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Abstract. The Bitcoin mining protocol has been intensively studied
and widely adopted by many other cryptocurrencies. However, it has
been shown that this protocol is not incentive compatible, because the
selfish mining strategy enables a miner to gain unfair rewards. Existing
defenses either demand fundamental changes to block validity rules or
have little effect against a resourceful attacker. This paper proposes a
backward-compatible defense mechanism which outperforms the previ-
ous best defense. Our fork-resolving policy neglects blocks that are not
published in time and appreciates blocks that incorporate links to com-
peting blocks of their predecessors. Consequently, a block that is kept
secret until a competing block is published contributes to neither or both
branches, hence it confers no advantage in winning the block race. Ad-
ditionally, we discuss the dilemma between partition recovery time and
selfish mining resistance, and how to balance them in our defense.
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1 Introduction

Bitcoin [15], a decentralized cryptocurrency system, attracts not only many users
but also significant attention from academia. Bitcoin critically relies on an incen-
tive mechanism named mining. Participants of the mining process, called miners,
compete in producing and broadcasting blocks, hoping to get their blocks into
the main chain and receive block rewards. When more than one block extends
the same preceding block, the main chain is decided by a fork-resolving policy :
a miner adopts and mines on the chain with the most work, which is typically
the longest chain, or the first received block when several chains are of the same
length. We refer to this forked situation as a block race, and to an equal-length
block race as a tie. Bitcoin’s designer implicitly assumed the fairness of the min-
ing protocol: as long as more than half of the mining power follows the protocol,
the chance that a miner can earn the next block reward is proportional to the
miner’s computational power [15].

Unfortunately, this assumption has been disproven by a selfish mining at-
tack highlighted by Eyal and Sirer [10]. In this attack, the selfish miner keeps
discovered blocks secret and continues to mine on top of them, hoping to gain
a larger lead on the public chain, and only publishes the selfish chain to claim



the rewards when the public chain approaches the length of the selfish chain.
Though risking the rewards of some secret blocks, once the selfish chain is longer
than its competitor, the selfish miner can securely invalidate honest miners’ com-
peting blocks. Accordingly, the overall expectation of the selfish miner’s relative
revenue increases. An attacker with faster block propagation speed than honest
miners can profit from this attack no matter how small the mining power share
is. Furthermore, since the revenue of a malicious miner rises superlinearly with
the computational power, rational miners would prefer to act collectively for a
higher input-output ratio, damaging the decentralized structure of Bitcoin.

Existing defenses can be categorized into two approaches: making fundamen-
tal changes to the block validity rules, as suggested by Bahack [6], Shultz [21],
Solat and Potop-Butucaru [22]; or lowering the chance of honest miners working
on the selfish miner’s chain during a tie, as suggested by Eyal, Sirer [10] and
Heilman [12]. The former approach demands a backward-incompatible upgrade
on both miners and non-miner users; while the latter approach, which we refer
to as tie breaking defenses, has no effectiveness when the selfish chain is longer
than the public chain, therefore cannot defend against resourceful attackers.

This paper proposes another defense against selfish mining. We observe that
two policies are involved in deciding which blocks receive mining rewards: the
fork-resolving policy demands that the main chain is the longest chain, and the
reward distribution policy demands that all blocks in the main chain and no other
block receive rewards. Because changing the latter leaves the protocol backward-
incompatible, our defense aims to change only the fork-resolving policy.

Our defense replaces the original Bitcoin fork-resolving policy, denoted by
length FRP, with a weighted FRP. By asking miners to compare the weight of
the chains instead of their length, weighted FRP puts the selfish miner in a
dilemma: if the selfish miner keeps a block secret after a competing block is
published, the secret block does not contribute to the weight of its chain; if the
secret block is published with the competing block, the next honest block gains a
higher weight by embedding a proof of having seen this block. In both scenarios,
the secret block does not help the selfish miner win the block race. Consequently,
our scheme is the first backward-compatible defense that is able to disincentivize
block withholding behavior when the selfish chain is longer.

Comparing with existing defenses, our defense has the three-fold advantage
of backward-compatible, decentralized and effective. For evaluation, we extend
the method developed by Sapirshtein et al. [18] to compute the optimal selfish
mining strategy and its relative revenue within our defense. For a selfish miner
with more than 40% of mining power, our defense outperforms the optimal tie
breaking defense: an imaginary defense in which the selfish miner loses every tie.

As an additional contribution, we point out that the core reason of selfish
miner’s profitability is the high tolerance of the Bitcoin protocol towards network
partition. To resolve this dilemma, our scheme introduces a fail-safe parameter k
and demands miners to adopt the longest chain if it is at least k blocks ahead of
its competitors. Adjusting this parameter allows us to balance between partition
recovery time and selfish mining resistance. In the extreme forms, when k =∞,



although sacrificing the ability to recover from temporary network split, our
defense is effective against a 51% attacker; and when k = 1, the partition recovery
time remains unaffected and the performance of our defense, which is reduced
to a tie breaking defense, is close to the optimal tie breaking defense against a
resourceful attacker. Through evaluating both the effectiveness of our scheme and
its partition recovery performance in the presence of an attacker, we recommend
the value k = 3, which can effectively defend against selfish mining attack and
keep the partition recovery time within acceptable range.

We also reflect upon our modeling of the Bitcoin network and discuss the
limitations and possible future work.

2 Preliminaries

2.1 Bitcoin Blockchain and Mining

We summarize here essential characteristics of Bitcoin for our discussion and
refer to Nakamoto’s original paper [15] and the textbook by Narayanan et al. [16]
for a complete view of the system. To ensure participants have a consensus on
valid transactions, all nodes follow the same block and transaction validity rules.
A typical transaction in Bitcoin consists of at least one input and one output. The
difference between the total amount of inputs and outputs in a transaction, the
transaction fee, goes to the miner who includes the transaction in the blockchain.

The blockchain is a ledger containing all transactions organized as a chain
of blocks. Each block contains its distance from the first block, called height,
the hash value of the preceding parent block, a set of transactions, and a nonce.
Information about the parent block guarantees that a miner must choose which
chain to mine on before starting. A special empty-input coinbase transaction in
the block allocates a fixed amount of new bitcoins to the miner, thus incentivizing
miners to contribute their resources to the system. The miner can embed an
arbitrary string in this transaction. To construct a valid block, miners work on
finding the right nonce so that the hash of the block is smaller than the block
difficulty target. This target is adjusted every 2016 blocks so that on average a
block is generated every ten minutes. The protocol demands miners to publish
valid blocks to the overlay network the moment they are found. If a block ends
up being in the longest chain, the coinbase output and all transaction fees in the
block belong to the miner. The discarded blocks do not receive any block rewards.
To decrease the variance of mining revenues, miners often form mining pools to
work on the same puzzle and split the rewards according to their contributions.

2.2 A History of Selfish Mining Strategies

The idea of selectively delaying publication of blocks to gain an unfair advan-
tage of block rewards appears as early as 2010 [7]. In 2013, Eyal and Sirer [10]
defined and analyzed a specific strategy which they called “selfish mining”. Ba-
hack presented a family of selfish mining strategies and evaluated their relative



revenue [6]. Sapirshtein et al. [18] and Nayak et al. [17] showed that under cer-
tain conditions, the selfish miner can obtain higher expected relative revenue by
working on the selfish chain even when the public chain is longer.

2.3 Existing Defenses against Selfish Mining

Backward-Incompatible Defenses. Bahack proposed a fork-punishment rule: com-
peting blocks receive no block reward. The first miner who incorporates a proof
of the block fork in the blockchain gets half of the forfeited rewards [6]. How-
ever, honest miners suffer collateral damage of this defense, which constitutes
another kind of attack. Shultz [21], Solat and Potop-Butucaru [22] recommend-
ed that each solved block be accompanied by a certain number of signatures or
dummy blocks, proving that the block is witnessed by the network and a com-
peting block is absent, before miners are able to work on it. However they did
not provide a mechanism to evaluate whether the number of proofs is adequate
to continue working. Neither did they mention how to prevent the selfish miner
from generating a dominant number of proofs and releasing them when neces-
sary. In addition, these three defenses require fundamental changes on the block
validity and reward distribution rules, consequently network participants who
do not upgrade their clients will not understand the new protocol.

Tie Breaking Defenses. Eyal and Sirer proposed that a miner chooses which
chain to mine on uniformly at random in a tie [10]. The defense is referred to
as uniform tie breaking in [18]. The authors showed that this defense raises the
profit threshold, namely the minimum mining power share to earn unfair block
rewards, to 25% within their selfish mining strategy. The threshold was later
shown to be 23.21% under the optimal selfish mining strategy [18]. Heilman
suggested each miner incorporate the latest unforgeable timestamp issued by a
trusted party into the working block [12]. The publicly accessible and unpre-
dictable timestamp is issued with a suggested interval of 60 seconds. When two
competing blocks are received within 120 seconds, a miner prefers the block
whose timestamp is fresher. The author claimed that this freshness preferred
mechanism can raise the profit threshold to 32%. However, introducing an extra
trusted party is inconsistent with Bitcoin’s decentralized philosophy. At last, we
note that the rules of tie breaking defenses do not apply when the selfish miner’s
chain is longer than the public chain, rendering the defenses ineffective against
resourceful attackers. A selfish miner with 48% of total mining power earns 89%
and 83% of mining rewards within uniform tie breaking and freshness preferred,
respectively, given that all other miners follow honest mining strategy.

2.4 Properties of an Ideal Defense

Acknowledging the weaknesses of existing defenses, we enumerate here the de-
sirable properties of an ideal defense.

Decentralization. Introducing a trusted server would open a new single point
of failure. Moreover, it violates Bitcoin’s fundamental philosophy.



Incentive compatibility. The expected relative revenue of a miner should be
proportional to the mining power.

Backward compatibility. Non-miners who cannot upgrade their clients can
still participate in the network. This is important for hardware products such
as Bitcoin ATMs. Specifically, the following rules should not be changed:
Block validity rules. A valid block in the current Bitcoin protocol should

also be valid within the defense, and vice versa.
Reward distribution policy. All blocks in the main chain and no other

block receive block rewards.
Eventual consensus. Even when an attack happens, old and new clients

should reach a consensus on the main chain eventually. We will further
discuss this notion in Sect. 5 and Sect. 6.

3 Our Defense Mechanism

3.1 Threat Model

We follow the threat model of most selfish mining studies [6,10,12,18,21,22]. In
this model, there is only one colluding pool of selfish miners. This is considered
to be the strongest form of attack because malicious miners can achieve higher
input-output ratio by acting together. For brevity we use “the selfish miner”
or “the attacker” instead of “the colluding pool of miners”. The other miners
follow the honest mining strategy. The goal of the attacker is to maximize the
expected relative revenue. The selfish miner controls less than half of the total
mining power so that it is infeasible for the attacker to simply generate a longer
chain to invalidate the work of all the other miners.

In terms of network connectivity, we assume the selfish miner receives and
broadcasts blocks with no propagation delay. However, the attacker does not
have the power to downgrade the propagation speed of blocks found by other
miners. Moreover, we assume there is an upper bound on honest miners’ block
propagation time among each other. We believe this assumption is realistic for
the following reasons. First, the Bitcoin developers and the community have
investigated a substantial effort to defend against network attackers and to de-
crease the block propagation time. This can be seen from the number of dedicated
Bitcoin Improvement Proposals [5] and the fast response time to new attacks [1].
Second, miners endeavor to receive new blocks as quickly as possible, because a
few more seconds of delay may render the mining effort unprofitable. The ma-
jority of large miners utilize Corallo’s relay network to send and receive blocks
faster [8], which consists of eight well-connected Internet traffic hubs around
the globe. Other methods are observed by researchers, such as using multiple
gateways for more reliable connection to the public Bitcoin network [14]. Third,
Miller et al. discovered some very well-connected nodes that can increase net-
work propagation speed [14]. In early September 2016, 50% of publicly reachable
Bitcoin nodes receive a new block within 10 seconds of its creation [2].

At last, although transaction fees are supposed to substitute mining rewards
in the long run, we do not consider them in our model because the amount is
still quite small comparing with block rewards at this moment.



3.2 Mining Algorithm and Fork-Resolving Policy

We use τ to denote the upper bound on the block propagation time. In reality
we expect miners to have a rough consensus on its value. The value can be
computed either by a deterministic mechanism like block difficulty adjustment
or from a miner’s local information similar to network adjusted time [3].

In line with [6, 10, 12, 21, 22], we believe nodes should broadcast all com-
peting valid blocks, instead of just the first one they receive, as in the current
implementation.

Definition 1. From a miner’s perspective, a valid block is considered in time if
(1) its height value is bigger than the miner’s local chain head or (2) its height is
the same as the local chain head and it is received no later than τ after receiving
the first block of this height. Conversely, a valid block is late if the receiving
miner has received a block of the same height τ before receiving this block.

Definition 2. A block B1 is considered to be the uncle of another block B2 if
B1 is a competing in time block of B2’s parent block.

Notably, our definition of an uncle has two differences with the better-known
uncle definition of Ethereum [4], the cryptocurrency with the second largest
market capitalization: (1) the uncle has to be in time; (2) the height of a block
B’s uncle must be one less than the height of B.

Mining Algorithm Modification. A miner should embed in the working
block the hashes of all its uncles.

We now introduce our fork-resolving policy weighted FRP. Since two compet-
ing chains always have a common prefix, our weight calculation only considers
the last part of the chains, i.e., excluding the common prefix.

Definition 3. From a miner’s perspective, the weight of a chain is the number
of its in time blocks plus the number of in time uncle hashes embedded in these
in time blocks. Whether a block is in time is evaluated from the miner’s local
perspective.

Fig. 1 illustrates two different choices of the selfish miner in the same mining
sequence. In the left graph, both chains have the same weight three. Although
the honest miners have only two blocks, the second block contains the hash of
its uncle S because S is published in time. While in the right graph, both chains
are weighted two, because the selfish miner does not publish S in time.

Weighted FRP. In a block race,

1. if one chain is longer than the others by no less than k blocks, a miner mines
on the longest chain;

2. otherwise the miner chooses the chain with the largest weight;
3. if the largest weight is achieved by multiple chains simultaneously, the miner

chooses one among them randomly.
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Fig. 1. Two choices of the selfish miner in the same mining sequence. In each graph,
blocks are mined from left to right. A blue square indicates the time its connecting
block is published. Uncle relation is represented by a red curve with an arrow. No
matter whether the selfish miner publishes the first secret block in time or not, the two
chains have the same weight.

A fail-safe parameter k is introduced here. When k = 1, our defense is reduced
to a tie breaking defense: honest miners mine on the heavier chain during a tie.
When k = ∞, the first rule in weighted FRP never applies. The implication of
this parameter will be discussed further in Sect. 5.2.

It can be seen from Fig. 1 that weighted FRP puts the selfish miner in a
dilemma. When a competitor of the first secret block S is released, the selfish
miner has two options: if publishing S, it will be an uncle of the next honest
block; if not, it will be considered a late block by honest miners. In neither
way could S contribute only to the weight of the selfish chain. Furthermore,
because the second selfish block is mined before the first honest block, it is
impossible for the former to embed the hash of this uncle. Hence the latter block
is guaranteed to contribute only to the honest chain. As a result, our defense
lowers the selfish miner’s incentive to withhold a discovered block. This defense
is fully decentralized. As for backward compatibility, keeping the current block
validity rules and reward distribution policy allows a smooth transition; non-
miners who cannot upgrade their clients can also be tolerated. Miners and most
publicly reachable network participants need to upgrade in order to implement
our defense. Next we will show that we are the closest defense to achieving
incentive compatibility to date.

4 Evaluation

Sapirshtein et al. developed an algorithm to convert a mining model into an
undiscounted average reward Markov decision process (MDP), which makes it
possible to compute the optimal selfish mining policy and its relative revenue [18].
In this part we first formally model the mining process of a selfish miner within
our defense, then present the results output by the MDP solver, in the end com-
pare our results with uniform tie breaking and a variant of freshness preferred.



4.1 Modeling a Block Race

We consider only the simple case of one honest miner and one selfish miner.
This is based on the assumption that τ is carefully calibrated so that all honest
miners have the same view on whether a block is in time. We do not consider an
attacker who publishes blocks right before they are late to create inconsistent
views here and discuss this attack later in Sect. 6. Mining proceeds in steps. In
each step, the selfish miner first makes a decision on how many secret blocks
to publish. Then the publicly visible weight of the selfish chain is updated and
both miners start mining. The honest miner follows weighted FRP and compares
the length and weight of both chains before starting, whereas the selfish miner
always works on the selfish chain before giving up. A new block is then mined
with the probability α by the selfish miner, and with 1 − α, the honest miner.
The honest miner publishes the new block immediately and updates the weight,
whereas the selfish miner always decides whether to publish the new block at
the beginning of the next step. At the end of each step, if the block race is
concluded or partially concluded, the block rewards are allocated. The rationale
behind this publish-mine-found-reward sequence is that rational decisions may
only change when a new block is available [6, 18].

Actions. The selfish miner has five possible rational actions in our model.

Adopt. Give up the selfish chain and mine on the honest chain. This action is
always available.

Override. Publish enough blocks so that the published selfish chain is k blocks
longer than the honest chain or the selfish chain’s public weight is heav-
ier than the honest chain’s. The honest miner would start mining on the
published selfish chain. Feasible when the selfish miner has enough blocks.

Match. If the weight difference is 0, the selfish miner keeps mining without
publishing anything; otherwise publishing enough blocks so that two pub-
lished chains are of the same weight. If both chains are non-empty, half of
the honest mining power, namely (1 − α)/2, would mine on the published
selfish chain, while the other half works on the honest chain. Feasible when
the selfish miner has enough blocks except the following scenario: there is
a secret block that contains a hash of an honest uncle; if published, the
selfish chain’s public weight would exceed the honest chain’s weight by one,
otherwise the former would be smaller than the latter by one.

Even. Publish enough blocks so that the published selfish chain is no shorter
than the honest chain but the selfish chain’s public weight is smaller than
that of the honest chain. Feasible when the selfish chain is no shorter than
the honest chain, but publishing until the chains are the same length does
not result in a match.

Hide. Do not publish anything new so that the next honest block will not embed
an uncle hash. Feasible when the published selfish chain is strictly shorter
than the honest chain.

These five actions are adequate because they cover all combinations of selfish
miner’s chain selection and reasonable public weight that might affect the honest
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Fig. 2. A block race. Selfish block s2 is not published in time after its competitor h2

is mined, thus becomes a late block.

miner’s chain selection. All other actions either result in the same weight cal-
culation and chain selection or are obviously irrational. Notably, our definitions
of the actions are different from those of [18]. A wait action in their model can
either be match, even or hide in our model. Moreover, sometimes a match or
even operation do not lead to the publication of any block.

State Space. A state is represented as a 6-tuple (Bh, Bs, Diff w, luck, last,
published). Bh and Bs denote the total length of the honest and selfish chain,
respectively. Diff w = Wh−Ws is the weight difference between two chains. The
Boolean value luck indicates whether there is a secret non-late block with an
honest uncle. We refer to this block as the lucky block. There can be at most one
lucky block because if there are two, the uncle with larger height would force
the first lucky block to be published or convert it into a late block. There are
two possible values of last: h or s, indicating the miner of the block mined in the
last step. Finally, published denotes the number of published selfish blocks.

In our notation, the state in Fig. 2 is described as (2, 3, 2, 1, s, 1). The
lucky block is the last selfish block because s2 is already late. In this state, a
hide action publishes no more block; choosing even publishes s2, the resulting
temporary state before mining is (2, 3, 2, 1, s, 2); publishing the entire chain
would be match, the resulting state before mining is (2, 3, 0, 0, s, 3). The luck
value is updated to 0 because the lucky block is no longer secret.

Reward Allocation and State Transition. The reward of each step is a 2-tuple
(Rh, Rs), indicating the number of block rewards for the honest and the selfish
miner, respectively. The honest miner gets Rh = Bh only in adopt. In two sit-
uations the selfish miner gets rewards: override and at the end of match if the
honest miner finds a block on the published selfish chain. In both situations, all
selfish blocks that are published before and in this step goes to Rs.

Values in the transition matrix are assigned straight-forwardly according to
weighted FRP and the action definitions. We only highlight two tricky details
here. First, the selfish miner compares which rule in weighted FRP requires less
blocks published before override. Second, the state tuple indicates which selfish
block is the lucky block: if the latest block is honest, the lucky block is the
competitor of this block; otherwise the last honest block is an uncle of the lucky
block.



H 

adopt 

S 

match 

SH 

match 

SHH 

adopt 

SHSH’ 

even 

SS 

match 

SHS 

match 

SSS 

match 
SSH 

override 

SHSH 

match 

SHSS 

match 

SSSS 

match 

SSSH 

match 

start 

SHH’ 

Rh=1 

Rh=2 

Rs=1 

Rs=2 

Rs=1 

H 

adopt 

S 

match 

SH 

match 

SHH 

hide 

SS 

match 

SHS 

match 
SSS 

match 

SSH 

match 

SHSH 

SSHH 

match 

SHSS 

SSHS 

match 

SSSS 

match 

SSSH 

hide 

start 

SHH’ 

Rh=1 

Rs=1 

Rs=1 

SSHH’ 

SHSH’ 

Rs=1 

SHHS 

hide 

SHHH 

adopt 

Rh=3 

Publish or perish Uniform tie breaking 

Fig. 3. The optimal selfish mining strategy when α = 0.48.

Solving for the Optimal Policy. We compute the optimal policy and its relative
revenue with the goal of maximizing the objective function∑

Rs∑
Rs +

∑
Rh

.

Due to the limitation of computational resources, we set the truncating threshold
ofBh andBs to 13. Once this number is reached, the selfish miner can only choose
between adopt and override. We believe this only affects the results marginally,
because most block races end long before reaching this threshold. For α ≤ 0.4,
lowering the threshold to 12 alters the result less than 2 × 10−4; for α = 0.48,
lowering the threshold to 12 changes the result no more than 10−3.

4.2 The Optimal Selfish Mining Strategy and its Relative Revenue

The left part of Fig. 3 displays the optimal strategy within our defense when
k = 3, α = 0.48. All the states of the strategy and the transitions among them
are shown when the first four blocks are mined in a block race. Each circle
represents a state. The string above the horizontal line in a circle describes
the mining history resulted in this state. For example, “SH” means that so far
two blocks are mined, the first by the selfish miner, the second by the honest
miner. An apostrophe after H means the published selfish and honest chains
are of the same weight, and the honest miner mined a new block on the selfish
chain. The optimal action is written below the horizontal line in each state. The
transition probabilities are omitted. The resulted reward is listed next to the
transition arrow if it is not zero. A black dot indicates a temporary state which
deteriorates into one or several other states.

For comparison, we listed the optimal selfish mining strategy within uniform
tie breaking for α = 0.48 next to our result. The action names are changed to



match our terminology. In three colored mining sequences, uniform tie breaking
encourages more risky behavior for the selfish miner. Specifically, if the honest
miner mines two blocks on the honest chain after a selfish block is found, a
rational selfish miner would be forced to adopt in our scheme whereas in uniform
tie breaking, the miner tries to catch up from behind. This is because in our
scheme, if the selfish miner keeps working on the selfish chain, the next selfish
block would be late and an extra selfish block is required to catch up the honest
chain’s weight. However in uniform tie breaking, only one selfish block is enough.
Similarly, if the honest miner finds one block after the selfish miner finds two
blocks, a rational selfish miner chooses override in our scheme and claim the
block rewards instead of risking them.

For a complete picture on the performance, we computed the relative revenue
for α between 0.20 and 0.45 with interval 0.05 within our defense, plus a powerful
selfish miner with α = 0.48. Four different k values are chosen: 1, 2, 3 and ∞.
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Fig. 5. Comparison with other defenses

The results can be found in Fig. 4. In all four settings, the profit threshold,
minimum α to gain unfair rewards, is larger than 0.25. The relative revenue for
α = 0.48 is 0.764, 0.684, 0.642, 0.622 when k = 1, 2, 3 and ∞, respectively. The
effectiveness of our defense increases as k grows.

An interesting result is that when k =∞, our defense can prevent a malicious
miner with more than 50% of mining power from taking over the network. In
Fig. 4, the selfish miner with 55% of mining power only earns 76.3% of block re-
wards. When the blockchain integrity is more important than partition recovery
time, this variant of our protocol can be useful.

4.3 Comparison with Other Defenses

The optimal selfish mining strategy with no defense is used as the base line for
the comparison. Two other defenses are implemented besides our own. The first



is uniform tie breaking. The second is an imaginary defense called optimal tie
breaking, in which the selfish miner loses every tie. This defense can be considered
as the strongest form of freshness preferred, in which timestamps are issued with
unlimited granularity. For our own defense we choose k = 3. In all defenses
the selfish miner follows the optimal strategy with truncating threshold 13 to
facilitate the comparison. We do not consider the defenses due to Bahack [6],
Schultz [21], Solat and Potop-Butucaru [22] because the authors provided no
guideline on choosing the parameters or evaluating the performance.

The results are displayed in Fig. 5. The relative revenue for uniform tie
breaking and optimal tie breaking when α = 0.48 is 0.837 and 0.731, respectively.
The numbers become 0.891 and 0.831 if we set the truncating threshold to 160.
The difference is because block races with a resourceful attacker usually last for
dozens of blocks in these defenses. Neither defense has any effect for α ≥ 0.5. Our
defense has the best performance for all α values except when α = 0.3 and 0.35.
The performance of our defense can be boosted by including a trusted timestamp
server or using local time to identify potential selfish miner’s blocks, however we
gave up these ideas to maintain the decentralized nature of Bitcoin and avoid
opening new attack vectors such as the time jacking attack [9]. Moreover, optimal
tie breaking is just imaginary.

5 Balancing Partition Recovery Time and Selfish Mining
Resistance

5.1 The Dilemma

If the Bitcoin network is partitioned for at least a moderate amount of time,
say several hours, every part of the network would continue to mine new blocks
and maintain its own version of the blockchain during the partitioned period.
Upon reunion, a malicious miner may strategically mine and publish blocks to
keep the network partitioned, in order to lower the quality of service, or to
perform double-spending attacks. Deploying such an attack is relatively difficult
in Bitcoin, since honest miners would converge to the same history as soon as
one chain becomes longer than the others.

Unfortunately, Bitcoin’s high tolerance of network partition and fast recovery
time is one of the main causes of the selfish miner’s profitability. Bitcoin allows
the longer chain to claim all the block rewards after the reunion. Withholding
blocks receives no punishment because of the indistinguishability between selfish
mining and network partition. As a result, in the default Bitcoin protocol, there
is no mechanism incentivizing the selfish miner to publish blocks as long as the
selfish chain is longer.

Confronted with the dilemma, weighted FRP addresses the selfish mining
problem at the price of sacrificing partition recovery time. In our scheme, pre-
viously separated groups of miners would consider blocks mined by the other
groups during the partitioned period late and only recognize the weight of their
own blocks. Consequently, every group works on its own chain until the first rule
in weighted FRP applies.



Table 1. Average number of blocks mined before two parts of the network converge

k \ α 0 0.1 0.2 0.3 0.4 0.5

2 4.00 4.45 4.99 5.69 6.67 7.98
3 12.97 15.35 18.48 23.02 29.90 40.96
4 28.96 36.27 47.08 65.03 95.12 152.14

This problem is not fundamental for the following reasons. First, large scale
network partition is relatively easy to detect and hard to forge. Therefore it is
possible for the protocol to switch to a different fork-resolving policy when such
an incident happens. Second, the partition attack is not deemed a substantial
threat in the cryptocurrency community. The GHOST protocol [23], whose vari-
ant is adopted by Ethereum, is also vulnerable to this attack. In both length FRP
and weighted FRP, a newly released malicious block must be on top of its chain
in order to affect honest miners’ decisions, whereas in GHOST, honest miners
may switch to a different chain when a secret uncle is released. Many popular
cryptocurrencies, including Stellar [13] and Ripple [20], do not tolerate network
partition at all. Third, our defense can achieve a good balance between effec-
tiveness and partition recovery time. Next we explain how our protocol allows a
designer to fine-tune between these two goals.

5.2 A Tradeoff

We demonstrate here the resistance of our scheme towards a network partition
attack in a setting highly favorable to the attacker. In this setting, the mali-
cious miner controls α fraction of mining power, while the honest network was
partitioned into two parts with the same mining power, (1 − α)/2 each. The
two versions of main chains have the same length upon reunion. The partition
lasts long enough so that the second rule of weighted FRP persistently results in
different choices on the main chain. We use the Monte Carlo method to compute
how long it takes on average for the two chains to converge by the first rule of
weighted FRP.

At the beginning of each simulation, the lengths of the two chains are both
0. A block is generated in each round according to the mining power on both
sides. The malicious miner always works on the shorter chain. The goal of the
attacker is to keep the honest mining power segregated as long as possible. The
simulation terminates when one chain is longer than the other by k blocks. For
every k, the simulation is repeated 105 times and the average numbers of blocks
generated on both sides before convergence are recorded.

The results of our simulation are shown in Table 1. The number of blocks can
be roughly converted to time, if we assume on average a block is generated every
10 minutes. For example, when k = 2, a malicious miner with 30% of mining
power can keep the network segregated for less than one hour after reunion. It can
be seen that although a larger k value means better effectiveness of our defense,
the partition recovery time also grows exponentially. However, this simulation



only reflects the worst case. If the partition period is short, honest miners are
more likely to converge according to the second rule of weighted FRP; if the
partition period is long, there is a large probability that one chain will be longer
than the other by at least k blocks shortly after reunion.

We believe when k = 3, a good balance is achieved: as can be seen from Fig. 4,
the effectiveness of our defense is close to optimal; the partition recovery time
is no more than a few hours. For a higher-level protocol that has a contingency
plan against network partition, a few hours of recovery time should not cause
extra problems.

6 Limitations and Future Work

We acknowledge our scheme’s limitation as it is designed and evaluated in a
specific threat model, while the reality could be far more complicated.

First, Bitcoin is designed with the goal of functioning in an asynchronous
network, yet we designed our defense within the synchronous model by assuming
an upper bound of block propagation time. Designing secure protocols in an
asynchronous network is a known hard problem. The only research that proves
the security properties of Bitcoin [11] is conducted within the synchronous model.
Several other selfish mining defenses also require a fixed upper bound on the
block propagation time in order to be effective [12, 21, 22]. Recognizing this
possible divergence between this wide-used assumption and the reality, we are
unable to solve this conundrum and remove it from our model.

Second, when the fail-safe parameter k > 1, an attacker may broadcast blocks
right before they are late to cause inconsistent views among honest miners.
This is a common problem for all protocols in the synchronous model [13]. One
solution is to ask miners of, e.g., 100 predecessor blocks to broadcast signatures
that a block is in time, and the successor block’s miner to incorporate them in
the block to justify the choice of parent block. Another solution is to establish
an open trust network similar to Stellar [13] to reach consensus among miners
on controversial blocks. The network can be silent when no attack happens.

Third, although eventual consensus is achieved, an attacker may still utilize
the temporary inconsistency between weighted FRP and old clients who fol-
low length FRP to launch double-spending attacks. Therefore non-miners who
are susceptible to this attack should also upgrade their clients. For example, a
merchant running SPV client should receive and verify information about uncle
blocks in order to calculate the weight value. However, to deploy this attack,
the attacker needs to create a competing chain longer than the public chain
and discard it, which costs at least two block rewards, around $14,000 in early
September 2016.

Fourth, our model of the mining process neglects some real-world factors. Our
model does not permit the occurrence of natural forks, neither did we consider
the influence of transaction fees on the selfish miner’s strategy or how multiple
selfish miners colluding and competing with each other.



At last we note that our protocol does not achieve incentive compatibility,
though it is the closest scheme to date. Achieving incentive compatibility is not
an impossible task [19], we hope to reach this point in the near future.

7 Conclusion

The selfish mining attack is a fundamental challenge faced by Bitcoin, for it not
only breaks the fairness assumption in the original analysis by the Bitcoin de-
signer, but also posts potential threats to the decentralized structure of Bitcoin.
Existing backward-compatible defenses can only deal with equal-length block
race, but are powerless when facing a selfish chain longer than the public one.
In this study, we proposed a decentralized backward-compatible defense by re-
placing the current length with our weighted FRP. It can defend against selfish
mining when the selfish miner’s private chain is longer than the honest miner’s
chain. Under our weighted FRP, miners evaluate which chain to mine on based
on the number of blocks that are published in time and the knowledge of com-
peting blocks that are published in time. As a result, the selfish miner’s chain
would have disadvantages either because the blocks are not published in time or
the lack of knowledge of competing blocks. Our defense outperforms existing de-
fenses under the optimal selfish mining strategy. Additionally, we observed that
the selfish mining attack is made possible in Bitcoin as a result of Bitcoin’s high
tolerance towards network partition. Reflecting upon this dilemma, our scheme
introduced a fail-safe parameter k. Through adjusting k, we achieved a balance
between effectiveness and partition recovery time.

In contrast to existing defenses, our work attempts to defend against selfish
mining through revising the fork-resolving policy rather than the reward distri-
bution policy. This direction promises the advantage of backward-compatibility.
We believe it contributes to the discussion on defending against selfish mining as
it generates an alternative approach and therefore more possibilities. Our study
also contributes to an in-depth understanding on the origins of selfish mining
attack, namely Bitcoin’s high partition tolerance. By highlighting this dilemma,
we hope to raise the awareness on the trade-off between service availability and
security, and therefore to open discussions on a series of choices in front of us in
designing and improving Bitcoin and other blockchain technologies.

We also acknowledge the limitations of our scheme. Particularly, our defense
is still only a mitigation solution towards selfish mining. A truly incentive com-
patible proof-of-work mining protocol is yet to be discovered.
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