does not impose any additional synchrony
requirements than the individual ledger protocols. Hence, if P or
Q become malicious, we indicate this using boolean “error vari-
ables" [83] mp and mgp. We assume P and Q know each other’s
identity and no (trusted) third party is involved in the communica-
tion between the two processes.

2.3 Correct Cross-Chain Communication

The goal of cross-chain communication can be described as the
synchronization of processes P and Q such that Q writes Tx, to Ly
if and only if P has written Txp, to Ly. Thereby, it must hold that
desc(Txp) = dg A desc(TXQ) = dp. The intuition is that Tx, and
TX, are two transactions which must either both, or nelther, be
included in Ly and L, respectively. For example, they can constitute
an exchange of assets which must be completed atomically.

To this end, P must convince Q that it created a transaction Tx,
which was included in Ly. Specifically, process Q must verify that
at given time ¢ the ledger state Ly [t] contains TX,. A cross-chain
communication protocol which achieves this goal, i.e., is correct,
must hence exhibit the following properties:

DEFINITION 3 (EFFECTIVENESS). If both P and Q behave correctly
and T, and Tx, match the expected descriptions (and are valid),
then 1, will be included in Ly and X, will be included in L. If

either of the transactions are not as expected, then both parties abort.
(desc(Txp) = dg A desc(TXQ) =dpAmp=mg =1
= TXp € Lx A X € Ly)
A (desc(Txp) # do vV deSC(TXQ) #dp
= TXp ¢ Lx A X, & Ly)

DEFINITION 4 (AToMICITY). There are no outcomes in which P
writes TXp, to Ly at time t but Q does not write TXg beforet’, or Q

writes X to Ly att’ but P did not write T}, to Ly before't.
~((1xp € Ly A TX(¢ Ly) V (1xp & Lx A TXg € Ly)

DEFINITION 5 (TIMELINESS). Eventually, a process P that behaves
correctly will write a valid transaction Tx,, to its ledger L.

From Persistence and Liveness of L, it follows that eventually P
writes TX, to Ly and Q becomes aware of and verifies Tx .

DEFINITION 6 (CORRECT CRrOSS-CHAIN COMMUNICATION (CCC)).
Consider two systems X and Y with ledgers Ly and Ly, each of which
has Persistence and Liveness. Consider two processes, P on X and
Q on 'Y, with to-be-synchronized transactions TXp and TXQ. Then
a correct cross-chain communication protocol is a protocol which
achieves Txp, € Lx A TXg € Ly and has Effectiveness, Atomicity, and
Timeliness.

Summarizing, Effectiveness and Atomicity are safety properties.
Effectiveness determines the outcome if transactions are not as
expected or both transaction match descriptions and both processes
are behaving correctly. Atomicity globally restricts the outcome to
exclude behaviors which place a disadvantage on either process.
Timeliness guarantees eventual termination of the protocol, i.e., is
a liveness property.

2.4 Generic CCC Protocol

We now describe a generic CCC protocol, which handles the syn-
chronization of transactions, which can represent the transfer of
good, assets or objects, between two blockchain-based distributed
systems X and Y with ledgers Ly and L, which have Persistence
and Liveness. A visual representation is provided in Figure 1. A
CCC protocol can be compartmentalized into four phases.

: commit :
P writes TX, kX

—r
X: —.‘—D“D‘—D‘—D‘—D‘—D‘—D‘—DM‘—

CLx[r] el Lyl 4wy +k]
: verlfy : :
: . ; Ly[r] Lyl +uy + k]
: o P
:]]] [] .
Y: _D L [) B L [D‘T
:commit : ky
Q writes TXgp

Figure 1: CCC between X and Y. Process Q writes X only if
P has written Tx,. We set exemplary persistence delays for X
and Y as kx = 4and ky = 3, and liveness delays as uy, = uy = 0.
For readability, we do not visualize the abort phase.

1) Setup. The setup phase is required to establish the parameters of
CCC. Specifically, as CCC protocol is parameterized by the involved
distributed systems X and Y and the corresponding ledgers Ly and
Ly, the involved parties P and Q, the transactions Tx p and TXQ
as well as their descriptions dp and dg. The latter descriptions
ensure the validity Tx, and X, and determine the application-
level specification of a CCC protocol. For example, in the case of an
exchange of assets or digital goods, dp and dg define the asset types,
transferred value, time constraints and any additional conditions
agreed by parties P and Q. Typically, the setup process occurs out-
of-band between the involved parties and we hence shift our focus
on the actual execution of CCC in the rest of this paper.

2) (Pre-) Commit on X. Upon a successful setup, a publicly verifi-
able commitment to execute the CCC protocol is published on X:
P writes! transaction Tx p toits local ledger Li at time ¢ in round r.
Due to Persistence and Liveness of Ly, all honest parties of X will
report TX, as stable (TXP € Ly) in round r + uy + ky, where uy is
the liveness delay and ky is the “depth” parameter of X.

3) Verify. Next, the correctness of the commitment on X by P
is verified by Q. Specifically, Q checks (or receives proof from P)
that (i) dp = desc(1x}) and (ii) T, € Lx hold. From Persistence
and Liveness of X we know the latter check will succeed at time ¢’
which corresponds to round r +uy +kx on X, if P executed correctly.
4a) Commit on Y. Upon successful verification, a publicly verifi-
able commitment is published on Y: Q writes transaction Tx 0 to

its local ledger Lg at time ¢’ in round r’ on Y. Due to Persistence
and Liveness of Ly, all honest parties of Y will report X as stable
(TXQ € Ly) in round r’ + uy + ky, where uy is the liveness delay
and ky is the “depth” parameter of Y.

4b) Abort. If the verification fails and / or Q does not execute the
commitment on Y, a CCC protocol can exhibit an abort step on
X. This is achieved by “reverting” the state changes Tx,, made to
L. Since blockchains are append only data structures, reverting
requires broadcasting an additional transaction Tx), which resets
X to the state before the commitment of Tx .

!In off-chain protocols [88], the commitment can be done by exchanging pre-signed
transactions or channel states, which will be written to the ledger at a later point.

It is worth noting that some CCC protocols, specifically such
that facilitate exchange of assets, follow a two-phase commit design.
In this case, steps 2 and 4a are executed in parallel, followed by the
verification and (optional) abort steps on both X and Y.

A further observation is that a CCC protocol necessarily requires
a conditional state transition to occur on Y, given a state transition
on X. As such, we do not consider (oracle) protocols which merely
relay data across distributed ledgers [4, 51, 55, 57, 163], as CCC
protocols by themselves.

3 Impossibility of CCC

In this section we show that CCC is impossible without a trusted
third party by reducing it to the Fair Exchange problem [29, 142].
Fair Exchange. On a high level, an exchange between two (or
more) parties is considered fair if either both parties receive the
item they expect, or neither do [31]. Fair exchange can be considered
a sub-problem of fair secure computation [43], and is known to
be impossible without a trusted third party [74, 75, 142, 172]. We
provide a definition of Fair Exchange in accordance to existing
literature in Appendix A.

3.1 Relating CCC to Fair Exchange.

We proceed to show that Correct Cross-Chain Communication is
impossible without a trusted third party (TTP) under our determin-
istic system model by reducing it to Fair Exchange [29, 31, 142].
We recall, a fair exchange protocol must fulfill three properties:
Effectiveness, (Strong) Fairness and Timeliness [29, 142].

LEMMA 1. Let M be a system model. Let C be a protocol which
solves CCC in M. Then there exists a protocol S which solves Fair
Exchange in M.

Proor (skeTcH). Consider that the two processes P and Q are
parties in a fair exchange. Specifically, P owns an item (or asset)
ap and wishes to exchange it against an item (or asset) ag owned
by Q. Assume Tx, assigns ownership of ap to Q and TXo transfers
ownership of ag to P (specified in the “descriptions” dp of Tx, and
dg of TXQ). Then, Tx, must be included in Ly and X must be
included in Ly to correctly execute the exchange. In other words, if
TXQ €ly and TX) € Ly, then P receives desired ag and Q receives
desired ap, i.e., P and Q fairly exchange ap and ag.

We observe the definition of Timeliness in CCC is equivalent to
the definition of Timeliness in fair exchange protocols, as defined
in [142]. Effectiveness in fair exchange states that if P and Q behave
correctly and do not want to abandon the exchange (ie., mp =
mg = 1), and items ap and ag are as expected by Q and P, then
at the end of the protocol, P will own the desired ap and Q will
own the desired ap [142]. It is easy to see Effectiveness in CCC
achieves exactly this property: if P and Q behave correctly and
desc(Txp) = dp and desc(TXQ) = dg, i.e, TX, transfers ap to Q
and X5 transfers ag to P, then P will write TX), to Ly at time ¢
and Q will write TX, to Ly before time t’. From Persistence and
Liveness of Ly and L, we know both transactions will eventually be
written to the local ledgers of P and Q, consequently all other honest
participants of X will report Tx, € Lx and honest participants of
Y will report X, € Ly. From our model we know that honest

participants constitute majorities in both X and Y. Hence, P will
receive ag and Q will receive ap.

Strong Fairness in fair exchange states that there is no outcome
of the protocol, where P receives ag but Q does not receive ap, or,
vice-versa, Q receives ap but P does not receive ag [142]. In our
setting, such an outcome is only possible if Tx,, € Lx A X, gLy
or TXp, & Ly A X, € Ly, which contradicts the Atomicity property
of CCC. O

We construct a protocol for Fair Exchange using CCC in Appen-
dix B. It is left to show that CCC is defined under the same model
as Fair Exchange. The CCC model assumes the same asynchro-
nous (explicitly) and deterministic (implicitly) system model (cf.
Section 2.2) as [78, 142]. As we allow P and Q to stop participat-
ing in the CCC protocol at any time, we also have the same crash
failure model as [78, 142]. Hence, we conclude:

THEOREM 1. There exists no asynchronous CCC protocol tolerant
against misbehaving nodes.

PRrROOF. Assume there exists an asynchronous protocol C which
solves CCC. Then, due to Lemma 1 there exists a protocol which
solves strong fair exchange. As this is a contradiction, there cannot
exist such a protocol C. m]

Our result currently holds for the closed model, as in [78, 142].
In the open model, P and Q can be forced to make a decision by
the system (or environment), i.e., transactions can be written on
their behalf if they crash [116]. In the case of CCC, this means that
distributed system Y, or more precisely, the consensus of Y, can
write X, to Ly on behalf of Q if P wrote Tx, to L. We observe that
Y becomes the TTP in this scenario: both P and Q must agree that
the consensus of Y will write X, toLy if X, € L. In practice, this
can be achieved by leveraging smart contracts, similar to blockchain-
based fair exchange protocols, e.g. [71]. As such, we can construct
a smart contract, the execution of which is enforced by consensus
of Y, that will write X, to Ly if P includes T, in Ly, ie., Q is
allowed to crash.

However, it remains the question how system Y (the consensus
participants of Y) becomes aware that X, € L. In practice, a smart
contract, can only perform actions based on some input. As such,
before writing TX , the contract consensus of Y must observe and
verify that Tx,, was included in L. A protocol achieving CCC must
hence make one of the following assumptions. Either, there exists
a TTP that will ensure correct execution of CCC; or the protocol
assumes P, or Q, or some other honest, online party (can in turn be
Y) will always deliver a proof for T, € Ly to Y within a known
upper bound, i.e., the protocol introduces some form of synchrony
assumption. As argued in [142], we observe that introducing a TTP
and relying on a synchrony assumption have are equivalent, and
derive the following corollary:

CoRroOLLARY 1. There exists no CCC protocol tolerant against mis-
behaving nodes without a trusted third party.

ProOF. A trusted third party is equivalent to introducing some
form of synchrony. As such, if there is no trusted third party, then
the protocol is asynchronous. Theorem 1 now proves Corollary 1.

O

The intuition behind this result is as follows. If we assume that
process P does not crash and hence submits the necessary proof to
the smart contract on Y, and that this message is delivered to the
smart contract within a know upper bound, then we can be sure that
CCC will occur correctly. Thereby, P intuitively represents its own
trusted third party. However, if we cannot make assumptions on
when the message will be delivered to the smart contract, as is the
case in the asynchronous model, a trusted third party is necessary
to determine the outcome of the CCC: the TTP observes Tx p € Lx
and informs the smart contract or directly enforces the inclusion of
X in Ly. Thereby, we observe similarities to the concept of failure
detectors [63], a construction used to introduce an implicit notion
of time into distributed systems to solve consensus. In the context
of fair exchange, and hence CCC, a failure detector, which is a
(trusted) third party to the protocol, indicates whether a participate
has failed or misbehaved.

3.2 Whatis a Trusted Third Party?

Numerous recent works use a single distributed ledger such as
Bitcoin and Ethereum to construct (optimistic) fair exchange proto-
cols [27, 43, 71, 111, 115, 119]. They leverage smart contracts (i.e.,
programs or scripts), the result of which is agreed upon and en-
forced by consensus participants, to ensure the correctness of the
exchange. These protocols thus use the consensus of the distributed
ledgers as an abstraction for a trusted third party. As long as the
majority of consensus participants are honest, correct behavior of
processes/participants of the fair exchange is enforced - typically,
the correct release of ag to P if Q received ap.

A CCC protocol aims to achieve synchronization between two
such distributed ledgers, both of which are inherently trusted to
operate correctly. Here, a (possibly additional) TTP can be used to
(i) confirm to the consensus participants of Y that Tx, was included
in Ly, who in turn enforce the inclusion of TxX 0 in Ly; or (ii) directly
enforce correct behavior of Q, such that X, € Ly.

Similar to the abstraction of TTPs used in fair exchange protocols,
in CCC it does not matter how exactly the TTP is implemented,
as long as it enforces correct behavior of the participants. In more
detail, from the perspective of CCC there is little difference between
a TTP consisting of a single individual and a committee where N
out of M members must agree to take action (even though the latter
is, without question, more resilient against failures).

3.3 Incentives and Rational CCC

Several workarounds have been proposed in literature to counter
the fair exchange problem. Most prominent alternatives include
gradual release mechanisms, optimistic models, and partially fair
secure computation [31, 43, 60, 120]. These workarounds suffer,
among others, from a common drawback: they require a (some
form of) trusted party that does not collude with the adversary.
Further, when an adversary aborts, the honest parties have to spend
extra efforts to restore fairness, e.g., the trusted server in the opti-
mistic model needs to be contacted each time fairness is breached.
First suggested in the context of rational exchange protocols [161],
the economic dimension of blockchains enabled a shift in this para-
digm: Rather than forcing an honest user to invest time and money
to achieve fairness, the malicious user is economically punished

when breaching fairness and the victim is reimbursed. This has
paved the way to design economically trustless CCC protocols that
follow a game theoretic model under the assumption that actors
behave rationally [177]. We remark that malicious/altruistic ac-
tors can nevertheless breach CCC propertie: even if there is no
economic damage to parties P or Q, the correct execution of the
communication itself still fails.

4 Classification of CCC Designs

In our model of CCC protocols in Section 2.1 we described the
three phases any CCC protocol implements (after the initial setup):
commit, verify, and an optional abort. We now overview techniques
for implementing the different phases of CCC protocols and the
possible TTP models. As shown in our impossibility result in Sec-
tion 3, CCC at minimum requires either a synchrony assumption
amongst communicating parties or must resort to a TTP. We hence
consider assumptions of three different categories: (i) relying out-
right on a TTP, such a coordinator to facilitate the CCC process,
(i) relying on a synchrony assumption, and (iii) a hybrid approach
where either a synchrony assumption needs to hold or a TTP takes
over as a fallback, if the assumption fails.

4.1 (Pre-)Commit Phase

First, we discuss the different techniques to handle the commit
phase of CCC protocols. In this phase, assets are typically locked
on X, until the CCC is successfully executed or aborted.

4.1.1 Trusted Third Party (Coordinators) A coordinator (also re-
ferred to as vault[177]) is a TTP that assists other protocol par-
ticipants in achieving agreement to either commit or abort the
cross-chain transfer. We can describe the coordinator types attend-
ing to two criteria: custody of assets and involvement in blockchain
consensus. We first introduce both classification criteria and then
detail our classification of coordinators.

Custody of Assets. Custody refers to where the control over assets
of (honest) participants resides and we can differentiate between
custodians and escrows.

o Custodians receive unconditional control over the participant’s
funds and are thus trusted to release them as instructed by the
protocol rules. It is possible to mitigate this trust assumption by
introducing collateral (i.e., a deposit of coins from the custodian)
and penalties if the custodian misbehaves [90, 91, 164, 165, 177].

e Escrows receive control over the participant’s funds conditional
to certain prearranged constraints being fulfilled. The release of
the assets depend thus on that the underlying chain correctly
verifies the fulfillment for the condition whereas the Escrow can
only fail to take action (e.g., crash). Moreover, from the game
theoretic perspective, Escrows are expected to lose utility from
misbehaving and are hence often referred to as “untrusted” third
parties in the blockchain community.

Involvement in Consensus. Coordinators can optionally also
take part in the blockchain consensus protocol. We hence differen-
tiate between consensus-level and external coordinators.

o Consensus-level coordinators refer to, as the name states, TTPs
that are additionally consensus participants of the underlying

chain. This is the case, for example, if the commit step is per-
formed on chain X and enforced directly by the consensus par-
ticipants of X, e.g. through a smart contract or directly a multi-
/threshold signature.

e External coordinators, on the other hand, refer to TTPs which
are not represented by the consensus participants of the underly-
ing blockchain. This is the case if (i) the coordinators are external
to the chain X, e.g, the consensus participants of chain Y or other
parties, or (ii) less than the majority of consensus participants of
chain X are involved.

Overview of Coordinator Types. We now proceed to detail the
different coordinator types according to the aforementioned criteria
and how they are implemented in practice.

e External Custodians (Committees). Instead of relying on the
availability and honest behavior of a single external coordinator,
trust assumptions can be distributed among a set of N committee
members. Decisions require the acknowledgment (e.g. digital
signature) of at least M < N members, whereby consensus can be
achieved via Byzantine Fault Tolerant (BFT) agreement protocols
such as PBFT [61, 113]. An important distinction to make here is
between static, i.e., unchanged over time (usually permissioned),
and dynamic committees, where a pre-defined mechanism is
responsible for member election. The latter is a well studied
problem, e.g. in Proof-of-Work [66, 113, 114, 144] and Proof-of-
Stake [44, 65, 110, 136] blockchains. Practical examples for such
CCC protocols relying on committees include [13, 68, 116].

e Consensus-level Custodian (Consensus Committee) Con-
sensus-level custodians are identical to external custodians, ex-
cept that they are also responsible for agreeing on the state of
the underlying ledger. Often, this technique is used if the block-
chain on which the commit step is executed runs a BFT consen-
sus protocol and there hence already exists a static committee
of consensus participants. The later can be reused as the TTP
in CCC: the trust in the honest behavior of the committee im-
plicitly stems from the assumption that the underlying ledger
operates correctly. Examples include sharded blockchains, such
as [23, 116, 121, 170].

e External Escrows (Multisignature Contracts). External Es-
crows can be seen as a special case of committees (i.e., External
Custodians) where the coordinator is transformed from Custo-
dian to Escrow by means of a multisignature contract. Multisig-
nature contracts require the signature of the participant P (i.e.,
the asset owner) in addition to those of the (subset of) committee
members, i.e., P+ M, M < N. The committee can thus only exe-
cute actions pre-authorized by the participant and can at most
freeze assets, but not commit theft.

e Consensus-level Escrow (Smart Contracts) are programs stored
in a ledger which are executed and their result agreed upon by
consensus participants [56, 59]. As such, trusting in the correct
behavior of a smart contract is essentially trusting in the se-
cure operation of the underlying chain, making this a useful
construction for Escrows. Depending on the system properties,
smart contracts can be (near) Turing complete[56], or limited
to a subset of operations [140, 153]. In addition, smart contracts
can be used to collateralize CCC participants, penalize misbehav-
ior [90, 91, 164] or pay premium for correct participation [89] —

even if the participants are located on alternate chains, potentially
without support for smart contracts themselves [177].

4.1.2 Synchronous Assumptions (Lock Contracts) An alternative to
coordinators consists in relying on synchronous communication
between participants and leveraging locking mechanisms which
harvest security from cryptographic hardness assumptions. Obser-
vations in practice show these techniques are used in CCC protocols
that facilitate asset exchanges and implement two-phase commit,
where the same (symmetric) locks are created on both chains and re-
leased atomically. We provide an overview, differentiating between
the cryptographic primitives relied upon.

e Hash Locks. A protocol based on hash locks relies on the preim-
age resistance property of hash functions: participants P and Q
transfer assets to each other by means of transactions that must
be complemented with the preimage of a hash h := H(r) for a
value r chosen by P - the initiator of the protocol - typically
uniformly at random [18, 19, 94, 128].

e Signature-based Locks. Protocols based on hash locks have
limited interoperability as they require that both cryptocurren-
cies support the same hash function within their script language.
Unfortunately, this assumption does not hold in practice (e.g.,
Monero does not even support a script language). Instead, P and
Q can transfer assets to each other by means of transactions that
require to solve the discrete logarithm problem of a value Y := g¥
for a value y chosen uniformly at random by P (i.e., the initiator
of the protocol). In practice, it has been shown that it is possible
to embed the discrete logarithm problem in the creation of a digi-
tal signature, a cryptography functionality used for authorization
is most blockchains today [47, 49, 73, 129, 139, 145, 162].

e Timelock Puzzles and Verifiable Delay Functions. An alter-
native approach is to construct (cryptographic) challenges, the
solution of which will be made public at a predictable time in
the future. Thus, P and Q can commit to the cross-chain transfer
conditioned on solving one of the aforementioned challenges.
Concrete constructions include timelock puzzles and verifiable
delay functions. Timelock puzzles [147] build upon inherently
sequential functions where the result is only revealed after a
predefined number of operations are performed. Verifiable de-
lay functions [47] improve upon timelock puzzles on that the
correctness of the result for the challenge is publicly verifiable.
This functionality can also be simulated by releasing parts of the
preimage of a hash lock interactively bit by bit, until it can be
brute forced [42].

4.1.3 Hybrid (Watchtowers) Instead of fully relying on coordina-
tors being available or synchrony assumptions among participants
holding, it is possible to employ so called watchtowers, i.e., service
providers which act as a fallback if CCC participants experience
crash failures. We observe strong similarities with optimistic fair
exchange protocols [30, 31, 60]. Specifically, watchtowers take ac-
tion to enforce the commitment, if one of the parties crashes or
synchrony assumptions do not hold, i.e., after a pre-defined time-
out [33, 35, 107, 130]. This construction was first introduced and
applied to off-chain payment channels [88].

4.2 Verification Phase

The verification phase, during which the commitment on X is veri-
fied on Y (or vice-versa), can similarly be executed under different
trust models, as detailed in the following.

4.2.1 Trusted Third Party (Coordinators). The simplest approach
to cross-chain verification is to rely on a trusted third party (also
referred to as validators [170]) to handle the verification of the state
changes on interlinked chains during CCC execution. Thereby, we
differentiate between the following techniques:

e External Validators. A simple approach is to outsource the
verification step of CCC to a (trusted) third party, external to
the verifying ledger (in our case Y), as in [17, 166]. The TTP can
thereby be the same as in the commit / abort steps.

e Consensus Committee / (Smart) Contracts. Alternatively, the

verification can be handled by the consensus participants of the

verifying chain [68, 116, 125] — leveraging the assumption that
misbehavior of consensus participants indicates a failure of the
chain itself. The verification process can be further encoded in
smart contracts, as in the case of BTCRelay [4], which verifies

Bitcoin block headers. Thereby, smart contracts have recently

been used to verify succinct proofs of knowledge [72, 169], which

in turn can (theoretically) enable proactive verification of State

Validity in CCC protocols.

Verification Games. Finally, rather than fully trusting coordi-

nators, they can be used as a mere optimistic performance im-

provement by introducing dispute handling mechanisms to the

verification process: users can provide (reactive) fraud proofs [24]

or accuse coordinators of misbehavior requiring them to prove

correct operation [90, 105, 164].

4.2.2 Synchrony Assumption (Direct Observation). Similar to the
commit phase of CCC, one can require all participants of a CCC
protocol to execute the verification phase individually: i.e., to run
(fully validating) nodes in all involved chains. This is often the
case in exchange protocols, such as atomic swaps using symmetric
locks such as HTLCs [19, 94], but also in parent-child settings
where one chain by design verifies or validates the other [37, 85,
124]. This relies on a synchrony assumption that requires the CCC
participants to observe and act upon the state evolution of chains
within a certain time, in order to complete the CCC.

4.2.3 Hybrid (Watchtowers). Just like in the commit phase, syn-
chrony and TTP assumptions can be combined in the verification
phase, such that a CCC protocol initially relies on a synchrony as-
sumption, but can fall back to a TTP (watchtowers, c.f Section 4.1.3)
to ensure correct termination if messages are not delivered within
a per-defined period.

4.3 Abort Phase

We now discuss different techniques to handle the abort phase of
CCC protocols.

4.3.1 Trusted Third Party (Coordinators) Similarly to the commit
phase, an abort can be handled by a trusted third party. Thereby,
the TTP must be the same TTP which executed the commit step of
the CCC protocol - as such, the possible techniques are the same
as described in Section 4.1.1.

4.3.2 Synchrony Assumptions (Timelocks) Alternatively, it is possi-
ble to enforce synchrony by introducing timelocks, after the expiry
of which the protocol is aborted. Specifically, to ensure that assets
are not locked up indefinitely in case of a crash failure of a par-
ticipant or misbehavior of a TTP entrusted with the commit step,
all commit techniques can be complimented with timelocks: after
expiry of the timelock, assets are returned to their original owner.
Thereby, we differentiate between two types of timelocks:

o Absolute timelocks, where a transaction becomes valid only
after a certain point in time, defined in by a timestamp or a block
(ledger at index i, L[i]) located in the future.

Relative timelocks, where a transaction Tx, becomes valid
only after a given time value or number of confirmations [5] have
elapsed since the inclusion of another transaction Tx, in the
underlying ledger. For example, assuming transaction Tx, was
included in L[r], then relatively timelocked Tx, becomes valid
when the chain reaches ledger state L[r’] where r’ = r+c, with ¢
denoting the number of required confirmations (r, r’, ¢ € N). Typ-
ically, Tx; and Tx, are related as Tx, spends assets transferred in
Tx, [146]. ALthough more practical than absolute timelocks (no
need for external clock), we are not aware of schemes allowing
the creation of relative timelocks across ledgers.

4.3.3 Hybrid (Watchtowers) After expiry of a timelock, the CCC
protocol is aborted. However, participants must be online to regain
control over the assets locked as part of the CCC commit phase. In
most cases, one-way transfer CCC protocols do not introduce an
upper bound on the delay until funds must be recovered from the
commit (lock) is introduced. However, in CCC protocols, where
timelocks are used to prevent a party’s funds from being frozen
indefinitely in case of failure, a timely recover may be necessary.
Thereby, participants must come online within some predefined
period or entrust a trusted third party, e.g. a watchtower [33, 35, 107,
130], with the recovery of the locked assets. This can be the case
in HTLC atomic swaps [2, 19, 94, 146], when either party crashes
after the hashlock’s secret has been revealed.

5 Cross-Chain State Verification

As described in Section 2.4, a critical component of cross-chain
communication is the verification of the state evolution of a chain
X from within another chain Y, i.e., that X is in a certain state after
the commit step. In this section we discuss the different elements
of the chain that can be verified during the process, to complement
the process of verifying state evolution. We show that there is a
classification for what is verified (Section 5.1), overview existing
techniques for each class, and discuss the relation between the
verification classes (Section 5.2).

5.1 Verification Classes

If a party P on X is misbehaving, it may withhold information from
a party Q on Y (i.e., not submit a proof), but it should not be able
to trick Q into accepting an incorrect state of Ly (e.g., convince Q
that T, € Ly although TX; was never written).

Verification of State. The simplest form of cross-chain verification
is to check whether a specific state exists, i.e., is reachable but has
not necessarily been agreed upon by the consensus participants.
A representative example is the verification of Proof-of-Work in

merged mining[3, 104]: the child chain Y only parses a given X block
and verifies that the hash of the Y candidate block was included,
and checks that the PoW hash exceeds the difficulty target of Y.
Note that Y does not care whether the block is actually part of Ly.
Another example is the use of blockchains as a public source of
randomness [52, 55, 64, 70].

Verification of State Agreement. In addition to the existence of
a state, a proof can provide sufficient data to verify that consensus
has been achieved on that state. Typically, the functionality of this
verification is identical to that of blockchain light clients [1, 11, 140]:
instead of verifying the entire blockchain of X, all block headers
and only transactions relevant to the CCC protocol are verified
(and stored) on Y. The assumption thereby is that an invalid block
will not be included in the verified blockchain under correct opera-
tion [127, 140]. Block headers can be understood as the meta-data
for the block, including a commitment to all the transactions in
the block, which are typically referenced using a vector commit-
ment [62] (or some other form of cryptographic accumulator [40]),
e.g. Merkle trees[134]. We discuss how proofs of state agreement
differ depending on the underlying consensus mechanism below
(non-exhaustive):

e Proof-of-Work. To verify agreement in PoW blockchains, a
primitive called (Non-interactive) Proofs of Proof-of-Work [108,
109], also referred to as SPV (simplified payment verification) [140]
is used. Thereby, the verifier of a proof must at least check for
each block that (i) the PoW meets the specified difficulty target,
(ii) the specified target is in accordance with the difficulty ad-
justment and (iii) the block contains a reference to the previous
block in the chain [1, 177]. The first known implementation of
cross-chain state agreement verification (for PoW blockchains) is
BTCRelay [4]: a smart contract which allows to verify the state
of Bitcoin on Ethereum?.

o Proof-of-Stake. If the verified chain uses Proof-of-Stake in its
consensus, the proofs represent a dynamic collection of signa-
tures, capturing the underlying stake present in the chain. These
are referred to as Proofs of Proof-of-Stake (PoPoS) and a scheme
in this direction was put forth in [85].

o BFT. In case the blockchain is maintained by a BFT committee,
the cross-chain proofs are simplified and take the form of a se-
quence of signatures by 2f + 1 members of the committee, where
f is the number of faulty nodes that can be tolerated [61]. If the
committee membership is dynamically changing, the verifica-
tion process needs to capture the rotating configuration of the
committee [141].

Sub-linear State Agreement Proofs. Verifying all block headers re-
sults in proof complexity linear in the size of the blockchain. How-
ever, there exist techniques for achieving sub-linear (logarithmic
in the size of the chain) complexity, which rely on probabilistic
verification. For PoW blockchains, we are aware of two approaches:
Superblock (Ni)PoPoWs [37, 108, 109, 137] and FlyClient [127]. Both
techniques rely on probabilistic sampling but differ in the selection
heuristic. Superblock (Ni)PoPoWs sample blocks which exceed the

2Similar contracts have been proposed for other chains[6, 7, 10, 12, 14, 15].

required PoW diﬁculty3, i.e., randomness is sourced from the un-
predictability of the mining process, whereas FlyClient suggests
to sample blocks using an optimized heuristic after the chain has
been generated (using randomness from the PoW hashes [52]). For
blockchains maintained by a static BFT committee, the verified
signatures can be combined into aggregate signatures [113, 114]
for optimization purposes. These signature techniques are well
known and have been invented prior to blockchains, and we hence
do not elaborate further on these schemes. In the dynamic setting,
skipchains [79, 118, 141], i.e., double-linked skiplists which enable
sub-linear crawling of identity chains, can reduce costs from linear
to logarithmic (to the number of configurations). Recently, a number
for light client protocols that leverage the compression properties
of zero-knowledge proof systems have been proposed [80, 82, 169].
Verification of State Evolution. Once verified by some chain Y
that chain X has reached agreement on a ledger state Ly [r], it is
then possible for (users on) Y to verify that certain transactions
have been included in Ly. As mentioned, block headers typically
reference included transactions via vector commitments. As such, to
verify that Tx € Ly[r] the vector commitment on Ly [r] needs to be
opened at the index of that transaction, e.g. by providing a Merkle
tree path to the leaf containing Tx (e.g. as in Bitcoin). Thereby,
multiple transactions can be aggregated in a single proof [176].
Verification of State Validity. Even though a block is believed to
have consensus, it may not be a valid block if it contains invalid
transactions or state transitions (e.g. a PoW block meeting the diffi-
culty requirements, but containing conflicting transactions). Fully
validating nodes will reject these blocks as they check all included
transactions. However, in the case of cross-chain communication,
where chains typically only verify state agreement but not valid-
ity, detection is not directly possible. We classify two categories
of techniques to enable such chains, and non-full nodes (i.e., light
clients), to reject invalid blocks:

o In proactive state validation, nodes ensure that blocks are valid
before accepting them. Apart from requiring participants to run
fully validating nodes, this can be achieved by leveraging “validity
proofs" through succinct proofs of knowledge, using systems such
as SNARKSs [46], STARKSs [38] or Bulletproofs [54]. First schemes
for blockchains offering such proofs for each state transition are
put forth in [39, 48, 133]. Informally speaking, this is a “guilty
until proven innocent model": nodes assume blocks that have
consensus are invalid until proven otherwise.

e In reactive state validation, nodes follow an “innocent until
proven guilty” model. It is assumed that blocks that have consen-
sus only contain valid state transition, unless a state transition
“fraud proof” [24] is created. Fraud proofs typically are proofs of
state evolution, i.e., opening of the transaction vector commit-
ment in the invalid block at the index of the invalid transaction,
e.g. via Merkle tree paths. Depending on the observed failure,
more data may be necessary to determine inconsistencies (e.g.
Merkle paths for conflicting transactions in a double spend).

Verification of Data Availability. Consensus participants may

produce a block header, but not release the included transactions,

preventing other participants from validating the correctness of

31t is a property of the PoW mining process that a certain percentage of blocks exceeds
or fall short of the required difficulty.

the state transition. To this end, verification of state validity can
be complimented by verification of data availability. A scheme for
such proofs was put forth in [24, 174], which allows to verify with
high probability that all the data in a block is available, by sampling
chunks in an erasure-coded version of a block.

5.2 Relation between Verification Classes

Verification of State Agreement requires to first verify a specific
state exists or has been proposed (Verification of State). To ver-
ify a transaction was included at L[r] (State Evolution), it is first
necessary to verify that the ledger state at L [r] is indeed agreed
upon (State Agreement). Finally, to verify that a state (transition) is
indeed valid (State Validity), one must first verify that all associated
transactions were indeed included in the ledger (State Evolution).
Verification of Data Availability serves as complimentary security
measure, and can be added to any of the classes to protect against
data withholding attacks. We illustrate this relationship in Figure 2.

State Validity Verification performed by
e n light clients (SPV /
:State Evolution | NiPoPoWs)

I 1
:State Agreement !
! Data
g i Availability

Figure 2: Venn diagram of cross-chain state verification
classes. The red, dotted line highlights the minimum re-
quirement for correctly operating light clients, i.e., verify-
ing SPV / NIPoPoWs in the case of PoW blockchains.

6 Evaluation of CCC Protocols

In this section, we evaluate existing CCC protocols based on the
introduced classifications. We present our results in Table 1.
Methodology. We group protocols by their design rationale. Specif-
ically, we differentiate between two CCC protocol families: (i) ex-
change, which synchronize the exchange of assets on two ledgers,
and (ii) asset migration, which allow to move an asset or object to
a different ledger. The main focus of the evaluation lies on how
each protocol handles the impossibility result from Section 2 during
each phase of the CCC process: Commit on X, verify and commit
on Y, and, if implemented, abort on X in case of failure. We fur-
ther evaluate the restrictions of becoming a trusted third party /
intermediary in each protocol, i.e., whether the TTP selection is
dynamic (anyone can become a TTP) or static (pre-defined set of
TTPs). We also consider collateralization of TTPs in rational CCC
protocols, where participants are reimbursed in case of failure, to
minimize financial damages faced.

6.1 Exchange Protocols

Exchange protocols synchronize an atomic swap of two (or more)
digital goods (assets or objects): x of chain X and y on Y. In prac-
tice, such protocols implement some form of a two-phase commit
mechanism [26, 95, 112, 116], where parties can explicitly abort the
exchange in case of disagreement or failure during the commit step.
Interestingly, exchange protocols are blockchain agnostic in that

they do not require explicit involvement of the consensus partici-
pants of interlinked chains X and Y. That is, the only assumption
is that participants of the CCC will be able to include transactions
in the underlying ledgers.

We observe multiple techniques, with different underlying trust
models, the simplest and currently most used being custodial (cen-
tralized) exchanges [17, 166]. Recent works, such as Tesseract [42],
attempt to reduce the risk of theft by the custodian by leverag-
ing trusted hardware, e.g. Intel SGX [98]. The long standing al-
ternative to entrusting a custodian with to-be-exchanged funds
are atomic swaps, first introduced in 2012 using hashed-timelock
contracts for commit and abort phases [18, 19], and recently for-
malized in [94]. Hashlocks can thereby be replaced with signature
locks [73, 129, 139, 145, 162], improving privacy and cross-platform
support. As of today, the adoption of HTLC atomic swaps is scarce,
which can be explained by the strict online requirements for par-
ticipants: the initiator of the swap can steal funds of the receiving
party, if the later does not claim the initiator’s committed assets be-
fore the abort timelock expires (after the secret to the hashlock was
released). Notarized atomic swaps [166] remove the online require-
ment for users, by entrusting a set of coordinators (notaries) with
the verification (and timely reaction) to the release of the HTLC
secret - however, introducing the risk of coordinators colluding
with exchanges to commit theft.

An alternative to interactive swaps via HTLCs or signature locks
are SPV atomic swaps [18, 19, 94, 166]. Hereby, the initiator of the
swap locks assets y in a smart contract on Y, which will release the
later to anyone who can prove correct payment of x on X to the
initiator (Verification of State Evolution and/or Validity). However,
in accordance with the impossibility result, the counterparty can
fail to provide the proof of payment on X to the smart contract on
time, permitting theft through a malicious abort by the initiator.

Recently, hybrid versions of HTLC and signature lock atomic
swaps have been introduced, most notably Arwen [93] and A2L [162],
where users enter assets into a multisignature escrow with an ex-
change coordinator. This relieves the user of strict online require-
ments while reducing the risk of theft by the TTP to a (long) lockup
of assets in the worst case. However, this requires a more complex
setup process (similar to payment channels [146]) and introduces
higher costs in the form of additional fees to prevent malicious
lockup of coordinator funds (griefing).

6.2 Asset Migration Protocols

The asset migration protocols move assets/objects from one block-
chain to another. Typically, this is achieved by obtaining a “write
lock" on an asset/object x on chain X, i.e., preventing any further
updates of x on X, and creating a representation y(x) on Y. Now,
the state of x can only be modified by modifying y(x), comparable
to the concept of mutual exclusion in concurrency control [67]. The
state changes of y(x) can also be reflected back to X by locking or
destroying y(x) and applying the updates to x when it is unlocked.
Although less common than in exchange protocols, asset migra-
tion protocols may implement an explicit abort procedure, if the
creation of y(x) fails.

Contrary to exchange protocols, asset migration protocols re-
quire explicit involvement of the consensus participants of inter-
linked chains X and Y, specifically in the verification step. We hence

Table 1: Evaluation of Cross-Chain Communication protocols. Notation for non-binary TTP values: O relies on participants

being available and synchrony, @ relies on TTP, @ hybrid.

k) to act as

CCC Protocol Execution
Protocol Commit on X Verify / Commit on Y Abort on X
Dynamic Dynamic
?
TTP TTP? Type TTP Collateral? Type TTP TTP? Type
. External Custodian .
Custodial Exchange (e.g. [42, 166])) X (single, pre-defined)) X External Validator) X TTP (same)
° o HTLC Atomic Swaps [18, 19, 94, 166] O - Hash Lock O X Direct Observation O - Timelock
@ f,i Notarized HTLC Atomic Swaps [166] O - Hash Lock [] X External Validator » - Timelock + TTP
E g SPV Atomic Swaps [8, 57, 95, 112, 177] [] Smart Contract [] X Smart Contract - - -
% é" Collateralized SPV Atomic Swaps [112, 177] ° Smart Contract [Smart Contract - - -
= | ECDSA/DLSAG Atomic Swaps [129, 139] (@] - Signature Lock O X Direct Observation (@] - Timelock
A2L [162] > X M‘fmSlg Escrow + O X Direct Observation) X Timelock + TTP
Signature Lock
Arwen [93] > X Multisig Escrow + O X Direct Observation » X Timelock + TTP
Hash Lock
External Custodian
@ - - R
g XCLAIM [177] [] (single, unrestricted) [Smart Contract
S .
g Dogethereum [165] [] External Custo‘dlan [Smart Contract - - -
S (single, unrestricted)
e .
2 | PoS Sidechains [85]) X External Custodian) X Smart Contract - - -
5:) (Consensus of Y)
tBTC [16] [] X External Custodian o Smart Contract - - -
- .
% wBTC [17]) X E‘xternal Custodian) X Direct Observation - - -
£ (single, pre-defined)
] -
= ATOMIX [116] [) X Consen(s;}llsafdt;stodlan [] X Consensus Committee [) X TTP (same)
« | SBAC [23, 156] ° X Consensus Custodian | X Consensus Committee | @ X TTP (same)
H (shard)
S .
5 | Rapidchain [175] ° X Consensus Custodian [X Consensus Committee - - -
0 (shard)
g Fabric Channels [26] [] X Consensus Custodian [J X Consensus Committee [] X TTP (same)
8 -
T | Federated Sidechains/Pegs [37, 68] ° X External Custodian [X Consensus Committee - - -
(Consensus of Y)
PoS Sidechains [85]) X External Custodian) X Consensus Committee - - -
(Consensus of Y)
Rootstock [124, 125] [] X External CuSthla;d [} X Consensus Committee - - -
(Consensus of Y)
Proof-of-Burn [106, 158] ° Smart Contract / Burn ° X Smart Contract./ ~ R R
address Consensus Committee
Merged Mining/Staking [85, 104] [] X Consensus Custodian [] X Consensus Committee - - -

T The Rootstock sidechain plans to rely on Bitcoin’s (chain X) consensus participants (only those

custodian.

classify asset migration into heterogeneous and homogeneous, two
subfamilies defined upon the required blockchain security model.

6.2.1 Heterogeneous Asset Migration Heterogeneous asset migra-
tion protocols, in most cases, focus on transferring assets to other
ledgers via cryptocurrency-backed assets [26, 85, 124, 177]. An asset
x is committed/locked on Ly, while a representation of this asset
y(x) is unlocked on L. This asset can then be used just like any
other native asset y on L,: transferred, exchanged, or e.g. used
with smart contracts. Compared to exchange protocols, where each
swap requires to broadcast transactions on all interlinked chains,
cryptocurrency-backed assets require synchronization only twice:
once to issue and a second time to redeem the transferred assets.

In the design of heterogeneous asset migration protocols, inter-
linked chains cannot be assumed to have identical rule sets/data
structures. In practice, it can be understood that any user can create
their own chain and, in the absence of pre-defined specifications or
rules ensuring e.g. sufficient honest participants exist, no generic
security assumptions can be relied upon. Hence, a chain, even if ca-
pable of verifying the consensus rules of another chain, cannot be
sure that the received information is indeed valid (except if it is
fully validated, cf. Section 5.1) [37].

As a result, CCC protocols in the heterogeneous model typi-
cally make additional assumptions regarding interlinked chains.
The trust assumptions in this protocol family range from a single
centralized custodian [17], to a dynamic network of collateralized

As of this writing, however, the consensus committee of Rootstock (chain Y) is used as external

intermediaries as in the case of XCLAIM [177]. In the latter ap-
proach, any participant can lock collateral in a smart contract on
the issuing chain Y and act as custodial coordinator (or vault) for
locking x on X. If the coordinator attempts to defraud users (fail to
prove correct behavior), the smart contract on Y will automatically
slash collateral and reimburse victims. Should smart contracts be
available on both interlinked chains, custodial coordinators serve
only as fallback or performance improvement. A similar collateral-
ization approach is followed by tBTC [16], with the restriction that
the set of custodial coordinators is pre-defined (static).

A drawback of cryptocurrency-backed assets between hetero-
geneous chains is the necessity to maintain a stable exchange rate
between the backing assets x and y of the issuing chain, which are
used as collateral. As such, a sudden significant fluctuation of the
exchange rate can result in (i) financial damages to users holding
y(x), and in turn (ii) network congestion on both X and Y as users
race to recover assets x. A further disadvantage of existing hetero-
geneous asset migration protocols is the lack of a dedicated abort
phase on X: if Y fails to issue backed assets y(x), locked assets x
can remain frozen indefinitely at the TTP’s discretion.

6.2.2 Homogeneous Asset Migration Similar to heterogeneous as-
set migration, this protocol group focuses on moving assets between
different chains. The main difference hereby is that interlinked
chains either maintain identical security assumptions or are de-
pendent on one-another, e.g. exhibit a parent-child relation. We

differentiate between communication (i) among shards in sharded
blockchains and (ii) from a parent to child blockchains.

With the goal of sharding being to improve transaction through-
put in blockchains, efficient communication among individual shards
is a necessity. As such, we observe cross-shard communication pro-
tocols [23, 25, 26, 116, 156, 175] to rely on consensus participants
of (individual) shards to execute both commit, verify and abort
phases of CCC. Thereby, communication in sharded blockchains
follows the assumption that consensus committees of all shards is
secure by design (e.g., leveraging an appropriate form of random-
ness [117, 151, 160]), as otherwise the system is considered to fail
(“correct by construction" assumption [116]). The main difference
observed in this protocol group is the execution of an explicit abort
phase in e.g. ATOMIX [116], as opposed to the assumption that
proofs of correct commit/lock execution will be timely delivered
between / accepted by consensus committees of different shards,
as e.g. in SBAC [23, 156].

Sidechains, as first introduced by Back et al. in 2012 [37] aim to
extend the functionality of existing blockchains (parent) by allowing
to move assets to so-called child blockchains, which run their own
consensus but to some extent are dependent on the parent chain.
While the design of CCC protocol for sidechains are very similar to
those of sharded systems, a core difference is that the homogeneous
security assumptions only apply when transferring from parent
to child, but not vice-versa. As such, e.g. in the case of Federated
Sidechains/Pegs[37, 68], participants of the parent chain X cannot
assume correct operation of the sidechain Y and hence consider the
consensus committee of Y as external. Rootstock seeks to reduce
this risk by using trusted hardware for the coordinators on parent
chain X (in this case, Bitcoin) [124, 125].

Finally, mechanisms for bootstrapping new blockchains, such as
merged mining [3, 104] and Proof-of-Burn [106, 158], as opposed to
CCC protocols discussed so far, aim to transfer information other
than digital assets. In the case of merged mining, this is a proof that
some proof-of-work was performed on the parent chain, in Proof-
of-Burn it is a proof that some assets were destroyed. A further
difference hereby is the absence of a mechanism to return the
transferred information back to the parent chain: these protocols are
deployed as velvet forks [178] and hence the parent chain generally
remains oblivious to the existence of the child chain(s).

6.3 General Observations

We proceed to briefly overview general observations with respect
to existing CCC protocols.

Tendency to TTPs. The majority of CCC protocols resort to TTPs,
rather than relying on participants being online and networks
communication being synchronous (although synchronous models
are often assumed nevertheless). Further, with the exceptions of
XCLAIM [177] and Dogethereum [165], such CCC protocols utilize
a pre-defined, static committee of coordinators.

Static Committees. If one of the interlinked chains Y implements
a BFT agreement protocol and hence has a static consensus com-
mittee, this committee is typically used as TTP in all phases of
CCC protocols. Arguably, this makes sense, as participants of the
other blockchain X must anyway trust in the secure operation of Y
(honest majority of the consensus committee).

Collateralization Trend. In recent works [16, 112, 165, 177], there
is a trend towards collateralizing coordinators, with the aim of
preventing financial damages to users and incentivizing correct
behavior of TTPs - this way potentially achieving economically
trustless CCC protocols (cf. Section 3.3). Here, the exchange rate
is crucial to ensure that collateral has sufficient value to punish
misbehavior, and stabilization measures are necessary to mitigate
both short and long term fluctuations.

Absence of Hybrid Verification. Surprisingly, the numerous tech-
niques for constructing watchtowers for off-chain protocols [33,
35, 88, 107, 130] have not yet been applied to CCC protocols —
despite the similarity between payment channels and some CCC
approaches (e.g. HTLC atomic swaps).

Interoperability Blockchains. Recently, there has been an influx
of so called interoperability blockchains — specialized sharded dis-
tributed ledgers which aim to serve as communication platform
between other blockchains [20, 97, 121, 157, 167, 170]. Thereby,
individual shards, which are coordinated via a parent chain run-
ning a Byzantine fault tolerant agreement protocol, connect to and
import assets from existing blockchains. Thereby, these projects
have in common that they rely on existing techniques such as
cryptocurrency-backed assets [85, 165, 177] to bridge the gap to ex-
isting systems (and are hence not included in the evaluation above).
A formal treatment of this design, also considering distributed com-
putations, is presented in [126].

7 Challenges and Implications

In this section, we overview implications of cross-chain communi-
cation on distributed ledgers and necessary considerations when
designing CCC protocols.

7.1 Threat Model and Attacks

Security and Adversary Model. Both X and Y can have a well
defined security model on their own. However, these security mod-
els are not necessarily the same and even further, it might not be
trivial to compare the guarantees they provide. For instance, X may
rely on PoW and thus assume that adversarial hash computation
is bound by a < 33% [76, 86, 150]. On the other hand, Y may use
PoS and similarly assume that the adversary’s stake in the system
is bound by f < 33%. While similar at first glance, the cost of ac-
cumulating stake [77, 84] may be lower than that of accumulating
computational power, or vice-versa [50]. Since permissionless dis-
tributed ledgers (such as PoW or PoS) are not Sybil resistant [69],
i.e., provide weak identities at best, quantifying adversary strength
is nearly impossible, even within a single ledger [32]. However,
this task becomes even more difficult in the cross-chain setting:
not only can consensus participants (i) “hop" between different
chains [122, 135], destabilizing involved systems, but also (ii) be
susceptible to bribing attacks, which can be executed cross-chain,
making detection unlikely [103, 132].

Consensus Finality Guarantees. Interlinked chains X and Y may
assume different finality guarantees in their ledgers. Consider the
following: X accepts a transaction as valid when confirmed by
k subsequent blocks, e.g. as in PoW blockchains [81]; instead, Y
deems transactions valid as soon as they are written to the ledger
(k = 1, e.g. [21]). A CCC protocol triggers a state transition on
Y conditioned on a transaction included in X, however, later an

(accidental) fork occurs on X (perhaps deeper than k). While the
state of X will be reverted, this may not be possible in Y according
to consensus rules - although the Atomicity property of CCC would
require such measures.

Replay Attacks. Replay attacks on state verification, i.e., where
proofs are re-submitted multiple times or on multiple chains, can
result in failures such as double spending. Protections involve the
use of sequence numbers, or chains keeping track of previously pro-
cessed proofs [58, 131, 156]. Special consideration may be needed
in case of permanent blockchain forks, as this may require updating
the way verification is performed [131, 177].

Increasing Verification Cost (Griefing). An adversary can in-
crease the cost of the verification of a transaction across chains. For
instance, a spam attack makes the ledger grow in size, increasing
both verification time and cost. This in turn may impair cross-
chain state verification, especially in heterogeneous settings, where
verification of external consensus is typically an expensive oper-
ation [177]. In sharded systems, an adversary can try to create
transactions, the validation of which requires information from
(almost) all shards, significantly increasing cost and defeating the
purpose of sharding itself.

Composability Attacks. We recall, in blockchains with stabliz-
ing [28, 168] consensus, a security parameter k is used to denote
the number of blocks or confirmation [5] a transaction should have,
before being accepted as secure [81, 140, 143], i.e., with the prob-
ability of a reversion being negligible. The same applies to state
agreement and state evolution proofs. In addition, the value linked
a verified transaction must be considered: the higher the potential
gain by an adversary, the higher the risk of an attack, and the more
confirmations should be required [155]. However, following recent
works [179], we argue at least the entire composition of a block
must be considered, as this is the total value an adversary can gain
from executing a successful attack. Recall that for a transaction to
be reversed or modified, the entire block must be altered.

7.2 Network model

Synchrony Across Chains. The absence of a global clock across
chains requires to either agree and trust a third party as exter-
nal clock, or rely on chain-dependent time definition, such as the
block generation rate [81], hindering a seamless synchronization
across chains [81, 177]. Several factors, such as the instance of the
consensus algorithm, computation and communication capabilities
of consensus participants or peer-to-peer network delay must be
considered for a correct operation of cross-chain communication
protocols, especially if timelocks are used.

Data Availability. Protocols leveraging verification of state agree-
ment or validity across chains typically rely on timely arrival of
proofs and accompanying data (block headers, transactions, ...). Fur-
thermore, existing sub-linear state verification techniques relying
on probabilistic sampling require additional data to be included
in the verified blockchain [109, 127]. If an adversary can exclude
this data from the chain, these protocols not only become less ef-
ficient but may potentially exhibit vulnerabilities [127]. This is a
particular problem in heterogeneous settings, if data availability is
not enforced by consensus, e.g. if protocols are deployed via velvet
forks [178]. One possible solution is to include data availability
proofs [23], at the cost of increasing complexity of the process.

7.3 Blockchain Model

Cryptographic Primitives. Interconnected chains X and Y may
leverage different cryptographic schemes, or different instances
of the same scheme. Thereby, cross-chain communication often
requires compatible cryptographic primitives: a CCC protocol be-
tween a system X using ECDSA [99] as its digital signature scheme
and a system Y using Schnorr [152] is only possible if both schemes
are instantiated over the same elliptic curve [129]. Similarly, HTLC-
based protocols require that the domain of the hash function has
the same size in both X and Y- otherwise the protocol is prone to
oversize preimage attacks [101].

Language Expressiveness. The functionality of CCC protocols
is typically restricted by the computational operations supported
by the involved chains. These can reach from near Turing complete
environments [56], over restricted operation sets [140, 153], to the
(near) absence of scripting functionality altogether [9, 53]. CCC
protocols must hence (i) consider the operations supported by both
X and Y and leverage the intersecting functionality [129]; or (ii)
move assets from chain with limited functionality to those with
high(er) language expressiveness [68, 165, 177].

7.4 Privacy and Linkability

Privacy is crucial in any financial interaction and thus in cross-
chain communication as well. Ideally it should not be possible for
an observer to determine what two events have been synchronized
across chains (e.g., what two assets have been exchanged and by
whom). Among other advantages, this improves the fungibility
of payments. However, there exist several privacy attack vectors
in cross-chain communication: (i) recent works [87, 128] show at-
tacks leveraging the locking mechanism and some countermeasures
have been proposed [128, 129, 149]; (ii) heuristics to explore blocks
from different cryptocurrencies [104] as well as forks [159] to clus-
ter miner and user accounts [96]; (iii) CCC protocols leveraging
coordinators, similar to and payment hubs [88, 102], also lead to
privacy leakages that enable further account clustering [173]. Re-
cent works [87, 92, 162] propose measures that allow to preserve
the anonymity of participants, if added to CCC protocols.

8 Related Work

We believe our study represents the most comprehensive systematic
investigation of cross-chain communication to date. Yet, we list here
other works and efforts by the blockchain community, illuminating
different subsets of this space and supporting our study.

The first work discussing cross-chain communication, excluding
forum discussions, is a technical report by Back et al. [37]. The au-
thors introduce the term “sidechain” and present how assets can be
transferred between two chains using a committee of custodians or
SPV proofs in a homogeneous security model. A more recent report
by Buterin discusses how cross-chain exchanges can be achieved
via custodians, escrows, HTLCs and cross-chain state verification,
and provides a high level discussion of possible failures in cross-
chain communication [57]. Siris et al. provide an iterative overview
of protocols for atomic cross-chain swaps and “sidechains” [154],
focusing mostly on community driven efforts, rather than academic
publications. Similarly, Johnson et al. discuss open source interoper-
ability projects related to Ethereum [100], while Robinson evaluates

Ethereum as a coordination platform for communication among
other blockchains [148]. Bennik et al. [41] and similarly Miraz et
al. [138] summarize technical details of HTLC atomic cross-chain
swaps. Avarikioti et al. provide a thorough formal study of block-
chain sharding protocols, although their focus does not lie on the
communication between shards [34].

9 Concluding Remarks

Our systematic analysis of cross-chain communication as a new
problem in the era of distributed ledgers allows us to relate (mostly)
community driven efforts to established academic research in data-
base and distributed systems research. We formalize the cross-chain
communication problem and show it cannot be solved without a
trusted third party — contrary to the assumptions often made in
the blockchain community. The classifications and comparative
evaluations introduced in this work, taking into account both aca-
demic research and the vast number of online resources, allow to
better understand the similarities and differences between existing
cross-chain communication approaches - and possibly contribute to
clearer communication between academia and industry in this field.
Finally, by discussing implications and open challenges related to
blockchain, network, and threat models, as well as privacy and
linkability, we offer a comprehensive guide for designing protocols,
bridging multiple distributed ledgers.

10 Acknowledgements

We would like express our gratitude to Georgia Avarikioti, Daniel
Perez and Dominik Harz for helpful comments and feedback on
earlier versions of this manuscript. We also thank Nicholas Stifter,
Aljosha Judmayer, Philipp Schindler, and Edgar Weippl for insight-
ful discussions during the early stages of this research. We also wish
to thank the anonymous reviewers for their valuable comments
that helped improve the presentation of our results.

This research was funded by Bridge 1 858561 SESC, Bridge 1
864738 PR4DLT (all FFG), the Christian Doppler Laboratory for
Security and Quality Improvement in the Production System Life-
cycle (CDL-SQI), the competence center SBA-K1 funded by COMET,
Chaincode Labs and the Austrian Science Fund (FWF) through the
Meitner program. Mustafa Al-Bassam is funded by a scholarship
from the Alan Turing Institute. Alexei Zamyatin is supported by
the Binance Research Fellowship.

References

[1] [n.d.]. Bitcoin Developer Guide: Simplified Payment Verification (SPV). https://
bitcoin.org/en/developer-guide#simplified- payment-verification-spv. Accessed:
2018-05-16.

[2] [n.d.]. Bitcoin Wiki: Hashed Time-Lock Contracts. https://en.bitcoin.it/wiki/
Hashed_Timelock_Contracts. Accessed: 2018-05-16.

[3] [n.d.]. Bitcoin Wiki: Merged Mining Specification. https://en.bitcoin.it/wiki/
Merged_mining_specification. Accessed: 2018-05-03.

[4] [n.d.]. BTCRelay. https://github.com/ethereum/btcrelay. Accessed 2019-08-15.

[5] [n.d.]. Confirmations. https://en.bitcoin.it/wiki/Confirmation. Accessed: 2018-
11-28.

[6] [n.d.]. Dogerelay. https://github.com/dogethereum/dogerelay. Accessed 2019-
08-15.

[7] [n.d.]. Eth-Eos-Relay. https://github.com/EveripediaNetwork/eth-eos-relay.
Accessed 2019-08-15.

[8] [n.d.]. Ethereum contract allowing ether to be obtained with Bitcoin. https:
//github.com/ethers/EthereumBitcoinSwap. Accessed: 2018-10-30.

[9] [n.d.]. Monero Reference Implementation. https://github.com/monero-project/
monero. Accessed: 2018-07-30.

[10]

[11

[12
[13

[14]

[15

[16

[17]

[18

[19
[20

[21

[22

[23]

[24

[25

[26

[27

[28

[29
[30

[31

[32

[33

[34

[35

[36

[37]

[38

[n.d.]. Parity-Bridge. https://github.com/paritytech/parity-bridge. Accessed
2019-08-15.

[n.d.]. The Parity Light Protocol - Wiki. https://wiki.parity.io/The-Parity-Light-
Protocol-(PIP). Accessed: 2018-10-30.

[n.d.]. Peace Relay. https://github.com/loiluu/peacerelay. Accessed 2019-08-15.
[n.d.]. PoA Bridge. https://github.com/poanetwork/poa-bridge. Accessed:
2018-05-23.

[n.d.]. Project Alchemy. https://github.com/ConsenSys/Project- Alchemy. Ac-
cessed 2019-08-15.

[n.d.]. Project Waterloo. https://blog kyber.network/waterloo-a-decentralized-
practical-bridge-between-eos-and-ethereum-1c230ac65524. Accessed 2019-08-
15.

[n.d.]. tBTC: A Decentralized Redeemable BTC-backed ERC-20 Token. http:
//docs keep.network/tbtc/index.pdf. Accessed: 2019-11-15.

[n.d.]. Wrapped Bitcoin. https://www.wbtc.network/assets/wrapped-tokens-
whitepaper.pdf. Accessed: 2018-05-03.

2013. Alt chains and atomic transfers. bitcointalk.org. https://bitcointalk.org/
index.php?topic=193281.msg2003765#msg2003765

2013. Atomic Swap. Bitcoin Wiki. https://en.bitcoin.it/wiki/Atomic_swap
2017. Wanchain Whitepaper. https://www.wanchain.org/files/Wanchain-
Whitepaper-EN-version.pdf.

Ittai Abraham, Guy Gueta, and Dahlia Malkhi. 2018. Hot-Stuff the Linear,
Optimal-Resilience, One-Message BFT Devil. arXiv:1803.05069. https://arxiv.
org/pdf/1803.05069.pdf

Mustafa Al-Bassam. 2019. LazyLedger: A Distributed Data Availability Ledger
With Client-Side Smart Contracts. arXiv:arXiv:1905.09274 https://arxiv.org/
pdf/1905.09274.pdf

Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and
George Danezis. 2018. Chainspace: A sharded smart contracts platform. In
2018 Network and Distributed System Security Symposium (NDSS).

Mustafa Al-Bassam, Alberto Sonnino, and Vitalik Buterin. 2018. Fraud Proofs:
Maximising Light Client Security and Scaling Blockchains with Dishonest Ma-
jorities. CoRR abs/1809.09044 (2018). arXiv:1809.09044 http://arxiv.org/abs/
1809.09044

Enis Ceyhun Alp, Eleftherios Kokoris-Kogias, Georgia Fragkouli, and Bryan Ford.
2019. Rethinking General-Purpose Decentralized Computing. In Proceedings of
the Workshop on Hot Topics in Operating Systems. ACM, 105-112.

Elli Androulaki, Christian Cachin, Angelo De Caro, and Eleftherios Kokoris-
Kogias. 2018. Channels: Horizontal scaling and confidentiality on permissioned
blockchains. In European Symposium on Research in Computer Security. Springer,
111-131.

Marcin Andrychowicz. 2015. Multiparty Computation Protocols Based on
Cryptocurrencies. https://depotuw.ceon.pl/bitstream/handle/item/1327/dis.pdf
Accessed: 2017-02-15.

Dana Angluin, Michael J Fischer, and Hong Jiang. 2006. Stabilizing consensus
in mobile networks. In Distributed Computing in Sensor Systems. Springer, 37—
50. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.1040&rep=
repl&type=pdf

Nadarajah Asokan. 1998. Fairness in electronic commerce. (1998).

Nadarajah Asokan, Victor Shoup, and Michael Waidner. 1998. Asynchronous
protocols for optimistic fair exchange. In Proceedings. 1998 IEEE Symposium on
Security and Privacy (Cat. No. 98CB36186). IEEE, 86-99.

Nadarajah Asokan, Victor Shoup, and Michael Waidner. 1998. Optimistic fair
exchange of digital signatures. In International Conference on the Theory and
Applications of Cryptographic Techniques. Springer, 591-606.

Georgia Avarikioti, Lukas Kéappeli, Yuyi Wang, and Roger Watten-
hofer. 2019. Bitcoin Security under Temporary Dishonest Major-
ity. In 23rd Financial Cryptography and Data Security (FC). https:
//www.tik.ee.ethz.ch/file/ab83461dc5ca3b739¢079a27f3757e94/bitcoin%
20security%20under%20temporary%20dishonest%20majority.pdf

Georgia Avarikioti, Eleftherios Kokoris Kogias, and Roger Wattenhofer. 2019.
Brick: Asynchronous State Channels. arXiv preprint arXiv:1905.11360 (2019).
Georgia Avarikioti, Eleftherios Kokoris-Kogias, and Roger Wattenhofer. 2019.
Divide and Scale: Formalization of Distributed Ledger Sharding Protocols. arXiv
preprint arXiv:1910.10434 (2019).

Georgia Avarikioti, Felix Laufenberg, Jakub Sliwinski, Yuyi Wang, and Roger
Wattenhofer. 2018. Towards secure and efficient payment channels. arXiv
preprint arXiv:1811.12740 (2018).

Ozalp Babaoglu and Sam Toueg. 1993. Understanding non-blocking atomic
commitment. Distributed systems (1993), 147-168.

Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell,
Andrew Miller, Andrew Poelstra, Jorge Timén, and Pieter Wuille. 2014. Enabling
blockchain innovations with pegged sidechains. https://blockstream.com/
sidechains.pdf

Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. 2018. Scalable,
transparent, and post-quantum secure computational integrity. JACR Cryptology
ePrint Archive 2018 (2018), 46.

https://bitcoin.org/en/developer-guide#simplified-payment-verification-spv
https://bitcoin.org/en/developer-guide#simplified-payment-verification-spv
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Hashed_Timelock_Contracts
https://en.bitcoin.it/wiki/Merged_mining_specification
https://en.bitcoin.it/wiki/Merged_mining_specification
https://github.com/ethereum/btcrelay
https://en.bitcoin.it/wiki/Confirmation
https://github.com/dogethereum/dogerelay
https://github.com/EveripediaNetwork/eth-eos-relay
https://github.com/ethers/EthereumBitcoinSwap
https://github.com/ethers/EthereumBitcoinSwap
https://github.com/monero-project/monero
https://github.com/monero-project/monero
https://github.com/paritytech/parity-bridge
https://wiki.parity.io/The-Parity-Light-Protocol-(PIP)
https://wiki.parity.io/The-Parity-Light-Protocol-(PIP)
https://github.com/loiluu/peacerelay
https://github.com/poanetwork/poa-bridge
https://github.com/ConsenSys/Project-Alchemy
https://blog.kyber.network/waterloo-a-decentralized-practical-bridge-between-eos-and-ethereum-1c230ac65524
https://blog.kyber.network/waterloo-a-decentralized-practical-bridge-between-eos-and-ethereum-1c230ac65524
http://docs.keep.network/tbtc/index.pdf
http://docs.keep.network/tbtc/index.pdf
https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://www.wbtc.network/assets/wrapped-tokens-whitepaper.pdf
https://bitcointalk.org/index.php?topic=193281.msg2003765#msg2003765
https://bitcointalk.org/index.php?topic=193281.msg2003765#msg2003765
https://en.bitcoin.it/wiki/Atomic_swap
https://www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf
https://www.wanchain.org/files/Wanchain-Whitepaper-EN-version.pdf
https://arxiv.org/pdf/1803.05069.pdf
https://arxiv.org/pdf/1803.05069.pdf
https://arxiv.org/abs/arXiv:1905.09274
https://arxiv.org/pdf/1905.09274.pdf
https://arxiv.org/pdf/1905.09274.pdf
https://arxiv.org/abs/1809.09044
http://arxiv.org/abs/1809.09044
http://arxiv.org/abs/1809.09044
https://depotuw.ceon.pl/bitstream/handle/item/1327/dis.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.1040&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.60.1040&rep=rep1&type=pdf
https://www.tik.ee.ethz.ch/file/ab83461dc5ca3b739c079a27f3757e94/bitcoin%20security%20under%20temporary%20dishonest%20majority.pdf
https://www.tik.ee.ethz.ch/file/ab83461dc5ca3b739c079a27f3757e94/bitcoin%20security%20under%20temporary%20dishonest%20majority.pdf
https://www.tik.ee.ethz.ch/file/ab83461dc5ca3b739c079a27f3757e94/bitcoin%20security%20under%20temporary%20dishonest%20majority.pdf
https://blockstream.com/sidechains.pdf
https://blockstream.com/sidechains.pdf

(39]

[40]

[41]

(42

(43

[44

(45

[46

[55

[56]

(58

[59

[60

[61

[62

(63

=
=

[65

(66

Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. 2016. Interactive
oracle proofs. In Theory of Cryptography Conference. Springer, 31-60.

Josh Benaloh and Michael De Mare. 1993. One-way accumulators: A decentral-
ized alternative to digital signatures. In Workshop on the Theory and Application
of of Cryptographic Techniques. Springer, 274-285.

Peter Bennink, Lennart van Gijtenbeek, Oskar van Deventer, and Maarten Everts.
2018. An Analysis of Atomic Swaps on and between Ethereum Blockchains
using Smart Contracts. Tech. report. https://work.delaat.net/rp/2017-2018/p42/
report.pdf.

Iddo Bentov, Yan Ji, Fan Zhang, Yungi Li, Xueyuan Zhao, Lorenz Breidenbach,
Philip Daian, and Ari Juels. 2017. Tesseract: Real-Time Cryptocurrency Exchange
using Trusted Hardware. Cryptology ePrint Archive, Report 2017/1153. https:
//eprint.iacr.org/2017/1153.pdf Accessed:2017-12-04.

Iddo Bentov and Ranjit Kumaresan. 2014. How to use bitcoin to design fair
protocols. In Advances in Cryptology—-CRYPTO 2014. Springer, 421-439. http:
//eprint.iacr.org/2014/129.pdf

Iddo Bentov, Rafael Pass, and Elaine Shi. 2016. Snow White: Provably Secure
Proofs of Stake. https://eprint.iacr.org/2016/919.pdf Accessed: 2016-11-08.
Philip A Bernstein, Vassos Hadzilacos, and Nathan Goodman. 1987. Concurrency
control and recovery in database systems. Vol. 370. Addison-wesley New York.
Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2012. From
extractable collision resistance to succinct non-interactive arguments of knowl-
edge, and back again. In Proceedings of the 3rd Innovations in Theoretical Com-
puter Science Conference. ACM, 326-349.

Dan Boneh, Joseph Bonneau, Benedikt Biinz, and Ben Fisch. 2018. Verifiable
Delay Functions. In CRYPTO.

Dan Boneh, Benedikt Biinz, and Ben Fisch. 2018. Batching Techniques for
Accumulators with Applications to IOPs and Stateless Blockchains. Cryptology
ePrint Archive, Report 2018/1188. https://eprint.iacr.org/2018/1188.pdf https:
//eprint.iacr.org/2018/1188.

Dan Boneh and Moni Naor. 2000. Timed commitments. In Annual International
Cryptology Conference. Springer, 236-254.

Joseph Bonneau. 2016. Why buy when you can rent? Bribery attacks on Bitcoin
consensus. In BITCOIN ’16: Proceedings of the 3rd Workshop on Bitcoin and
Blockchain Research. http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf

Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On Bitcoin as a
public randomness source. https://eprint.iacr.org/2015/1015.pdf Accessed:
2015-10-25.

Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. 2015. On Bitcoin as a
public randomness source. IACR Cryptology ePrint Archive 2015 (2015), 1015.
Joseph Bonneau and Andrew Miller. 2014. Fawkescoin: Bitcoin without public-
key crypto. In Security Protocols XXII. Springer, 350-358. http://www.jbonneau.
com/doc/BM14-SPW-fawkescoin.pdf

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Greg Maxwell. 2017. Bulletproofs: Efficient Range Proofs for Confidential Trans-
actions. http://web.stanford.edu/~buenz/pubs/bulletproofs.pdf Accessed:2017-
11-10.

Benedikt Biinz, Steven Goldfeder, and Joseph Bonneau. 2017. Proofs-of-delay
and randomness beacons in Ethereum. IEEE Security & Privacy on the Blockchain
(IEEE S&B).

Vitalik Buterin. 2014. Ethereum: A next-generation smart contract and decentral-
ized application platform. https://github.com/ethereum/wiki/wiki/White-Paper
Accessed: 2016-08-22.

Vitalik Buterin. 2016. Chain Interoperability. Tech. report. https://www.
r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf Accessed:
2017-03-25.

Vitalik Buterin. 2018. Cross-shard contract yanking. https://ethresear.ch/t/cross-
shard-contract-yanking/1450.

Christian Cachin. 2016. Architecture of the Hyperledger Blockchain Fabric.
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf Accessed: 2016-08-10.
Christian Cachin and Jan Camenisch. 2000. Optimistic fair secure computation.
In Annual International Cryptology Conference. Springer, 93-111.

Miguel Castro, Barbara Liskov, et al. 1999. Practical Byzantine fault tolerance.
In OSDI, Vol. 99. 173-186. http://pmg.csail. mit.edu/papers/osdi99.pdf

Dario Catalano and Dario Fiore. 2013. Vector commitments and their applica-
tions. In International Workshop on Public Key Cryptography. Springer, 55-72.
Tushar Deepak Chandra and Sam Toueg. 1996. Unreliable failure detectors for
reliable distributed systems. Journal of the ACM (JACM) 43, 2, 225-267. https:
//ecommons.cornell.edu/bitstream/handle/1813/7192/95-1535.pdf ?sequence=1
Alexander Chepurnoy, Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. 2017.
TwinsCoin: A Cryptocurrency via Proof-of-Work and Proof-of-Stake. http:
//eprint.iacr.org/2017/232.pdf Accessed: 2017-03-22.

Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.
Ouroboros praos: An adaptively-secure, semi-synchronous proof-of-stake block-
chain. In Annual International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 66-98.

Christian Decker and Roger Wattenhofer. 2014. Bitcoin transaction malleability
and MtGox. In Computer Security-ESORICS 2014. Springer, 313-326. http:

[67

[68

[69

[70

(71

[72

[73

[74
[75

[76

[77

[78

[79

[80

[81

[82

[83

(84

[85

[86

[87

[88

[89

[90

[91

]

]

]

]

]

]

]

//www.tik.ee.ethz.ch/file/7e4a7f3f2991784786037285f4876f5¢c/malleability.pdf
Edsger W Dijkstra. 2001. Solution of a problem in concurrent programming
control. In Pioneers and Their Contributions to Software Engineering. Springer,
289-294.

Johnny Dilley, Andrew Poelstra, Jonathan Wilkins, Marta Piekarska, Ben Gorlick,
and Mark Friedenbach. 2016. Strong Federations: An Interoperable Blockchain
Solution to Centralized Third Party Risks. arXiv preprint arXiv:1612.05491 (2016).
John R Douceur. 2002. The sybil attack. In International Workshop on Peer-to-
Peer Systems. Springer, 251-260. http://www.cs.cornell.edu/people/egs/cs6460-
spring10/sybil.pdf

Tuyet Duong, Lei Fan, and Hong-Sheng Zhou. 2016. 2-hop Blockchain: Com-
bining Proof-of-Work and Proof-of-Stake Securely. Cryptology ePrint Archive,
Report 2016/716. https://eprint.iacr.org/2016/716.pdf Accessed: 2017-02-06.
Stefan Dziembowski, Lisa Eckey, and Sebastian Faust. 2018. Fairswap: How to
fairly exchange digital goods. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security. ACM, 967-984.

Jacob Eberhardt and Stefan Tai. [n.d.]. ZoKrates-Scalable
Privacy-Preserving Off-Chain Computations. http://www.ise.tu-
berlin.de/fileadmin/fg308/publications/2018/2018_eberhardt_ZoKrates.pdf.
([n.d.]).

Christoph Egger, Pedro Moreno-Sanchez, and Matteo Maffei. 2019. Atomic Multi-
Channel Updates with Constant Collateral in Bitcoin-Compatible Payment-
Channel Networks. In CCS.

Shimon Even. 1982. A protocol for signing contracts. Technical Report. Computer
Science Department, Technion. Presented at CRYPTO’81.

Shimon Even and Yacov Yacobi. 1980. Relations among public key signature
systems. Technical Report. Computer Science Department, Technion.

Ittay Eyal and Emin Giin Sirer. 2014. Majority is not enough: Bitcoin mining
is vulnerable. In Financial Cryptography and Data Security. Springer, 436-454.
http://arxiv.org/pdf/1311.0243

Giulia Fanti, Leonid Kogan, Sewoong Oh, Kathleen Ruan, Pramod Viswanath,
and Gerui Wang. 2018. Compounding of wealth in proof-of-stake cryptocurren-
cies. arXiv preprint arXiv:1809.07468 (2018).

Michael] Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility
of distributed consensus with one faulty process. Journal of the ACM (JACM) 32,
2,374-382. http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.
pdf

Bryan Ford, Linus Gasser, Eleftherios Kokoris Kogias, and Philipp Jovanovic.
2018. Cryptographically Verifiable Data Structure Having Multi-Hop Forward
and Backwards Links and Associated Systems and Methods. US Patent App.
15/618,653.

Ariel Gabizon, Kobi Gurkan, Philipp Jovanovic, Georgios Konstantopoulos, Asa
Oines, Marek Olszewski, Michael Straka, and Eran Tromer. 2020. Plumo: To-
wards Scalable Interoperable Blockchains Using Ultra Light Validation Systems.
(2020).

Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2016. The Bitcoin Back-
bone Protocol with Chains of Variable Difficulty. http://eprint.iacr.org/2016/
1048.pdf Accessed: 2017-02-06.

Alberto Garoffolo, Dmytro Kaidalov, and Roman Oliynykov. 2020. Zendoo: a
zk-SNARK Verifiable Cross-Chain Transfer Protocol Enabling Decoupled and
Decentralized Sidechains. arXiv preprint arXiv:2002.01847 (2020).

Felix C Gartner. 1998. Specifications for fault tolerance: A comedy of failures.
(1998).

Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018. Stake-Bleeding Attacks
on Proof-of-Stake Blockchains. Cryptology ePrint Archive, Report 2018/248.
https://eprint.iacr.org/2018/248.pdf Accessed:2018-03-12.
Peter Gazi, Aggelos Kiayias, and Dionysis Zindros. 2019.
Sidechains. IEEE Security and Privacy. IEEE (2019).

Arthur Gervais, Ghassan O Karame, Karl Wiist, Vasileios Glykantzis, Hubert
Ritzdo rf, and Srdjan Capkun. 2016. On the security and performance of proof
of work blockchains. In Proceedings of the 2016 ACM SIGSAC. ACM, 3-16.
Matthew Green and Ian Miers. 2016. Bolt: Anonymous Payment Channels
for Decentralized Currencies. Cryptology ePrint Archive, Report 2016/701.
http://eprint.iacr.org/2016/701 Accessed: 2017-08-07.

Lewis Gudgeon, Pedro Moreno-Sanchez, Stefanie Roos, Patrick McCorry, and
Arthur Gervais. 2019. SoK: Off The Chain Transactions. Cryptology ePrint
Archive, Report 2019/360. https://eprint.iacr.org/2019/360.pdf https://eprint.
iacr.org/2019/360.

Runchao Han, Haoyu Lin, and Jiangshan Yu. 2019. On the optionality and
fairness of Atomic Swaps. Cryptology ePrint Archive, Report 2019/896. https:
//eprint.iacr.org/2019/896.

Dominik Harz and Magnus Boman. 2018. The Scalability of Trustless Trust.
arXiv:1801.09535. https://arxiv.org/pdf/1801.09535.pdf Accessed:2018-01-31.
Dominik Harz, Lewis Gudgeon, Arthur Gervais, and William J. Knottenbelt.
2019. Balance: Dynamic Adjustment of Cryptocurrency Deposits. Cryptology
ePrint Archive, Report 2019/675. https://eprint.iacr.org/2019/675.pdf https:
//eprint.iacr.org/2019/675.

Proof-of-Stake

https://work.delaat.net/rp/2017-2018/p42/report.pdf
https://work.delaat.net/rp/2017-2018/p42/report.pdf
https://eprint.iacr.org/2017/1153.pdf
https://eprint.iacr.org/2017/1153.pdf
http://eprint.iacr.org/2014/129.pdf
http://eprint.iacr.org/2014/129.pdf
https://eprint.iacr.org/2016/919.pdf
https://eprint.iacr.org/2018/1188.pdf
https://eprint.iacr.org/2018/1188
https://eprint.iacr.org/2018/1188
http://fc16.ifca.ai/bitcoin/papers/Bon16b.pdf
https://eprint.iacr.org/2015/1015.pdf
http://www.jbonneau.com/doc/BM14-SPW-fawkescoin.pdf
http://www.jbonneau.com/doc/BM14-SPW-fawkescoin.pdf
http://web.stanford.edu/~buenz/pubs/bulletproofs.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf
https://www.r3.com/wp-content/uploads/2017/06/chain_interoperability_r3.pdf
https://www.zurich.ibm.com/dccl/papers/cachin_dccl.pdf
http://pmg.csail.mit.edu/papers/osdi99.pdf
https://ecommons.cornell.edu/bitstream/handle/1813/7192/95-1535.pdf?sequence=1
https://ecommons.cornell.edu/bitstream/handle/1813/7192/95-1535.pdf?sequence=1
http://eprint.iacr.org/2017/232.pdf
http://eprint.iacr.org/2017/232.pdf
http://www.tik.ee.ethz.ch/file/7e4a7f3f2991784786037285f4876f5c/malleability.pdf
http://www.tik.ee.ethz.ch/file/7e4a7f3f2991784786037285f4876f5c/malleability.pdf
http://www.cs.cornell.edu/people/egs/cs6460-spring10/sybil.pdf
http://www.cs.cornell.edu/people/egs/cs6460-spring10/sybil.pdf
https://eprint.iacr.org/2016/716.pdf
http://arxiv.org/pdf/1311.0243
http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.pdf
http://macs.citadel.edu/rudolphg/csci604/ImpossibilityofConsensus.pdf
http://eprint.iacr.org/2016/1048.pdf
http://eprint.iacr.org/2016/1048.pdf
https://eprint.iacr.org/2018/248.pdf
http://eprint.iacr.org/2016/701
https://eprint.iacr.org/2019/360.pdf
https://eprint.iacr.org/2019/360
https://eprint.iacr.org/2019/360
https://eprint.iacr.org/2019/896
https://eprint.iacr.org/2019/896
https://arxiv.org/pdf/1801.09535.pdf
https://eprint.iacr.org/2019/675.pdf
https://eprint.iacr.org/2019/675
https://eprint.iacr.org/2019/675

[92

[93

[94

[95

[96

<
=

[98

[99]

[100

[101]

[102]

[103

[104

[105

[106

[107

[108

[109

[110

[111

[112

[113

[114

[115

[116

[117

Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and
Sharon Goldberg. 2016. TumbleBit: An untrusted Bitcoin-compatible anonymous
payment hub. https://eprint.iacr.org/2016/575.pdf Accessed: 2017-09-29.
Ethan Heilman, Sebastien Lipmann, and Sharon Goldberg. [n.d.]. The Arwen
Trading Protocols. Whitepaper. https://www.arwen.io/whitepaper.pdf.
Maurice Herlihy. 2018. Atomic Cross-Chain Swaps. arXiv:1801.09515. https:
//arxiv.org/pdf/1801.09515.pdf Accessed:2018-01-31.

Maurice Herlihy, Barbara Liskov, and Liuba Shrira. 2019. Cross-chain Deals and
Adversarial Commerce. arXiv preprint arXiv:1905.09743 (2019).

Abraham Hinteregger and Bernhard Haslhofer. 2018. An empirical analysis of
monero cross-chain traceability. arXiv preprint arXiv:1812.02808 (2018).

Dr Hosp, Toby Hoenisch, Paul Kittiwongsunthorn, et al. 2018. COMIT-
Cryptographically-secure Off-chain Multi-asset Instant Transaction Network.
arXiv preprint arXiv:1810.02174 (2018).

Intel Corp. 2014. Software Guard Extensions Programming Reference, Ref.
329298-002US. https://software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf. https://software.intel.com/sites/default/files/managed/48/88/
329298-002.pdf

Don Johnson, Alfred Menezes, and Scott Vanstone. 2001. The elliptic curve
digital signature algorithm (ECDSA). International journal of information security
1,1(2001), 36-63

Sandra Johnson, Peter Robinson, and John Brainard. 2019. Sidechains and
interoperability. arXiv preprint arXiv:1903.04077 (2019).

John Jones and abitmore. [n.d.]. Optional HTLC preimage length and HASH160
addition. BSIP 64, blog post. https://github.com/bitshares/bsips/issues/163.
Maxim Jourenko, Kanta Kurazumi, Mario Larangeira, and Keisuke Tanaka. 2019.
SoK: A Taxonomy for Layer-2 Scalability Related Protocols for Cryptocurrencies.
Cryptology ePrint Archive, Report 2019/352. https://eprint.iacr.org/2019/352.
pdf https://eprint.iacr.org/2019/352.

Aljosha Judmayer, Nicholas Stifter, Alexei Zamyatin, Itay Tsabary, Ittay Eyal,
Peter Gazi, Sarah Meiklejohn, and Edgar Weippl. 2019. Pay-To-Win: Incentive
Attacks on Proof-of-Work Cryptocurrencies. Cryptology ePrint Archive, Report
2019/775. https://eprint.iacr.org/2019/775.pdf https://eprint.iacr.org/2019/775.
Aljosha Judmayer, Alexei Zamyatin, Nicholas Stifter, Artemios G. Voyiatzis, and
Edgar Weippl. 2017. Merged Mining: Curse or Cure?. In CBT’17: Proceedings
of the International Workshop on Cryptocurrencies and Blockchain Technology.
https://eprint.iacr.org/2017/791.pdf

Harry Kalodner, Steven Goldfeder, Xiaoqi Chen, S Matthew Weinberg, and Ed-
ward W Felten. 2018. Arbitrum: Scalable, private smart contracts. In Proceedings
of the 27th USENIX Conference on Security Symposium. USENIX Association,
1353-1370.

Kostis Karantias, Aggelos Kiayias, and Dionysis Zindros. 2019. Proof-of-Burn.
International Conference on Financial Cryptography and Data Security.

Majid Khabbazian, Tejaswi Nadahalli, and Roger Wattenhofer. 2019. Outpost: A
Responsive Lightweight Watchtower. (2019).

Aggelos Kiayias, Nikolaos Lamprou, and Aikaterini-Panagiota Stouka. 2016.
Proofs of proofs of work with sublinear complexity. In International Conference
on Financial Cryptography and Data Security. Springer, Springer, 61-78.
Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. 2017. Non-interactive
proofs of proof-of-work. Cryptology ePrint Archive, Report 2017/963. https:
//eprint.iacr.org/2017/963.pdf Accessed:2017-10-03.

Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov.
2017. Ouroboros: A provably secure proof-of-stake blockchain protocol. In
Annual International Cryptology Conference. Springer, 357-388.

Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. 2016. Fair and robust
multi-party computation using a global transaction ledger. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques.
Springer, 705-734. https://eprint.iacr.org/2015/574.pdf

Aggelos Kiayias and Dionysis Zindros. 2018. Proof-of-Work Sidechains.. In
International Conference on Financial Cryptography and Data Security. Springer.
Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. 2016. Enhancing Bitcoin Security and Performance with
Strong Consistency via Collective Signing. In 25th USENIX Security Symposium
(USENIX Security 16). USENIX Association, Austin, TX. http://arxiv.org/pdf/
1602.06997.pdf

Eleftherios Kokoris-Kogias. 2019. Robust and Scalable Consensus for Sharded Dis-
tributed Ledgers. Technical Report. Cryptology ePrint Archive, Report 2019/676.
Eleftherios Kokoris-Kogias, Enis Ceyhun Alp, Sandra Deepthy Siby, Nicolas
Gailly, Linus Gasser, Philipp Jovanovic, Ewa Syta, and Bryan Ford. 2018. Calypso:
Auditable sharing of private data over blockchains. Technical Report. Cryptology
ePrint Archive, Report 2018/209.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. 2018. Omniledger: A secure, scale-out, decentralized
ledger via sharding. In 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
583-598.

Eleftherios Kokoris-Kogias, Alexander Spiegelman, Dahlia Malkhi, and Ittai
Abraham. 2019. Bootstrapping Consensus Without Trusted Setup: Fully Asynchro-
nous Distributed Key Generation. Technical Report. https://eprint.iacr.org/2019/

1015.pdf https://eprint.iacr.org/2019/1015.

Lefteris Kokoris-Kogias, Linus Gasser, Ismail Khoffi, Philipp Jovanovic, Nicolas
Gailly, and Bryan Ford. 2016. Managing identities using blockchains and CoSi.
In 9th Workshop on Hot Topics in Privacy Enhancing Technologies (HotPETs 2016).
Ranjit Kumaresan and Iddo Bentov. 2016. Amortizing secure computation with
penalties. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 418-429.

Alptekin Kiip¢ii and Anna Lysyanskaya. 2012. Usable optimistic fair exchange.
Computer Networks 56, 1 (2012), 50-63.

Jae Kwon and Ethan Buchman. 2015. Cosmos: A Network of Distributed Ledgers.
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md.

Yujin Kwon, Hyoungshick Kim, Jinwoo Shin, and Yongdae Kim. 2019. Bitcoin
vs. Bitcoin Cash: Coexistence or Downfall of Bitcoin Cash? arXiv:1902.11064.
https://arxiv.org/pdf/1902.11064.pdf

Leslie Lamport. 1989. A simple approach to specifying concurrent systems.
Commun. ACM 32, 1 (1989), 32-45.

Sergio Demian Lerner. 2018. Drivechains, Sidechains and Hybrid 2-Way Peg
Designs. Technical Report. Tech. Rep. [Online]. https://docs.rsk.co/Drivechains_
Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf

S Demian Lerner. 2015. Rootstock: Bitcoin powered smart contracts. https:
//docs.rsk.co/RSK_White_Paper-Overview.pdf.

Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao,
and Yih-Chun Hu. 2019. HyperService: Interoperability and Programmability
Across Heterogeneous Blockchains. arXiv preprint arXiv:1908.09343 (2019).
Loi Luu, Benedikt Buenz, and Mahdi Zamani. [n.d.]. Flyclient Super light client
for cryptocurrencies. ([n.d.]). https://stanford2017.scalingbitcoin.org/files/
Day1/flyclientscalingbitcoin.pptx.pdf Accessed 2018-04-17.

Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei, and Sri-
vatsan Ravi. 2017. Concurrency and Privacy with Payment-Channel Networks.
In CCS. 455-471.

Giulio Malavolta, Pedro Moreno-Sanchez, Clara Schneidewind, Aniket Kate, and
Matteo Maffei. 2019. Anonymous Multi-Hop Locks for Blockchain Scalability
and Interoperability. In NDSS.

Patrick McCorry, Surya Bakshi, Iddo Bentov, Andrew Miller, and Sarah Meikle-
john. 2018. Pisa: Arbitration Outsourcing for State Channels. IACR Cryptology
ePrint Archive 2018 (2018), 582.

Patrick McCorry, Ethan Heilman, and Andrew Miller. 2017. Atomically Trading
with Roger: Gambling on the success of a hardfork. In CBT’17: Proceedings
of the International Workshop on Cryptocurrencies and Blockchain Technology.
http://homepages.cs.ncl.ac.uk/patrick.mc-corry/atomically- trading-roger.pdf
Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn. 2018. Smart Contracts
for Bribing Miners. In 5th Workshop on Bitcoin and Blockchain Research, Financial
Cryptography and Data Security 18 (FC). Springer. http://fc18.ifca.ai/bitcoin/
papers/bitcoin18-final14.pdf

Izaak Meckler and Evan Shapiro. 2018. Coda: Decentralized cryptocurrency
at scale. https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-
0.pdf.

Ralph C Merkle. 1987. A digital signature based on a conventional encryp-
tion function. In Conference on the Theory and Application of Cryptographic
Techniques. Springer, 369-378.

Dmitry Meshkov, Alexander Chepurnoy, and Marc Jansen. 2017. Revisiting
Difficulty Control for Blockchain Systems. Cryptology ePrint Archive, Report
2017/731. http://eprint.iacr.org/2017/731.pdf Accessed: 2017-08-03.

Silvio Micali. 2016. ALGORAND: The Efficient and Democratic Ledger. https:
//arxiv.org/pdf/1607.01341.pdf Accessed: 2017-02-09.

Andrew Miller. 2012. The high-value-hash highway, Bitcoin forum post. https:
//bitcointalk.org/index.php?topic=98986.0

Mahdi Miraz and David C Donald. 2019. Atomic Cross-chain Swaps: Develop-
ment, Trajectory and Potential of Non-monetary Digital Token Swap Facilities.
Annals of Emerging Technologies in Computing (AETiC) Vol 3 (2019).

Pedro Moreno-Sanchez, Randomrun, Duc V. Le, Sarang Noether, Brandon Good-
ell, and Aniket Kate. 2019. DLSAG: Non-Interactive Refund Transactions For
Interoperable Payment Channels in Monero. Cryptology ePrint Archive, Report
2019/595. https://eprint.iacr.org/2019/595.

Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf Accessed: 2015-07-01.

Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly,
Linus Gasser, Ismail Khoffi, Justin Cappos, and Bryan Ford. [n.d.]. CHAINIAC:
Proactive Software-Update Transparency via Collectively Signed Skipchains
and Verified Builds.

Henning Pagnia and Felix C Gértner. 1999. On the impossibility of fair exchange
without a trusted third party. Technical Report. Technical Report TUD-BS-1999-
02, Darmstadt University of Technology

Rafael Pass, Lior Seeman, and abhi shelat. 2016. Analysis of the Blockchain Pro-
tocol in Asynchronous Networks. http://eprint.iacr.org/2016/454.pdf Accessed:
2016-08-01.

Rafael Pass and Elaine Shi. 2016. Hybrid Consensus: Scalable Permissionless
Consensus. https://eprint.iacr.org/2016/917.pdf Accessed: 2016-10-17.

https://eprint.iacr.org/2016/575.pdf
https://www.arwen.io/whitepaper.pdf
https://arxiv.org/pdf/1801.09515.pdf
https://arxiv.org/pdf/1801.09515.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://github.com/bitshares/bsips/issues/163
https://eprint.iacr.org/2019/352.pdf
https://eprint.iacr.org/2019/352.pdf
https://eprint.iacr.org/2019/352
https://eprint.iacr.org/2019/775.pdf
https://eprint.iacr.org/2019/775
https://eprint.iacr.org/2017/791.pdf
https://eprint.iacr.org/2017/963.pdf
https://eprint.iacr.org/2017/963.pdf
https://eprint.iacr.org/2015/574.pdf
http://arxiv.org/pdf/1602.06997.pdf
http://arxiv.org/pdf/1602.06997.pdf
https://eprint.iacr.org/2019/1015.pdf
https://eprint.iacr.org/2019/1015.pdf
https://eprint.iacr.org/2019/1015
https://github.com/cosmos/cosmos/blob/master/WHITEPAPER.md
https://arxiv.org/pdf/1902.11064.pdf
https://docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
https://docs.rsk.co/Drivechains_Sidechains_and_Hybrid_2-way_peg_Designs_R9.pdf
https://docs.rsk.co/RSK_White_Paper-Overview.pdf
https://docs.rsk.co/RSK_White_Paper-Overview.pdf
https://stanford2017.scalingbitcoin.org/files/Day1/flyclientscalingbitcoin.pptx.pdf
https://stanford2017.scalingbitcoin.org/files/Day1/flyclientscalingbitcoin.pptx.pdf
http://homepages.cs.ncl.ac.uk/patrick.mc-corry/atomically-trading-roger.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
http://fc18.ifca.ai/bitcoin/papers/bitcoin18-final14.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
https://cdn.codaprotocol.com/v2/static/coda-whitepaper-05-10-2018-0.pdf
http://eprint.iacr.org/2017/731.pdf
https://arxiv.org/pdf/1607.01341.pdf
https://arxiv.org/pdf/1607.01341.pdf
https://bitcointalk.org/index.php?topic=98986.0
https://bitcointalk.org/index.php?topic=98986.0
https://eprint.iacr.org/2019/595
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2016/454.pdf
https://eprint.iacr.org/2016/917.pdf

[145

[146

[147

[148

[149

[150

[151

[152

[153

[154

[155

[156

[157

[158

[159

[160

[161

[162]

[163

[164

[165

[166

[167

[168

[169

[170

[171

Andrew Poelstra. [n.d.]. Scriptless Scripts. Presentation slides.
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-
mit-bitcoin-expo/slides.pdf.

Joseph Poon and Thaddeus Dryja. 2016. The bitcoin lightning network. https:
//lightning network/lightning-network-paper.pdf Accessed: 2016-07-07.
Ronald L Rivest, Adi Shamir, and David A Wagner. 1996. Time-lock puzzles and
timed-release crypto. (1996).

Peter Robinson. 2019. The merits of using Ethereum MainNet as a Coordination
Blockchain for Ethereum Private Sidechains. arXiv:arXiv:1906.04421 https:
//arxiv.org/pdf/1906.04421.pdf

Jeremy Rubin, Manali Naik, and Nitya Subramanian. 2014. Merkelized Abstract
Syntax Trees. http://www.mit.edu/~jlrubin/public/pdfs/858report.pdf.

Ayelet Sapirshtein, Yonatan Sompolinsky, and Aviv Zohar. 2015. Optimal selfish
mining strategies in Bitcoin. http://arxiv.org/pdf/1507.06183.pdf Accessed:
2016-08-22.

Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. 2018.
HydRand: Practical Continuous Distributed Randomness. Cryptology ePrint
Archive, Report 2018/319. https://eprint.iacr.org/2018/319.pdf

Claus-Peter Schnorr. 1991. Efficient signature generation by smart cards. Journal
of cryptology 4,3 (1991), 161-174.

Ilya Sergey, Amrit Kumar, and Aquinas Hobor. 2018. Scilla: a Smart Contract
Intermediate-Level LAnguage. arXiv:1801.00687. https://arxiv.org/pdf/1801.
00687.pdf Accessed:2018-01-08.

Vasilios A. Siris, Dimitrios Dimopoulos, Nikos Fotiou, Spyros Voulgaris, and
George C. Polyzos. 2019. Interledger Smart Contracts for Decentralized Autho-
rization to Constrained Things. arXiv:arXiv:1905.01671 https://arxiv.org/pdf/
1905.01671.pdf

Yonatan Sompolinsky and Aviv Zohar. 2016. Bitcoin’s Security Model Revisited.
http://arxiv.org/pdf/1605.09193.pdf Accessed: 2016-07-04.

Alberto Sonnino, Shehar Bano, Mustafa Al-Bassam, and George Danezis. 2019.
Replay Attacks and Defenses Against Cross-shard Consensus in Sharded Dis-
tributed Ledgers. arXiv preprint arXiv:1901.11218 (2019).

Matthew Spoke and Nuco Engineering Team. [n.d.]. AION: The third-
generation blockchain network. https://aion.network/media/2018/03/aion.
network_technical-introduction_en.pdf. Accessed 2018-04-17.

Tain Stewart. 2012. Proof of burn. https://en.bitcoin.it/wiki/Proof_of_burn
Accessed: 2017-05-10.

Nicholas Stifter, Philipp Schindler, Aljosha Judmayer, Alexei Zamyatin, Andreas
Kern, and Edgar Weippl. 2019. Echoes of the Past: Recovering Blockchain Metrics
From Merged Mining. In Proceedings of the 23nd International Conference on
Financial Cryptography and Data Security (FC). Springer. https://fc19.ifca.ai/
preproceedings/41-preproceedings.pdf

Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus
Gasser, Ismail Khoffi, Michael J Fischer, and Bryan Ford. 2017. Scalable bias-
resistant distributed randomness. In 2017 IEEE Symposium on Security and
Privacy (SP). Ieee, 444-460.

Paul Syverson. 1998. Weakly secret bit commitment: Applications to lotteries
and fair exchange. In Proceedings. 11th IEEE Computer Security Foundations
Workshop (Cat. No. 98TB100238). IEEE, 2-13.

Erkan Tairi, Pedro Moreno-Sanchez, and Matteo Maffei. 2019. A%L: Anonymous
Atomic Locks for Scalability and Interoperability in Payment Channel Hubs.
Cryptology ePrint Archive, Report 2019/589. https://eprint.iacr.org/2019/589.
Jason Teutsch and TrueBit Estsblishment. 2017. On decentralized oracles for
data availability. (2017).

Jason Teutsch and Christian Reitwiefiner. 2017. A scalable verification solution
for blockchains. https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
Accessed:2017-10-06.

Jason Teutsch, Michael Straka, and Dan Boneh. 2018. Retrofitting a two-way
peg between blockchains. Technical Report. https://people.cs.uchicago.edu/
~teutsch/papers/dogethereum.pdf

Stefan Thomas and Evan Schwartz. 2015. A protocol for interledger payments.
URL https://interledger. org/interledger. pdf (2015).

Gilbert Verdian, Paolo Tasca, Colin Paterson, and Gaetano Mondelli. 2018. Quant
overledger whitepaper. https://www.quant.network/wp-content/uploads/2018/
09/Quant_Overledger Whitepaper-Sep.pdf.

Marko Vukolic. 2016. Eventually Returning to Strong Consistency. https://
pdfs.semanticscholar.org/a6al/b70305b27c556aac779fb65429db9c2elef2.pdf Ac-
cessed: 2016-08-10.

Martin Westerkamp and Jacob Eberhardt. 2020. zkRelay: Facilitating Sidechains
using zkSNARK-based Chain-Relays. Contract 1, 2 (2020), 3.

Gavin Wood. 2015. Polkadot: Vision for a heterogeneous multi-chain framework.
PolkaDotPaper.pdf. White Paper (2015).

Gavin Wood. 2017. Ethereum: A secure decentralised generalised transaction
ledger EIP-150 REVISION (759dccd - 2017-08-07). https://ethereum.github.io/
yellowpaper/paper.pdf Accessed: 2018-01-03.

[172] Andrew Chi-Chih Yao. 1986. How to generate and exchange secrets. In 27th

Annual Symposium on Foundations of Computer Science (sfcs 1986). IEEE, 162
167.

Haaroon Yousaf, George Kappos, and Sarah Meiklejohn. 2019. Tracing Transac-
tions Across Cryptocurrency Ledgers. In 28th {USENIX} Security Symposium
({USENIX} Security 19). 837-850.

Mingchao Yu, Saeid Sahraei, Songze Li, Salman Avestimehr, Sreeram Kannan,
and Pramod Viswanath. 2019. Coded Merkle Tree: Solving Data Availability
Attacks in Blockchains. arXiv preprint arXiv:1910.01247 (2019).

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. 2018. RapidChain: A
Fast Blockchain Protocol via Full Sharding. Cryptology ePrint Archive, Report
2018/460. https://eprint.iacr.org/2018/460.pdf

Alexei Zamyatin, Zeta Avarikioti, Daniel Perez, and William J Knottenbelt. 2020.
TxChain: Efficient Cryptocurrency Light Clients via Contingent Transaction
Aggregation. IACR Cryptology ePrint Archive 2020/580 (2020).

Alexei Zamyatin, Dominik Harz, Joshua Lind, Panayiotis Panayiotou, Arthur
Gervais, and William Knottenbelt. 2019. Xclaim: Trustless, interoperable,
cryptocurrency-backed assets. IEEE Security and Privacy. IEEE (2019).

Alexei Zamyatin, Nicholas Stifter, Aljosha Judmayer, Philipp Schindler, Edgar
Weippl, and William J. Knottebelt. 2018. (Short Paper) A Wild Velvet Fork
Appears! Inclusive Blockchain Protocol Changes in Practice. In 5th Workshop
on Bitcoin and Blockchain Research, Financial Cryptography and Data Security
18 (FC). Springer. https://eprint.iacr.org/2018/087.pdf

Dionysis Zindros. 2019. Summa Proofs Are Not Composable. https://medium.
com/@dionyziz/summa-proofs-are-not-composable-57b87825f428

https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mw-slides/2017-03-mit-bitcoin-expo/slides.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
https://arxiv.org/abs/arXiv:1906.04421
https://arxiv.org/pdf/1906.04421.pdf
https://arxiv.org/pdf/1906.04421.pdf
http://www.mit.edu/~jlrubin/public/pdfs/858report.pdf
http://arxiv.org/pdf/1507.06183.pdf
https://eprint.iacr.org/2018/319.pdf
https://arxiv.org/pdf/1801.00687.pdf
https://arxiv.org/pdf/1801.00687.pdf
https://arxiv.org/abs/arXiv:1905.01671
https://arxiv.org/pdf/1905.01671.pdf
https://arxiv.org/pdf/1905.01671.pdf
http://arxiv.org/pdf/1605.09193.pdf
https://aion.network/media/2018/03/aion.network_technical-introduction_en.pdf
https://aion.network/media/2018/03/aion.network_technical-introduction_en.pdf
https://en.bitcoin.it/wiki/Proof_of_burn
https://fc19.ifca.ai/preproceedings/41-preproceedings.pdf
https://fc19.ifca.ai/preproceedings/41-preproceedings.pdf
https://eprint.iacr.org/2019/589
https://people.cs.uchicago.edu/~teutsch/papers/truebit.pdf
https://people.cs.uchicago.edu/~teutsch/papers/dogethereum.pdf
https://people.cs.uchicago.edu/~teutsch/papers/dogethereum.pdf
https://www.quant.network/wp-content/uploads/2018/09/Quant_Overledger_Whitepaper-Sep.pdf
https://www.quant.network/wp-content/uploads/2018/09/Quant_Overledger_Whitepaper-Sep.pdf
https://pdfs.semanticscholar.org/a6a1/b70305b27c556aac779fb65429db9c2e1ef2.pdf
https://pdfs.semanticscholar.org/a6a1/b70305b27c556aac779fb65429db9c2e1ef2.pdf
PolkaDotPaper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf
https://eprint.iacr.org/2018/460.pdf
https://eprint.iacr.org/2018/087.pdf
https://medium.com/@dionyziz/summa-proofs-are-not-composable-57b87825f428
https://medium.com/@dionyziz/summa-proofs-are-not-composable-57b87825f428

A Strong Fair Exchange Definition

This section provides the definition of the strong Fair Exchange
problem, as presented in [29-31, 142].

Fair Exchange considers two processes (or parties) P and Q that
wish to exchange two items (or asset): ap owned by P against agp
owned by Q. There exists a function desc that maps any exchange-
able item (or asset) to a string describing it in sufficient" detail (e.g.
the value and recipient of a payment). The inputs of P to a Fair
Exchange protocol are an item ap and a description dg of the de-
sired item. Analogous, the inputs for Q are ag and dg. To indicate
that P is dishonest, an (boolean) error variable mp is introduced
(analogous, mg for Q) [83]. A successful Fair Exchange is shown
in Table 2 below.

Table 2: A successful Fair Exchange, as defined in [29-31,
142].

P Q
Input : ap, dQ,Q Input : ag, dp, P
fair exchange
——
Output : ag(desc(ag) = dp) Output : ap(desc(ap) = dp)
or

aborted aborted

A successful Fair Exchange protocol must thereby fulfill the
following properties:

DEFINITION 7 (EFFECTIVENESS). If both P and Q behave correctly,
ie, mp = mg = false, and the items ap and ag match the expected
descriptions, i.e., desc(ag) = dg A desc(ap) = dp, then P will re-
ceive ag and Q will receive ap. If the items are not as expected, i.e.,
desc(ag) # dg V desc(ap) # dp, then both parties will abort the
exchange.

DEFINITION 8 (TIMELINESS). Eventually P will transfer ap to Q
or abort, and Q will transfer ag to P or abort.

DEFINITION 9 (STRONG FAIRNESS). There are no outcomes in
which Q receives ap but P does not receive ag (Q aborts), or P receives
ag but Q does not receive ap (P aborts).

Effectiveness determines the outcome of the exchange if P and
Q are willing to perform the exchange and the item’s match the
expected descriptions, or the items do not match the expected de-
scriptions. (Strong) Fairness restricts the outcomes of the exchange
such that neither party is left at a disadvantage. Timeliness ensures
eventual termination of the exchange protocol. Note: we do not
provide a definition for “Non-repudiability" as this property is not a
critical requirement for Fair Exchange protocols, but only becomes
relevant in disputes after an exchange [30, 142].

B Fair Exchange using CCC

We provide the intuition of how to construct a Fair Exchange pro-
tocol using a generic CCC protocol in Algorithm 1. Specifically, P
and Q exchange assets ap and ag, if transaction TXp is written to
L and transaction X is written to L (cf. Section 3.1).

Algorithm 1: Fair Exchange using a generic CCC protocol

Result: Tx, € Ly A X, € Ly (ie.P has ap, Q has ap) or
TXp ¢ Lx A X, ¢ Ly (i.e,, no exchange)
setup(Lu,Ly,TXp, XG> dp, dg);
if mp = false then
| commit(TXp, Lx); // P transfers ap to Q
end
if (verify(Txp, Lx, dp) = true) A mg = false then
‘ commit(TXQ, Ly); // Q transfers agp to P
else
‘ abort(TXQ, Ly); // Q does not transfer ag to P
end
if verify(TXQ, Ly, dp) = false then
| abort(1xp, Lx); // P recovers ap
end

Algorithm 2: Commit(Tx, L)

if valid(Tx, L) then
| Write Tx to L;
end

Algorithm 3: Verify(tx, L, d)

if X € L A desc(1x) = d then
‘ return true;

end
return false;

Algorithm 4: Abort(tx, L)

if 7x € L then

| Revert TX; // e.g. using a new transaction
else

| //do nothing
end

	Abstract
	1 Introduction
	2 The CCC Problem
	2.1 Distributed Ledger Model
	2.2 CCC System Model
	2.3 Correct Cross-Chain Communication
	2.4 Generic CCC Protocol

	3 Impossibility of CCC
	3.1 Relating CCC to Fair Exchange.
	3.2 What is a Trusted Third Party?
	3.3 Incentives and Rational CCC

	4 Classification of CCC Designs
	4.1 (Pre-)Commit Phase
	4.2 Verification Phase
	4.3 Abort Phase

	5 Cross-Chain State Verification
	5.1 Verification Classes
	5.2 Relation between Verification Classes

	6 Evaluation of CCC Protocols
	6.1 Exchange Protocols
	6.2 Asset Migration Protocols
	6.3 General Observations

	7 Challenges and Implications
	7.1 Threat Model and Attacks
	7.2 Network model
	7.3 Blockchain Model
	7.4 Privacy and Linkability

	8 Related Work
	9 Concluding Remarks
	10 Acknowledgements
	References
	A Strong Fair Exchange Definition
	B Fair Exchange using CCC

