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Abstract—Decentralized ledger-based cryptocurrencies such
as Bitcoin provide a means to construct payment systems without
requiring a trusted bank, yet the anonymity of Bitcoin is proved
to be far from satisfactory. Zerocash is the first full-fledged
anonymous digital currency based on the blockchain technology,
using zk-SNARK as the zero-knowledge module for the privacy
protection. Zerocash solves the privacy problem but still suf-
fers two major problems: insufficient scalability and latency in
making a payment. Meanwhile, micropayment channel proves
to be a nice solution to these issues in blockchain-based digital
currencies. In this paper, we present Z-Channel, the construction
of micropayment system on Zerocash, which effectively solves the
scalability and instant payment problems in Zerocash. Z-Channel
relies on multisignature and lock time functionalities which are
not provided by Zerocash. We manage to improve the Zerocash
scheme to support these functionalities without compromising the
privacy guaranteed by Zerocash. Finally, the simulation results
demonstrate that Z-Channel significantly improves the scalability
and reduces the average confirmation time for the payments
conducted in Zerocash.

Keywords—Cryptocurrency, Zerocash, Scalability, Privacy, In-
stant payment

I. INTRODUCTION

Decentralized ledger-based cryptocurrencies such as Bit-
coin [21] provide a means to construct payment systems
without requiring a trusted bank. Following Bitcoin, many
digital currencies have been devised trying to improve Bitcoin
with respect to its functionalities [7], [15], [8], [17], consensus
schemes [26], [15], scalability and efficiency [28], [7], and
privacy [27], [16], etc.

Privacy protection is one of the features of ledger-based
digital currency that attract the most attention [4]. Bitcoin has
been thoroughly analyzed and its privacy protection is proved
to be easily compromised [23]. By analyzing the transaction
graph, values and dates in the ledger one can possibly link
Bitcoin addresses with real world identity. To break such linka-
bility in Bitcoin, one can store his Bitcoin into a mix, which is a
trusted central party which mixes Bitcoins from different users
and gives different coins back to them after sufficient amount
of coins are mixed together. However, the delay in redeeming
the coins and the trust to a central party is unacceptable to
some users with strong motivation to hide information. A
remedy is to implement a decentralized mix. To accomplish
this, protocols have been designed such as TumbleBit [12],
CoinSwap [19], CoinParty [29] and CoinShuffle[24] which
is based on the work of CoinJoin [18]. Additionally, many

altcoins have been developed, including Zerocoin [20], Blind-
Coin [27] and its predecessor Mixcoin [5] and Pinocchio coin
[6], etc. These solutions, however, suffer from the following
drawbacks: 1) Insufficient performance. Most of them require
one or more rounds of interaction between many parties. 2)
Lack of functionality. They simply present a way for users to
“wash” their coins from time to time, but everyday transactions
are still conducted without privacy.

Compared to the mix-based solutions, Zerocash [25] is the
first full-fledged privacy preserving ledger-based digital cur-
rency, which completely conceals the user identity and amount
of payment in each and every transaction. The construction
of Zerocash uses zero-knowledge proof, specifically zero-
knowledge Succinct Non-interactive ARguments of Knowl-
edge (zk-SNARKs) [2], [9].

Despite all the advantages in privacy protection, the design
of Zerocash does not address the scalability and efficiency
problems which exist in almost all the ledger-based digital
currencies. In fact, the transaction size of Zerocash is larger
than that of Bitcoin, and the time to verify zk-SNARK proof
is longer than verifying a Bitcoin transaction, which makes the
scalability problem in Zerocash even worse than in Bitcoin.

For other ledger-based digital currencies, there have been
works trying to solve the scalability and efficiency issues.
Changing the blocksize [1] is a straightforward way to im-
prove the scalability, though it compromises the efficiency
with higher network latency and longer verification time. The
block merging technique proposed in MimbleWimble [14]
requires a special structure for the blocks and transactions,
sacrificing a majority of the functionalities of the digital
currency. Micropayment channel [22] proves to be the most
promising in solving both of the scalability and efficiency
problems effectively. By transactions conducted securely off-
chain, micropayment channel is likely to enable Bitcoin or sim-
ilar altcoins to support billions of users. Despite the dramatic
improvement in scalability and payment speed micropayment
channels is promising, no work has been proposed to construct
a micropayment system on Zerocash 1.

1The work of BOLT (Blind Off-chain Lightweight Transactions) [11]
mentions Zerocash, claiming that if a BOLT is built on Zerocash, it would
provide better channel privacy than built on other currencies. However, BOLT
focuses on solving the linkability issue in channels, while the concrete
construction of BOLT over Zerocash is not specified in their work.



A. Our contribution

In this work we address the above problems by the follow-
ing contributions:

We develop a micropayment scheme over Zerocash, which
we call Z-Channel. Compared with Zerocash, Z-Channel
significantly enhances the scalability, allowing a great number
of users to perform high-frequency transactions off-chain in
day-to-day routine, and the payment is made nearly instantly.
Meanwhile, the Z-Channels are established and terminated
with strong privacy guarantee.

To implement Z-Channel on Zerocash, we improve the
Distributed Anonymous Payment (DAP) scheme for Zerocash
and propose a new scheme called DAP Plus. DAP Plus
provides the multisignature and lock time features lacked in
Zerocash, which are needed by Z-Channel and many other
designs of micropayment channel. We prove that DAP Plus
scheme is privacy preserving, in the sense that a transaction
does not leak any information about its issuers, its input or
output. We give the formal definition of the security of DAP
Plus scheme based on the original DAP scheme. We prove that
DAP Plus scheme is secure under this definition. In addition,
we find a weakness in the security model proposed in [25] for
the original DAP scheme, which we fix in our scheme.

Moreover, we implement the zk-SNARK circuit for the NP
statement in DAP Plus scheme based on the code of ZCash,
and benchmark the time consumption of conducting zero-
knowledge proof. Our experiment also proves the efficiency
of our construction of Z-Channel. Finally, the simulation
results demonstrate that Z-Channel significantly improves the
scalability and reduces the average confirmation time for the
payments conducted in Zerocash.

B. Paper organization

The remainder of the paper is organized as follows. Section
II introduces the preliminaries needed for our work. Section
III presents DAP Plus scheme which improves the Zerocash
scheme by embedding the multisignature and lock time mecha-
nisms. In Section IV, we present the construction of Z-Channel
based on our newly proposed scheme. Section V gives the
security analysis for the DAP Plus scheme and the Z-Channel
protocols. Section VI analyzes the performance of Z-Channel.
Finally, Section VII concludes this paper.

II. PRELIMINARIES

A. Background on zk-SNARKs

Zerocash relies on non-interactive zero-knowledge proof
to avoid identifying users by their signature verification public
keys. The zero-knowledge proving scheme adopted by Zero-
cash is zk-SNARK [9]. Suppose Alice has an NP problem
instance x and its witness w. She wants to prove to Bob that
x is a valid instance, without revealing w to Bob. Using zk-
SNARK, she inputs x and w to generate a proof π, and sends
π instead of w to Bob. Bob then inputs x and π to zk-SNARK
and is convinced that π is a valid proof of x.

Let C denote a circuit verifying an NP language LC which
takes as input an instance x and witness w, and outputs b
indicating if w is a valid witness for x.

A zk-SNARK (Succinct Non-interactive ARguments of
Knowledge) is a triple of algorithms (KeyGen, Prove, Verify).

The algorithm KeyGen takes C as input and outputs a
proving key pk and a verification key vk.

The algorithm Prove takes as input an instance of the NP
problem x and a witness w, as well as pk, and generates a
non-interactive proof π for the statement x ∈ LC .

The algorithm Verify takes as input the instance x and
the proof π, as well as vk, and outputs b indicating if he is
convinced that x ∈ LC .

A zk-SNARK is correct if the honest prover can convince
the verifier. It has the quality of proof-of-knowledge if the
verifier accepting a proof implies the prover knowing the
witness. It has the quality of perfect zero-knowledge if there
exists a simulator which can always generate the same results
for any instance x ∈ LC without knowing witness w.

The work of Zerocash is based on the zk-SNARK imple-
mentation proposed in [3].

B. Zerocash DAP Scheme

The decentralized anonymous payment scheme (DAP
scheme) is a full-fledged anonymous mechanism based on
ledger based currency system. The DAP scheme can be built
on the top of any ledger-based digital currency, which we
refer to as basecoin. The DAP scheme modifies basecoin by
introducing a new type of address called shielded address
and two types of transactions mint transaction and pour
transaction.

A DAP scheme is a tuple of six algorithms (Setup,
CreateAddress, Mint, Pour, Verify, Receive).

The algorithm Setup takes as input a security parameter λ
and outputs public parameters pp.

The algorithm CreateAddress outputs a newly generated
shielded address/key pair (addrpk, addrsk).

The algorithm Mint takes as input a value v and the
destination address addrpk, and outputs a coin c and a mint
transaction txMint. A mint transaction is much alike a usual
transaction, replacing the pay to public key hash with pay
to commitment, i.e. taking a commitment cm to the coin as
the output. The transaction is deemed valid if it is valid
as a basecoin transaction while the commitment is correctly
computed.

The algorithm Pour takes as input two input coins, secrets
for the input coins, two destination addresses and other in-
formation, and outputs two new coins and a pour transaction
txPour. A zero-knowledge proof πPOUR is appended to txPour
to prove the validity of this transaction, i.e. the validity of
the input coins and the balance of this transaction, etc. The
transaction reveals the unique serial numbers of the input coins
to prevent double spending. To prove the existence of the input
coins on the ledger, all the commitments on the ledger are
maintained in a Merkle-tree, and Pour algorithm additionally
takes as input a Merkle root rt in the Merkle-tree history, and
the paths from the commitments to rt.

The algorithm Verify takes as input the public parameters
pp and a transaction txMint or txPour as well as a ledger, and
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outputs a bit b indicating if this transaction is valid to be
appended on the ledger.

The algorithm Receive takes as input a shielded address
and its key (addrpk, addrsk) as well as a ledger, and outputs
all unspent coins paid to the given address on the ledger.

Apart from the KeyGen and Pour algorithms, the other
algorithms only take milliseconds to execute, while KeyGen
usually takes around five minutes, and Pour takes one or two
minutes.

C. Micropayment Channel

Micropayment channel [22] allows two parties to make
payments to each other without publishing transactions on
the ledger, tremendously reducing the time for confirming a
payment. A micropayment channel scheme basically consists
of three protocols: establish channel, update channel, and close
channel.

The establish and closing of a channel involves interaction
with the ledger. They are comparably slow but conducted
only once in the lifetime of a channel. Meanwhile, the update
procedure is executed each time a payment is made, and it can
be executed with high frequency.

Usually, to establish a channel each of the involving parties
have to freeze some of their currency in the channel. When
the channel is shutdown, the frozen coins are distributed back
to the parties. The update of a channel modifies the state
of the channel, which usually is the way to distribute the
frozen currency. The parties make payment to each other by
renegotiating the distribution. The update protocol is executed
off-chain, thus can be conducted frequently and with low
latency.

D. Distributed Signature Generation Scheme

The naive implementation of multisignature scheme in
Bitcoin, i.e. counting the number of signatures, reveals some
information which, though not much of an issue in Bitcoin,
completely compromising the privacy if adopted in Zerocash.
We implement the multisignature feature in an alternative way,
namely the distributed signature generation scheme [10].
Specifically, we require the scheme to support the following
operations:

1) Distributed key generation. Multiple parties cooperate
to generate a pair of public/private keys pk and sk. After
the protocol is done, pk is known by all the parties, while
sk is invisible to every one. Each party holds a share ski
of the private key.

2) Distributed signature generation. Given a message M ,
the parties holding the pieces ski of the private key
cooperate to generate a signature σ on M . Specifically,
each party generates a share σi of the signature alone
and broadcasts it to other parties. Anyone obtaining all
the shares of the signature can recover the complete
signature σ. This signature can be verified by pk and is
indistinguishable from the signatures directly signed by
sk.

III. DAP PLUS: IMPROVED DECENTRALIZED
ANONYMOUS PAYMENT SCHEME

Our construction of Z-Channel relies on two functional-
ities: multisignature and lock time. However, they are not
provided by the original Zerocash scheme, i.e. DAP scheme.
To solve this issue, we present DAP Plus, which is an im-
provement to the DAP scheme, with support to multisignature
and lock time features.

A. Main Idea of DAP Plus Scheme

In this subsection, we present the improvements of DAP+
compared to the original DAP scheme. For convenience, we
assume that the involved parties are Alice and Bob, and Alice
is trying to send a coin to Bob.

Commit a public key lock in the coin. In Zerocash, a
coin consists of a commitment cm and some secret information
necessary for spending this coin. The commitment involves the
following information: the destination address apk (which is
part of the shielded address addrpk, called receiving address)
owned by Bob, the value v and a random string ρ which is used
by Bob to compute sequence number sn which is the unique
identifier of the coin. To spend the coin, Bob has to reveal the
sequence number sn, so that he cannot spend the coin again.
Other information are kept secret, and Bob generates a zero-
knowledge proof πPOUR to prove that the revealed sn is valid.

We modify this by requiring Alice to commit a public key
lock pkL into the coin commitment cm. pkL is a properly
encoded public key, which is required to be generated by
a distributed signature generation scheme. Since zk-SNARK
only supports fixed length input [3], in order to allow pkL to
be of arbitrary length, we commit the hash of pkL, denoted by
pkH instead of the original public key. To validate the trans-
action, for each input coin, Alice appends to the transaction a
signature σ which is verified by pkL. We denote the part of
the transaction that is protected by this signature by a function
ToBeSigned(), and leave it to be determined by the application
that builds on top of DAP+ scheme.

To allow other parties to verify the signature, pkL should
be disclosed as the coin is spent. Note that the anonymity of
Bob against Alice is thus compromised, since Alice would im-
mediately perceive when Bob spends the coin, by identifying
the public key lock published in the transaction. To solve this
problem, we require that Alice does not know pkL nor its hash
pkH, but a commitment pkcm which is generated by Bob with
trapdoor ask (which is the part of addrsk corresponding to apk,
called spending key) with input pkH. Therefore, before Alice
sends a coin to Bob, Bob needs to generate a fresh pkcm
randomly and sends to Alice together with Bob’s shielded
address addrpk. When Bob spends the coin, he proves that
pkH is committed into the coin with his knowledge of ask.
Alice cannot perceive that the revealed pkL is related to the
pkcm she put into the coin previously.

Commit a lock time lock in coin. Next, we commit a
lock time tL into the coin. To avoid the clock synchronizing
issue, we use the block height as the clock. For simplicity, we
denote the height of the block containing a coin commitment
cm by BH(cm). We then require that Alice appends a minimum
block height MBH in the pour transaction. A transaction is
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considered invalid if its MBH is larger than the height of the
block containing it, thus cannot get on the ledger until the
block height reaches MBH. For each input coin, Alice should
prove that BH(cm) + tL < MBH in zero-knowledge.

There is, however, a tricky issue about BH(cm), since it is
somehow independent from cm, i.e. there is no computational
relationship between them. Therefore, it is hard to prove in
zero-knowledge that Alice has input the correct BH(cm) as
a secret input to the zk-SNARK prover. In the meantime,
BH(cm) cannot be disclosed, as this would definitely com-
promise the privacy of Alice.

We solve this issue by noting that Alice does not have to
prove that BH(cm) + tL < MBH, but BH(?) + tL < MBH
where BH(?) is the block height of something that is guar-
anteed to be later than cm on the ledger, and is safe to
be disclosed. The best candidate for this is the Merkle-tree
root rt, which is used to prove the existence of the input
coin commitment. Each time when a new coin commitment
is appended on a ledger, the root is updated to a new one,
thus there is a one-to-one correspondence between the list
of commitments and the history of roots. We then naturally
define the block height of a Merkle-root rt as that of the
corresponding commitment and denote it by BH(rt).

Logical relationship between public key lock and lock
time. If a coin commits a public key lock pkL and lock time
tL, we say the coin is locked by pkL with tL blocks. If tL is set
to the maximum lock time MLT, then we say the coin is locked
by pkL forever. We denote a pair of public key commitment
and lock time by lock = (pkcm, tL), and a pair of public
key lock and signature by unlock = (pkL, σ). We say unlock
unlocks a lock if pkL is a correct opening of pkcm and the
contained signature is valid.

We decide to take the “OR” relationship between the public
key lock and the lock time. That is to say, the transaction is
valid either when the lock time expires or a valid unlock is
provided. To say it in another way, a coin is locked by tL
blocks unless overridden by the signature.

We accomplish this by adding a overriding boolean flag
ovd as a public input to zk-SNARK, which is true if and only
if a valid unlock is appended in the transaction. Then, Alice
only has to prove in zero-knowledge that ovd||(BH(cm)+tL <
MBH) is true, where || means logical OR.

Note that this logic can be easily modified, without modify-
ing the zk-SNARK part of the scheme. For example, by always
setting ovd to false and requiring a valid unlock, the logic
between the locks then becomes “AND”. Similarly, always
setting ovd to true totally neglects the lock time. We will
use a slightly modified version of logic in Z-Channel, but for
simplicity, we only describe constructing with basic logic in
this section.

B. Construction of DAP Plus Scheme

Apart from the improvements mentioned in the previous
subsection, the definition and construction of the algorithms
in the DAP+ scheme are similar to the original DAP scheme
in [25]. We present the full definitions here for completeness
(the modification is shown in bold font).

A DAP Plus scheme, or DAP+ scheme, is a tuple of
polynomial-time algorithms (Setup, CreateAddress,
CreatePKCM, MintPlus, PourPlus, VerifyPlus, ReceivePlus).

We first present the cryptographic building blocks.

- Keyed pseudorandom functions PRFaddr for generating ad-
dresses, PRFsn for serial numbers and PRFpk for binding
public keys with addresses.

- Information hiding trapdoor commitment COMM.
- Fixed-input-length collision resistant hash function CRH and

flexible-input-length hash function Hash.
- Zero-knowledge module zk-SNARK (KeyGen, Prove,
Verify), where KeyGen generates a pair of proving key
pkPOUR and verification key vkPOUR, Prove generates a zero-
knowledge proof πPOUR for an NP statement and Verify
checks if a zero-knowledge proof is correct.

- Public signature scheme (Gsig,Ksig,Ssig,Vsig), where Gsig is
for generating global public parameter ppsig, Ksig is the key
generation algorithm, Ssig is the signing algorithm and Vsig
is the verification algorithm.

- Distributed public signature scheme (Gdst,Kdst,Sdst,Vdst) is
defined similar to above, but the algorithms can be executed
distributedly by more than one parties.

- Public encryption scheme (Genc,Kenc, Eenc,Denc), where
Genc is for public parameter generation, Kenc is the key
generation algorithm, Eenc is the encryption algorithm and
Denc is the decryption algorithm.

We then present the detailed description of the algorithms.
For simplicity, we use subscript 1..2 to represent a pair each
with subscript 1 and 2. For example, cold1..2 represents cold1 , cold2 .

System setup. The algorithm Setup generates a set of
public parameters. It is executed by a trusted party only once
at the startup of the ledger, and made public to all parties.
Afterwards, no trusted party is needed.

- Input: security parameter λ
- Output: public parameters pp

To generate the public parameters, first invoke KeyGen al-
gorithm to generate (pkPOUR, vkPOUR), then invoke algorithms
Gsig, Genc and Gdst to obtain the public parameters for the public
signature schemes and the public encryption scheme.

Create address. The algorithm CreateAddress generates
a new pair of shielded address/key pair. Each user may
execute CreateAddress algorithm arbitrary number of times.
The shielded address addrpk is used by other parties to send
him coins.

- Input: public parameters pp
- Output: shielded address/key pair (addrpk, addrsk)

To generate the key pair, first sample a random string ask
and compute apk = PRFaddr

ask
(0). Then, invoke Kenc algorithm

to generate a pair of public/private key pairs (pkenc, skenc).
Finally, output addrpk = (apk, pkenc) and addrsk = (ask, skenc).

Create public key commitment. The algorithm
CreatePKCM generates a commitment for a public key
lock pkL. For complete anonymity, each time Alice tries
to generate a coin (with MintPlus or PourPlus algorithm
introduced later) for Bob, Bob invokes CreatePKCM algorithm
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to generate a fresh public key commitment pkcm and sends
the pkcm to Alice.

- Input:
- public parameters pp
- address key addrsk

- Output:
- a pair of public/private keys
- tuple (pkL, pkcm)

To generate pkcm, invoke Kdst algorithm to generate and
output a pair of public/private keys pkdst, skdst. Set pkL =
pkdst and compute pkH := Hash(pkL). Parse addrsk as
(ask, skenc), compute pkcm := COMMask(pkH). Output the
tuple (pkL, pkcm).

For privacy, each generated pkcm must be used only
once. It is recommended that a user stores the output tuples
(pkL, pkcm) in a table PKCM. When receiving a coin from
the ledger (as described in ReceivePlus algorithm), check that
the pkcm is in table PKCM, and delete it from the table after
the coin using this pkcm is spent.

Mint coin. The MintPlus algorithm generates a coin and
a mint transaction.

- Input:
- public parameter pp
- coin value v
- destination address addrpk
- a lock lock

- Output:
- coin c
- mint transaction txMint

The Mint algorithm in Zerocash is invoked to generate a
Mint transaction which spends unspent output in basecoin and
outputs a coin commitment. MintPlus modifies the original al-
gorithm, by additionally committing a public key commitment
pkcm and a lock time tL. The other parts of the algorithm
are left unmodified. The details of the MintPlus algorithm are
presented in Alg.1.

Algorithm 1: MintPlus Algorithm
Parse addrpk as (apk, pkenc);
Randomly sample a PRFsn seed ρ;
Randomly sample the COMM trapdoors r, s;
Compute m := COMMr(apk, ρ, lock);
Compute cm := COMMs(v,m);
Set n := (v, ρ, r, s, lock);
Set c := (apk, cm,n);
Set txMint := (cm, v,m, s);
Output c and txMint.

Pour algorithm. The PourPlus algorithm transfers values
from two input coins into two new coins, and optionally trans-
fer part of the input value back to the basecoin. Pouring allows
parties to subdivide coins, merge coins or transfer ownership.
PourPlus generates two coins and a pour transaction.

The inputs to the PourPlus algorithm can be roughly
categorized into two groups. One group consists of the wit-

nesses for validating the input coins. Specifically, we define a
CoinWitness to be an assemble of the following information:

- A coin c and the address key addrsk bound to it; and
- witnesses for existence of c on the ledger, i.e. a Merkle root
rt and path path; and

- locks introduced in DAP+, i.e. pkL, sk where sk is private
key of pkL and COMMask(pkL) is contained in c.

Another group of inputs consists of the specifications for
generating the new coins. In fact, the specifications for each
coin are exactly the same to the inputs of the MintPlus
algorithm. We define MintSpec to be a tuple (addrpk, v, lock).

The inputs and outputs of PourPlus algorithm are summa-
rized as follows:

- Input:
- public parameter pp
- public value vpub
- minimum block height MBH
- old coin witnesses {CoinWitnessi =

(coldi , addroldsk,i, rti, pathi, pkL
old
i , ski)}2i=1

- new coin specifications {MintSpeci =
(addrnewpk,i, v

new
i , locknewi )}2i=1

- Output:
- coins c1, c2

- pour transaction txPour

PourPlus algorithm modifies the original Pour algorithm,
by publishing the public key lock pkLoldi previously committed
in each input coin. For each pkLoldi append the corresponding
signature if needed. The details of the PourPlus algorithm are
presented in Alg.2.

Verify Transaction Algorithm. The VerifyPlus algorithm
outputs a bit b indicating if a given transaction is valid on a
ledger.

- Input:
- public parameters pp
- mint/pour transaction tx
- ledger L

- Output: bit b indicating if the transaction is valid

VerifyPlus modifies the original Verify algorithm, by ad-
ditionally verifying the signatures of the public key locks if
needed. The public inputs to the zk-SNARK module are also
changed accordingly. The details of VerifyPlus algorithm are
presented in Alg.3.

Receive Algorithm. The ReceivePlus algorithm scans the
ledger and outputs coins on the ledger belonging to a given
shielded address.

- Input:
- public parameters pp
- recipient shielded address/key pair (addrpk, addrsk)
- public key commitment set PKCM
- ledger L

- Output: set of received coins

ReceivePlus modifies the original Receive algorithm, by
additionally checking that the public key commitment pkcm is
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Algorithm 2: PourPlus Algorithm
Algorithm PourPlus()

MintNewcoin();
PubkeyMac();
ZKprove();
PreventForgery();
Unlock();
Output();

Procedure MintNewcoin()
for i ∈ {1, 2} do

Compute cnewi := MintPlus(MintSpeci);
Parse cnewi as (anewpk,i, cm

new
i ,nnew

i );
Set Ci := Eenc(pknewenc,i,n

new
i );

end
Procedure PubkeyMac()

Generate (pksig, sksig) := Ksig(ppsig);
Compute hsig := CRH(pksig);
for i ∈ {1, 2} do

Parse addroldsk,i as (aoldsk,i, sk
old
enc,i);

Compute hi := PRFpk
aoldsk,i

((i− 1)‖hsig);

end
Procedure ZKprove()

for i ∈ {1, 2} do
Parse coldi as (aoldpk,i, cm

old
i ,nold

i );
Parse nold

i as (voldi , ρoldi , roldi , soldi , lockoldi );
Compute snoldi := PRFsn

aoldsk,i
(ρoldi );

Compute pkHold
i := Hash(pkLoldi );

Compute ovdi := BH(rti) + tLoldi ≥ MBH;
end
Set ~x := (rt1..2, snold1..2, pkHold

1..2, cmnew
1..2, vpub, hsig,

h1..2, MBH, ovd1..2);
Set ~a := (path1..2, a

old
sk,1..2, c

old
1..2, c

new
1..2);

Compute πPOUR := Prove(pkPOUR, ~x,~a);
Procedure PreventForgery()

Set M := (~x, πPOUR, MBH, C1..2, pkLold1..2);
Compute σ := Ssig(sksig,M);

Procedure Unlock()
Set msg := ToBeSigned();
for i ∈ {1, 2} do

if ovdi then
Compute2 σi = Sdst(ski,msg);

else
Set σi =⊥;

end
Set unlocki = (pkLoldi , σi);

end
Procedure Output()

Set txPour := (rt1..2, snold1..2, cmnew
1..2, vpub, MBH, ∗),

where ∗ := (pksig, h1..2, πPOUR, C1..2, σ,
unlock1..2);

Output cnew1..2, txPour;

previously generated by CreatePKCM and never used before.
The details of the ReceivePlus algorithm are presented in
Alg.4.

The NP Statement. Finally, we modify the NP statement
POUR for the zk-SNARK module to add a claim that the

Algorithm 3: VerifyPlus Algorithm
if tx is of type txMint then

Parse txMint as (cm, v,m, s);
Set cm′ := COMMs(v,m);
Output b := 1 if cm = cm′, else output b := 0.

else
Parse txPour as (rt1..2, sn

old
1..2, cm

new
1..2, vpub,MBH, ∗)

and ∗ as (pksig, h1..2, πPOUR, C1..2, σ, unlock1..2);
If snold1 or snold2 appears on L or snold1 = snold2 ,

output b := 0 and exit;
If the Merkle tree root rt1 or rt2 does not appear on
L, output b := 0 and exit;

Compute hsig := CRH(pksig);
for i ∈ {1, 2} do

Parse unlocki as (pkLi, σi);
Compute pkHold

i := Hash(pkLi);
Set ovdi := (σi 6=⊥);
if ovdi and Vdst(pkLi,msg, σi) = 0 then

output b := 0 and exit
end

end
Set ~x := (rt1..2, snold1..2, pkHold

1..2, cmnew
1..2, vpub, hsig,

h1..2, MBH, ovd1..2);
Set M := (~x, πPOUR, MBH, C1..2, pkLold1 , pkLold2 );
If Vsig(pksig,M, σ) = 0 output b := 0 and exit;
If Verify(vkPOUR, ~x, πPOUR) = 0 output b := 0 and

exit;
Set msg := ToBeSigned();
Output b := 1;

end

Algorithm 4: ReceivePlus Algorithm
Parse addrpk as (apk, pkenc), addrsk as (ask, skenc);
for each Pour transaction txPour on L do

Parse txPour as (rt1..2, sn1..2, cm1..2, vpub, MBH, ∗);
for each i ∈ {1, 2} do

Compute (v, ρ, r, s, lock) := Denc(skenc,Ci);
if Denc does not output ⊥ then

Verify that
cmi = COMMs(v,COMMr(apk, ρ, lock));

Parse lock as (pkcm, tL);
Check that pkcm is in PKCM and never

appears in other coins, if so, output
c := (apk, cmi,n) where
n = (v, ρ, r, s, lock);

end
end

end

public key lock pkL and the lock times tL have been correctly
committed, and that the lock times are either expired or over-
ridden. Following is the detail of the modified NP statement
POUR for the zero-knowledge proof.

Given

~x = (rt1..2, sn
old
1..2, pkH

old
1..2, cm

new
1..2, vpub, hsig, h1..2,MBH, ovd1..2),

2This procedure may be executed distributedly, where the input ski is shared
by more than one parties, and σi is synthesized from the shared signatures.
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where pkHold
i = Hash(pkLoldi ), for i ∈ {1, 2}, I know

~a = (path1..2, a
old
sk,1..2, c

old
1..2, c

new
1..2),

such that:

- For each i ∈ {1, 2}:
- The pathi is a valid authentication path for leaf cmold

i with
respect to root rti, in a CRH-based Merkle tree.

- The private key aoldsk,i matches the public address of aoldpk,i.
- The serial number snoldi is computed correctly, i.e. snoldi =
PRFsn

aoldsk,i
(ρoldi ).

- The coin coldi is well formed, i.e.
cmold

i = COMMsoldi
(voldi ,COMMroldi

(aoldpk,i, ρ
old
i ,

COMMaoldsk,i
(pkHold

i ), tLoldi )).
- The coin cnewi is well formed, i.e.
cmnew

i = COMMsnewi
(vnewi ,COMMrnewi

(anewpk,i, ρ
new
i , locknewi )).

- The address secret key ties hsig to hi, i.e.
hi = PRFpk

aoldsk,i

((i− 1)‖hsig).
- The lock time expires or is overridden, i.e.
ovdi||(BH(rti) + tLoldi [ki] < MBH).

- Balance is preserved: vnew1 + vnew2 + vpub = vold1 + vold2

IV. Z-CHANNEL

We now implement the micropayment system over Zero-
cash, which we call Z-Channel. Before we give the detailed
definition and constructions, we first present an overview of
how Z-Channel works.

A Z-Channel ZC is established for Alice and Bob on a
ledger L, if the ledger confirms a coin cshr, which is locked
forever by a public key pkshrAB shared by Alice and Bob. To
close the channel, Alice and Bob have to cooperate to sign
a transaction txcls which takes cshr as input and outputs two
coins for Alice and Bob separately, i.e. locked by Alice’s and
Bob’s own public keys respectively.

However, either Alice or Bob can be malicious and unco-
operative, in which case cshr may be locked forever. To avoid
that, Alice and Bob each possesses a note n signed by skshrAB .
Whenever needed, each party can close the channel on his/her
own, by creating txcls with the data of n. Furthermore, txcls can
only spend cshr in a way that is specified by n, for example,
to give Alice a coin of denomination vA and Bob vB .

When Alice pays Bob through ZC, say coin of denomina-
tion v, they need to update their notes to instead give Alice
coin of denomination v′A = vA − v and Bob v′B = vB + v.
They accomplish this by signing a new note by cooperation.
We give each note a sequence number started from 0, and
increment it with each update.

It is hard to guarantee that Alice will delete the obsoleted
notes and never use them to generate txcls. However, we can
design the protocol to guarantee that once she does so, she will
suffer great loss if Bob finds out in time. To accomplish this,
we construct the notes so that they are revocable, and when a
note of higher sequence number is signed, they immediately
sign a revocation on the obsoleted note.

A. Main Idea of Z-Channel

Above is the working scenario of a Z-Channel. Next we
present the main ideas about how to fulfill this scenario.

Definition of note. A note should contain enough data for
a party to construct a complete closing transaction, and be
exact enough in specifying how to spend the shared coin. To
accomplish this, we first specify the ToBeSigned() function in
DAP+ scheme to contain the following: serial numbers snold1..2
of the input coins, and output coin commitments cmnew

1..2. Then
we define a note to be a tuple (snshr, sndmy, cmcls

A , cm
cls
B ), where

snshr is serial number of share coin, sndmy is that of a dummy
coin, and cmcls

A , cm
cls
B are coin commitments for Alice and Bob

respectively. To generate txcls from a signed note, one may
execute the PourPlus algorithm, and in the unlock() procedure
directly set the note signature as the result.

Before generating the note, Alice and Bob need to negotiate
the random strings for the new coins. We will discuss the
details later.

Revocation. To revoke a note, the basic idea is to give the
other party permission to spend both of the output coins of a
revoked note. For example, the revocation signed by Alice for
Bob allows Bob to generate a revocation transaction txrev to
spend Alice’s coin output by txcls.

However, there is still a chance for Alice to publish the
outdated txcls and take her own coin. Even worse, with Bob’s
revocation she may even take Bob’s coin away. To solve this
problem, Alice and Bob have to possess different versions
of note, and in Alice’s version of note, Alice’s coin should
be time-locked to give Bob time to publish the revocation
transaction.

We accomplish this by instead locking Alice’s coin in
Alice’s version of txcls by a shared public key pkclsAB with
lock time T , and same for Bob’s coin in Bob’s version.
The revocation signed by Alice then gives Bob permission
to override the lock time. Meanwhile, neither of Alice or Bob
can take the other’s coin by publishing his/her own version of
txcls.

Now, Alice has to wait for T blocks even as she publishes
the most updated closing transaction. A problem arises that
after T blocks both Alice and Bob have the ability to take away
the coin that should belong to Alice. To solve this problem,
we modify the DAP+ scheme sightly, by requiring that even
when the lock time expires, a signature is still needed, which
is signed on a message sightly different from ToBeSigned()
while still keeping the information, for example, the message
obtained by appending a sequence of zeros to ToBeSigned().
We call this is a “weak” signature in the sense that it does not
override the lock time. The modifications to the PourPlus and
VerifyPlus algorithms are straightforward, i.e. simply adding
the processes of generating and verifying the weak signature
when ovd is false.

We then modify the update procedure to let Alice “weakly
sign” another note (snclsA , sn

dmy, cmrdm
B , cmdmy) for Bob with

her secret share of skcls,AB , where cmrdm
B is the redeem coin

locked by Bob’s own public key. Similar modification applies
to Bob. Now, to close a channel, Alice has to first generate
and publish her version of txcls, then wait for T blocks before
publishing txrdm.
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Since their notes are different, when we say “Alice signs
a note for Bob” we actually mean Alice generates a share of
signature and sends to Bob, then Bob completes the signature.
In this way, Alice does not know the complete signatures of
Bob’s notes.

Establish the channel. We now talk about how does cshr

gets on the ledger in the first place. To generate this coin,
Alice and Bob each spends his/her own money to generate a
fund coin cfundA and cfundB of appropriate denomination, locked
forever by Alice’s and Bob’s own public keys respectively.
They then generates txshr which takes the fund coins as inputs
and outputs cshr. To prevent cshr from locking their coins
forever, they sign the notes of sequence number 0 for each
other before they sign txshr.

Consensus on the random strings. We mentioned that
with the data of a note, Alice should be able to generate the
complete transaction. However, she is unable to do so without
knowing all the random strings used to generate the serial
numbers and commitments in the note.

Instead of letting Alice and Bob negotiate all these data
when generating each note, we save all these communication
costs by letting them agree on a secret seed which is used to
generate everything with a pseudorandom function PRFZC . We
give each random string a unique identifier, which is used as
the input to the pseudorandom function. Meanwhile, all their
public keys to be used in the channel are negotiated in the
establishment phase. In this way, Alice and Bob automatically
agree on all data about each transaction except the denomina-
tion of coins, and the only interactions needed in updating a
channel are for distributed generation of signatures.

We complete this subsection by presenting all the transac-
tions and coins confirmed on the ledger, when a Z-Channel is
closed peacefully by Alice, in Fig.1

B. Construction of Z-Channel Protocol

A Z-Channel Protocol ZCP is a tuple of subprotocols
(Establish, Update, Close). Before we give concrete construc-
tion of these subprotocols, we first present several algorithms
needed.

Generate coin from seed. Table.I summarizes all the data
determined in the establishment of Z-Channel needed by each
coin. We use A and B in superscript to differentiate the closing
transactions of Alice or Bob’s version. We use subscript i to
denote the sequence number of the closing transactions. Note
that there is only one ask for all the coins, i.e. all the coins are
bound to the same receiving address.

All the values in the ask, ρ, r and s columns of the
table can be generated by PRFZC with the seed. The locks
pkL and tL cannot be computed by PRFZC , but they can
be stored and looked up by their identifiers once generated.
The denominations of the coins in closing transactions after
the first update can be determined when they decide to make
the update. Therefore, we can always assume that when they
need to generate a coin, they already have all the needed
data. Denote the procedure of computing the data of a coin
by GetCoin().

Sign and verify notes. When Alice and Bob agree on
denominations vA and vB for notes of sequence number i,

TX
A
fund

c
A
fund

TX
B
fund

c
B
fund

TXshare

cshare

c
A
fund c

B
fund

TXclose,A

cshare

c
A
close,A c

B
close,A

TX
A
redeem,A

c
A
redeem

c
A
close,A

TX
B
redeem,A

c
B
redeem

c
B
close,B

Fig. 1: Transactions and coins on ledger in a closed Z-Channel. In
this example Alice’s version of closing transaction is published. If the
closing transaction is outdated, the graph is the same except that the
redeem transaction of Alice is replaced by a revocation transaction
of Bob.

c v ask ρ r s pkL tL

cfund
A vA ask ρfundA rfundA sfundA pkfundA MLT

cfund
B vB ask ρfundB rfundB sfundB pkfundB MLT

cshr vA + vB ask ρshr rshr sshr pkshrAB MLT

ccls,A
A,i ask ρcls,AA,i rcls,AA,i scls,AA,i pkclsAB T

ccls,A
B,i ask ρcls,AB,i rcls,AB,i scls,AB,i pkclsA MLT

ccls,B
B,i ask ρcls,BB,i rcls,BB,i scls,BB,i pkclsAB T

ccls,B
A,i ask ρcls,BA,i rcls,BA,i scls,BA,i pkclsB MLT

crdm
A ask ρrdmA rrdmA srdmA pkrdmA MLT

crdm
B ask ρrdmB rrdmB srdmB pkrdmB MLT

crev
A ask ρrevA rrevA srevA pkrevA MLT

crev
B ask ρrevB rrevB srevB pkrevB MLT

TABLE I: Coins specifications in Z-Channel

Alice and Bob each invokes SignNote to generate shares of
signature for each other. The inputs are vA, vB , and sequence
number i. The version for Bob is presented in Alg.5. The
version for Alice is obtained by swapping the A and B labels.

On receiving the signature shares, Alice completes the
signature and verifies it, as is shown in Alg.6. Bob’s version
simply swaps the A and B subscripts.

Next, we present the construction of the subprotocols. Note
that in Alg.7 and Alg.8 we divide (by horizontal rule) the
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Algorithm 5: SignNote Algorithm
Lookup for secret keys skshr, skcls;
Compute cmshr, snshr := GetCoin();
Compute cmcls,A

A,i , sn
cls,A
A,i := GetCoin();

Compute cmcls,A
B,i , sn

cls,A
B,i := GetCoin();

Let n1 := (snshr, sndmy, cmcls,A
A,i , cm

cls,A
A,i );

Let n2 := (sncls,AA,i , sn
dmy, cmrdm

A , cmdmy);
Compute σ1 := Sdst(skshr,n1);
Compute σ2 := Sdst(skcls,n2);
Output σ1, σ2;

Algorithm 6: CompleteSign Algorithm
Lookup for keys skshr, skcls, pkshr, pkcls;
Compute n1 and n2 as in Alg.5;
Compute σ′1 := Sdst(skshr,n1);
Compute σ′2 := Sdst(skcls,n2);
Compute σcls by combining σ1 and σ′1;
Compute σrdm by combining σ2 and σ′2;
Compute b1 := Vdst(pkshr,n1, σ

cls);
Compute b2 := Vdst(pkcls,n2, σ

rdm);
if b1 = 1 and b2 = 1 then

Output σcls, σrdm;
else

Output ⊥;
end

procedures into groups. In each group the procedures can be
executed simultaneously, i.e. regardless of the presented order,
while different groups have to be finished in sequence. For
clarity, we omit the description of sending data to the other
party, or checking the correctness, etc. In each group, if they
fall into dispute, or one party finds another not behaving in
the expected way, he/she can immediately abort the protocol.
(When the channel is established, to abort means executing the
Close protocol.)

Establish the channel. In the establishment phase, Alice
and Bob agree on a random seed seed which completely
determines all the random values used to generate the coins.
They also need to generate and exchange all the public keys
needed in the channel. Therefore, all the coins are completely
determined in the establishment phase, except their denom-
inations. After that, they generate fund coins and the share
coin as described in the previous subsection. This protocol is
formalized in Alg.7.

Update the state of channel. To update the channel, Alice
and Bob sign new notes for each other. After that, they sign
revocations for each other to revoke the old version of notes.
This protocol is formalized in Alg.8.

Close the channel. Without loss of generality, assume
Alice is the party that actively closes the channel. Alice
publishes closing transaction specified by her most updated
note. Then they generate redeeming transactions to take away
their coins. Alice has to wait for T blocks before publishing
the redeeming transaction, while Bob can make it immediately.
This protocol is formalized in Alg.9.

Algorithm 7: Establish Protocol
Alice and Bob agree on seed, vA and vB ;
Alice and Bob invoke distributed version of Kdst

twice to generate pkshrAB and pkclsAB ;

Alice generates pkfundA , pkclsA , pk
rdm
A , pkrevA ;

Bob generates pkfundB , pkclsB , pk
rdm
B , pkrevB ;

Alice computes SignNote(vB , vA, 0);
Bob computes SignNote(vA, vB , 0);

Alice signs (snfundA , snfundB , cmshr, cmdmy);
Bob signs (snfundA , snfundB , cmshr, cmdmy);

Alice confirms on ledger cfundA := GetCoin()
Bob confirms on ledger cfundB := GetCoin()

Alice/Bob confirms on ledger cshr;

Algorithm 8: Update Protocol
Alice and Bob agree on vA,i and vB,i;

Alice computes SignNote(vB,i, vA,i, i);
Bob computes SignNote(vA,i, vB,i, i);

Alice signs (sncls,AA,i , sn
dmy, cmrev

B , cmdmy);
Bob signs (sncls,BB,i , sn

dmy, cmrev
A , cmdmy);

Algorithm 9: Close Protocol
Alice confirms on ledger ccls,A;
Bob confirms on ledger crdmB ;
Alice waits T blocks and confirms on ledger crdmA ;

V. COMPLETENESS AND SECURITY OF Z-CHANNEL
PROTOCOL

We define the completeness and security of Z-Channel
protocol in Definition 1 and 2.

Definition 1: A Z-Channel Protocol ZCP is said to be
complete if the transactions made in Z-Channel transfer correct
value of currencies between the parties when it is closed.

Definition 2: A Z-Channel Protocol ZCP is said to be
secure if it satisfies the properties of currency security and
channel privacy.

The completeness property follows directly from the design
of the Z-Channel protocol. The analysis is omitted, since the
description of the protocol is self-explanatory. We claim that
the completeness of DAP+ scheme implies the completeness
of Z-Channel. The completeness of DAP+ is discusses later in
subsection V-C. The definitions of the two properties currency
security and channel privacy are presented in subsection V-A
and V-B.

Our main theorem claims that the construction of Z-
Channel Protocol in section IV is secure.
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Theorem 5.1: The protocols presented in Alg.7, Alg.8 and
Alg.9 form a secure Z-Channel Protocol.

Proof: By Lemma 5.2, the protocols satisfy currency security.
By Lemma 5.3, the protocols satisfy channel privacy. Thus
concludes the proof.

In the next subsections, we will discuss the two properties
of our construction of Z-Channel based on the following
assumption: Alice and Bob always have a secure communi-
cation channel established between them whenever needed.
Specifically, we require that the channel is secure against
eavesdropping and man-in-the-middle attacks.

A. Currency Security

Definition 3: A Z-Channel Protocol ZCP is said to satisfy
currency security if for any adversary A, the probability for
him to win the Z-Channel Currency game ZCC is negligible.

The game ZCC is conducted as follows: a challenger C
maintains a DAP+ oracle ODAP+, which maintains a DAP+
scheme on a ledger L (the detailed description of ODAP+

is presented in subsection V-C). C also maintains a sequence
number i which is initially set to 0. The game takes as
parameter a list of balances vs = {(vA,i, vB,i)}ni=0 specifying
the number of updates and the balances of each update.

At the beginning, C executes Setup algorithm to initialize
the ledger and sends the resulting public parameter pp to
A. Then C and A each executes CreateAddress algorithm to
generate a shielded address, and sends the address to each
other. Denote the address for A by addrpk,A and that of C
by addrpk,B . C queries ODAP+ to mint two coins for each
address with value vA,0 and vB,0 respectively.

Then they conduct the ZCP protocol by querying ODAP+

to insert the transactions and updating the balances as specified
by vs. A can send C any data at any time, and if it is
a pour transaction, C directly passes it to ODAP+. After
each insertion, C presents A the resulting ledger. C aborts
and outputs 0 whenever ODAP+ aborts due to an invalid
transaction inserted to ledger. After each update, C updates
sequence number i := i+ 1.

C starts the closing subprotocol when i = n or anytime
when A sends a closing transaction or any unexpected data.
After the closing subprotocol is started, C stops receiving data
from A, except the transactions, which he still has to pass to
ODAP+. C outputs 1 if A successfully inserts a transaction to
the ledger which transfers value v to addrpk,A, which is larger
than both vA,i and vA,i+1

3. Else, if C successfully closes the
channel in expected manner, he outputs 0. A wins ZCC if C
outputs 1.

The following lemma claims that our construction of ZCP
satisfies currency security.

3We do not consider the loss of the denomination of a single payment a
serious issue. Due to the fact that the actions of paying and receiving service
is not atomic, the problem of fair exchange exists ubiquitously, and not just in
ledger-based digital currencies. The common solutions to this problem such
as trusted third party or smart contract are beyond the discussion of this paper.
Therefore, we simply assume that loss of the amount of a single payment is
tolerable.

Lemma 5.2: The protocols presented in Alg.7, Alg.8 and
Alg.9 form a Z-Channel Protocol that satisfies currency secu-
rity.

Sketch of Proof: If A only issues transactions permitted by
the protocol, the analysis in Section IV for the design of the
subprotocols already covers all the cases where A may cheat.
Therefore, the probability that A wins the game is bound by
the probability that A breaks the non-malleability and balance
property of DAP Plus (see subsection V-C), which is negligible
by Theorem 5.4.

B. Channel Privacy

Definition 4: A Z-Channel Protocol ZCP is said to satisfy
channel privacy property if for any adversary A, the probabil-
ity for him to win the Channel Privacy game CP is negligible.

The game CP is conducted as follows: a challenger C
maintains two DAP+ oracles ODAP+

0 and ODAP+
1 , each of

which maintains a ledger L1 and L2 respectively. At the
beginning of this game, C randomly samples a bit b. Then
A sends C a list of balances vs = {(vA,i, vB,i)}ni=0 and all the
details to specify an execution of a ZCP, i.e. the version of the
closing transaction to publish and the times for the executions
of all the subprotocols, etc. C executes ZCP locally and inserts
pour transactions to ODAP+

0 . Each time C inserts a transaction
to ODAP+

0 , he simultaneously inserts a randomly generated
pour transaction to ODAP+

1 , which is publicly consistent to
the one inserted to ODAP+

1 . Finally, C presents Lleft := Lb
and Lright := L1−b to A, and A outputs a bit b′. A wins CP
if b′ = b.

The following lemma claims that our construction of ZCP
satisfies channel privacy property.

Lemma 5.3: The protocols presented in Alg.7, Alg.8 and
Alg.9 form a Z-Channel Protocol that satisfies channel privacy
property.

Sketch of Proof: We claim thatA perceives less information
in CP game than in L− IND game (which is used to define
the ledger-indistinguishability of DAP+, see subsection V-C).
As a result, the probability that A wins this game is bound by
the probability that A wins L− IND game which is negligible
by Theorem 5.4.

Now we can safely conclude that the completeness and
security of Z-Channel are based on those of DAP+ scheme,
which we discuss in the next subsection.

C. Completeness and Security of DAP+ Scheme

In this subsection, we present the formal definition of the
completeness and security of DAP+ scheme.

The completeness and security of DAP+ are defined similar
to those of DAP scheme in [25]. The completeness of DAP
is defined by INCOMP experiment. The security of DAP+
consists of the properties of ledger indistinguishability, trans-
action non-malleability and balance, which are defined by
experiments L− IND, TR− NM and BAL respectively. We
use a modified version of the above mentioned experiments to
define the completeness and security for DAP+ scheme.
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Definition 5: We say that a DAP Plus scheme Π =
(Setup, CreatePKCM, CreateAddress, MintPlus, PourPlus,
VerifyPlus, ReceivePlus) is complete, if no polynomial-size
adversary A wins INCOMP with more than negligible proba-
bility.

Definition 6: We say that a DAP Plus scheme Π =
(Setup, CreatePKCM, CreateAddress, MintPlus, PourPlus,
VerifyPlus, ReceivePlus) is secure, if it is secure under ex-
periment L− IND, TR− NM and BAL.

In the INCOMP experiment, an adversary A sends C a
ledger L and two coins cold1 , cold2 , and parameters needed to
spend the coins. C tries to spend the two coins and gets a
pour transaction txPour. A wins if the L is a valid ledger, the
parameters are valid with respect to L, the transaction txPour
is consistent to the parameters, but txPour cannot be verified
on the ledger. The completeness requires that A wins with
negligible probability.

In the L− IND experiment, C samples a random bit b
establishes two oracles ODAP+

0 and ODAP+
1 , each of which

maintains a DAP Plus scheme on a ledger L0 and L1 re-
spectively. In each step A is presented with the two ledgers
Lb and Lb−1 and issues a pair of queries (Q,Q′) to C,
which will be forwarded to the oracles ODAP+

0 and ODAP+
1

respectively. The queries Q and Q′ satisfy public consistency
that they matches in type and reveals the same information to
A. Finally, A outputs a guess b′ and wins when b′ = b. The
ledger indistinguishability requires that the advantage of A is
negligible.

In the TR− NM experiment, A interacts with one DAP
Plus scheme oracle and then outputs a pour transaction tx′Pour,
and wins if there is a pour transaction txPour 6= tx′Pour on the
ledger such that txPour reveals the same serial number of tx′Pour
and that if tx′Pour takes the place of txPour the ledger is still
valid. The transaction non-malleability requires that A wins
with negligible probability.

In the BAL experiment, A interacts with one DAP Plus
scheme oracle and wins the game if the total value he can
spend or has spent is greater than the value he has minted
or received. The balance requires that A wins with negligible
probability.

For the definitions of security under the above experiments,
refer to the full version of this paper.Regarding the experiments
L− IND, TR− NM and BAL, we design them similarly to
those in [25], and the major modifications are listed below.

Assume that ODAP+ maintains two tables PKCM,
OLDPKCM (in addition to the tables mentioned in the original
version). We add a new kind of query CreatePKCM as follows:

- Q = (CreatePKCM,K)

a) Invoke CreatePKCM(pp) to obtain the tuple
(sk, pkL, pkcm).

b) Store (sk, pkL, pkcm) in table PKCM.
c) Output pkcm.

We modify the queries Mint, Pour as follows:

- For each addroldpk,i, A provides boolean flag ovdi to indicate
whether to override the lock time by unlocking public key
lock.

- The flag ovdi in Q and Q′ must be the same for each input
coin, and if ovdi is false, the selected lock time must be
expired.

- For addrpk in Mint query or each addrnewpk,i in Pour query, A
provides a public key commitment pkcmnew

i and a lock time
tLnewi .

- If the address is in ADDR, ODAP+ checks that pkcmnew
i is

in PKCM and not in OLDPKCM, and aborts if the check
fails.

- If the address is not in ADDR, ODAP+ checks that pkcmnew
i

is not in either PKCM or OLDPKCM, and aborts if the check
fails.

- If the Mint or Pour query is successful, ODAP+ removes
all pkcmnew mentioned from PKCM and stores the tuple
(addrpk, sk, pkL, pkcm) in OLDPKCM.

- For Pour query, O looks up the table OLDPKCM to find
the tuple (addroldpk,i, sk

old
i , pkLoldi , pkcmold

i ) for each addroldpk,i,
include pkLoldi in the pour transaction txPour. If ovdi is
false, O checks that tLoldi is less than current time, aborts if
check fails. If ovdi is true, O signs the transaction with the
corresponding secret key of pkLoldi and include the signature
in txPour.

We remove the Receive query in the original definition of
ODAP+ for the following reasons:

- The Receive query does not model a proper attacking sce-
nario in real life. In fact, this query allows A to identify the
coins belonging to an address for which A does not hold the
secret key, which is unreasonable in real life.

- The Receive query compromises the ledger indistinguisha-
bility. We devise the following attack to the L− IND game
making use of the information provided by Receive query.
First, A issues two pairs of CreateAddress queries to receive
two address public keys, for simplicity we denote the two
addresses by Alice and Bob respectively. Then, A issues a
pair of Mint queries to generate a coin for Alice in both
ledgers. Next, A issues a pair of Pour queries (Q,Q′) to C.
In Q A specifies that Alice pays her coin to Bob, while in
Q′ Alice pays the coin to herself. Finally, A issues a pair
of Receive queries on Alice, and obtains the lists of coin
commitments for the ledgers respectively. The oracle that
returns an empty commitment list is the one maintaining
ledger L0. Thus A wins L− IND game with 100 percent
probability.

- We considered keeping this query to keep the consistency
between the queries and the algorithms. However, if we
modify the receiving query to output the coins belonging to
an address of A, it would be redundant since A can simply
execute the ReceivePlus algorithm on the ledgers locally.
If we modify the query to simply tell ODAP+ to execute
ReceivePlus algorithm on an address in ADDR but do not
output the result, this query is also redundant since ODAP+

is already specified to execute ReceivePlus after each Mint,
Pour and Insert query.

We modify the Insert query as follows: for each output
coin, check that the pkcm in the coin is stored in PKCM,
abort if not so; remove the corresponding tuple from PKCM
and add to OLDPKCM.

The following theorem claims that our construction of
DAP Plus scheme is complete and secure under the above
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definitions.

Theorem 5.4: The tuple (Setup, CreatePKCM,
CreateAddress, MintPlus, PourPlus, VerifyPlus, ReceivePlus)
is a complete and secure DAP Plus scheme.

The proof is similar to that of Theorem 4.1 in [25]. Here
we only present the modifications to the original one. For the
complete proof refer to the full version of this paper.

a) Modify the simulation experiment: The simulated
experiment asim proceed as in [25], except for the following
modification:

1) Answering CreatePKCM queries. To answer Q, C be-
haves as in L− IND, except for the following modifi-
cation: after obtaining (sk, pkL, pkcm), C replaces pkcm
with a random string of the appropriate length; then,
C stores the tuple in PKCM and returns pkcm to A.
Afterwards, C does the same for Q′.

2) Answering Mint queries. Compute m = COMMr(τ)
for a random string τ of the suitable length, instead of
m = COMMr(apk, ρ, pkcm, tL). Afterwards, C does the
same for Q′.
Remark There is no need to modify the Pour queries
except for the modifications mentioned in [25], which
already discard the information of pkcm and tL in
the commitment cmnew

i and ciphertext Cnew
i . For each

addroldpk,i the simulated oracle puts the original pkL looked
up from OLDPKCM in txPour. It makes no difference
to replace it by a newly generated one, since the one
stored in the table is independent from the random string
replacing pkcmold

i .

b) Difference between asim and hybrid experiment a3:
Let qCP be the total number of CreatePKCM queries issued
by A. In addition to those described in [25] appendix D.1,
we additionally let the experiment asim modifies a3 in the
following ways:

1) Each time A issues a CreatePKCM query, the commit-
ment pkcm is substituted with a random string of suitable
length.

2) Each time A issues a Mint query, the commitment k in
txMint is substituted with a commitment to a random input.

Then we modify the Lemma D.3 in [25] appendix D.1 as
follows:∣∣∣Advasim −Adva3

∣∣∣ ≤ (qM + 4 · qP + qCP) ·AdvCOMM

VI. PERFORMANCE ANALYSIS

In this section, we run several experiments to measure the
performance of DAP Plus scheme and Z-Channel. For the
DAP Plus scheme, we construct new circuit based on that
of ZCash and benchmark the performance of zk-SNARK on
generating the keys, proving and verification with this circuit.
For comparison, we also benchmark the performance of the
original DAP scheme with the same environment. The result
shows that the modification introduced in DAP Plus increases
the key sizes and algorithm running times in a limited manner.

For Z-Channel, we implement the protocol and benchmark
the computation introduced in the protocol. Then, we run a

simulation of blockchain-based ledger on a large network of
users, where a portion of the payments are conducted via Z-
Channel. We measure the scalability and payment confirmation
time of the ledger under different ratio of the Z-Channel
payments. The result shows that Z-Channel increases the
ledger scalability and reduces the payment confirmation time
significantly.

A. Instantiation of DAP Plus and Z-Channel

Instantiation of DAP Plus. Instead of the instantiation pro-
posed in the [25], we base our implementation of DAP Plus on
that of ZCash [13], which is the most popular implementation
and improvement of DAP scheme. ZCash basically follows
the idea of DAP scheme, but modifies the algorithm details
and the data structures dramatically. For example, ZCash
deserts the Mint and Pour transactions, and instead appends
on the basecoin transaction a variable-size list of JoinSplit. A
JoinSplit plays the role of either a Mint or Pour transaction in
the Zerocash paper. For details of ZCash we refer interested
readers to [13]. Here we remark that our improvements made
in DAP Plus can be applied directly to the implementation of
ZCash, and brief the implementation of our modifications.

We implement the distributed signature generation scheme
with EC-Schnorr Signature [10]. For computation of pkH,
we take SHA256 as the public key hash function Hash. For
computation of pkcm with trapdoor ask (which is 252-bit
string in ZCash), we take the SHA256 compression of their
concatenation ask‖pkH prefixed by four zero-bits. The lock
time is taken as a 64-bit integer. As in ZCash, we abandon the
trapdoor s and compute the coin commitment as the SHA256
of the concatenation of all the coin data.

Instantiation of Z-Channel. For the distributed generation
of Schnorr keys and signature, since the number of parties is
limited to two, we take the following simple procedures: 1)
For key generation, Alice generates random big integer a and
computes A = aG locally, and Bob generates b and B = bG;
Alice commits A to Bob, Bob sends B to Alice, and Alice
sends A to Bob; finally, the shared public key is A+B, and the
shared secret key is a+b. 2) For signature generation, they first
run a key generation procedure to agree on K = k1G+ k2G,
and Alice computes signature share by e = H(xK‖M), s1 =
k1− ae, σ1 = (e, s1), where H is hash function and M is the
message to sign; Bob computes σ2 similarly; finally, one of
them sends his/her share to the other as appropriate, and the
complete signature is σ = (e, s1 + s2).

For the consensus of secret seed, we assume that Alice
and Bob have a secure communication channel, and take the
following procedure: Alice generates random 256-bit string a
and Bob generates b; Alice commits a to Bob, Bob sends
b to Alice, and Alice sends a to Bob; finally they compute
seed = a⊕ b.

For the generation of random strings from seed, we assign
each value with a unique tag, and compute the SHA256 of the
tag prefixed with seed.

B. Performance of Zero-Knowledge Proof in DAP Plus

Our construction of the circuit for the zk-SNARK for the
modified NP statement is based on the code of ZCash. Table II
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#Repeat Mean Std Max Min

Platform Ubuntu 16.04 LTS 64 bit on Intel Core i7-5500U
@ 2.40 GHz 7.7 GB Memory

DAP KeyGen Time 5 340.44s 6.2270s 348.15s 333.38s
DAP+ KeyGen Time 5 367.48s 4.3756s 372.48s 362.76s
DAP PK size 465 MB
DAP+ PK size 516 MB
DAP VK size 773 B
DAP+ VK size 932 B

TABLE II: Performance of Zero-Knowledge Proof: System Setup

#Repeat Mean Std Max Min

Platform Ubuntu 17.04 64 bit on Intel Core i5-4590 @
3.30 GHz 3.6 GB Memory

DAP Prove Time 15 98.06s 0.4914s 99.490s 97.558s
DAP+ Prove Time 15 101.22s 2.5206s 107.52s 98.089s
DAP Verify Time 1500 23.43ms 0.509ms 25.4ms 23.3ms
DAP+ Verify Time 1500 23.46ms 0.128ms 26.3ms 23.4ms

TABLE III: Performance of Zero-Knowledge Proof: Proof Generation
and Verification

and Table III shows the performance of the zero-knowledge
proof procedures, in comparison with that of the original
DAP scheme. For accuracy, we benchmark each procedure
repeatedly and list the statistics.

The modifications introduced in DAP+ scheme slightly
(around 0.1% to 8%) increase the key sizes as well as the
time for key generation, proving and verification, which is as
expected.

C. Performance of Z-Channel Protocol Between Single Pairs

We test the Z-Channel protocol by running two instances
of Z-Channel client on localhost, to minimize the effect of real
network latency, and measure the performance of Z-Channel
in different network latencies. Our focus is on the time cost
in updating the channel, since this is the key in improving
the payment efficiency of Zerocash. As for the establishment
and closure procedure, the time consumption is dominated by
the time for the ledger to confirm the transactions (which on
average is several minutes for Zerocash). In the experiment,
we only test the computation time, to make sure that the
cost brought by the key generation, seed negotiation, etc. is
negligible in comparison to the transaction confirmation time.

Table IV shows the time consumption of the subprotocols
neglecting network latency and ledger confirmation latency.

Fig.2 shows how network latency affects update time. After
the Z-Channel is established, the update can be executed within
milliseconds, which is nearly negligible in comparison to the
confirmation time of original Zerocash, which is approximately
a dozen minutes (in presence of six-block confirmation).

#Repeat Mean Std Max Min

Platform Ubuntu 17.04 64 bit on Intel Core i5-4590 @
3.30 GHz 3.6 GB Memory

Update Time 1000 3.778ms 1.238ms 22.5ms 3.467ms
Establish Time 1 26.59ms
Close Time 1 0.3749ms

TABLE IV: Performance of Z-Channel
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Fig. 2: Relationship between update time of Z-Channel and network
latency. Note that the ratio of update time and network latency is close
to 16, which is explained by the fact that each distributed signature
generation requires four interactions between the parties, and they
execute this procedure four times during each update.

D. Simulation of Z-Channel in Large Network

We simulate a blockchain-based ledger maintained by n
users. The users form a social network which is randomly
generated such that on average each user is connected with D
users. We call a pair of connected users “friends” and a pair
of unconnected users “strangers”. We assume that payments
happen more often between friends than between strangers.

We simulate the payments by a Poisson procedure with
parameter λ. For each payment event, the probability that it
happens between friends is set to α. If it is between friends,
randomly select a pair of connected users, else randomly select
a pair of unconnected users. If a payment event happens
between friends, and they have not established the Z-Channel,
they establish it by issuing three transactions i.e. the two
funding transactions and a share transaction. Assume the time
for generating a transaction is p, and the time for a transaction
to reach the ledger is r. To establish a channel, they insert two
transactions in the transaction pool after time p+ r, and after
time 2p + r they insert another transaction. If they already
have Z-Channel, the payment is immediately confirmed and
the confirmation time is set to 16d, where d is the network
latency. If the payment event happens between strangers, they
simply issue a transaction which is inserted to the transaction
pool after time p+ r.

We simulate the blockchain by another Poisson procedure
with parameter µ. When each block is generated, it selects m
transactions in the transaction pool in time order and packs
them into a block, or all of them if there are less than m left.
If the number of blocks is larger than the confirmation block
number k, then each transaction k blocks ago is confirmed
along with their corresponding payments. The confirmation
time of each payment is set to current time minus the time
the payment happens, and plus s which is the average time
for a new block to reach a user.

We assume that the payment rate λ is self-adaptive, accord-
ing to the fact that when the ledger is congested, users will
tend to other alternative payment methods, and when the ledger
is not fully used, the fast confirmation will attract users back.
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(d) DAP+ with Z-Channel Payment Rate

Fig. 3: Simulation result for original Zerocash and the DAP+ scheme with Z-Channel

Parameter Value Parameters Value Parameters Value
n 100000 D 10 k 6

p (for DAP+) 101.22s r 5× d s 27× d
p (for DAP) 98.06s µ 1/150s N 900000

m 1500
1 The proving time p is set according to benchmark result of DAP and
DAP+;
2 the block volumne m is estimated according to online explorer of ZCash;
3 the latency r and s is estimated according to the efficiency analysis of
[25].

TABLE V: Simulation Parameters

Finally, λ will converge to a stable point, which is the amount
of payments the ledger could provide, and is used to measure
the scalability of the ledger. We measure the confirmation time
of the ledger by taking the average confirmation time of the
last N confirmed payments after λ converges.

In the simulation, we measure the payment rates and con-
firmation time under different network latencies, and different
values of α measuring the tendency of conducting payments
with friends. Other parameters are listed in Table V.

For comparison, we run the simulation for the original
Zerocash, where no Z-Channel is established, and the social
network is neglected. For Z-Channel, we run the simula-
tion with different α, representing different social networks
where users have different tendency to financially interact with
friends or strangers. The simulation results are summarized in
Fig.3.

We see that when α is as low as 0.1, the payment rates
and confirmation time are close to those of original Zerocash.
With higher α, the confirmation time drops significantly. When
α is set to 0.9, i.e. only 10% of the payments are conducted
outside Z-Channel, the average confirmation time also drops
to 10% of that of original Zerocash, while the payment rate
the ledger is able to handle is 10 times higher.

VII. CONCLUSION

We develop Z-Channel, a micropayment channel scheme
over Zerocash. In particular, we improve the original DAP
scheme of Zerocash and propose DAP Plus, which supports
multisignature and lock time functionalities that are essential
in implementing micropayment channels. We then construct
the Z-Channel protocol, which allows numerous payments
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conducted and confirmed off-chain in short periods of time.
The privacy protection provided by Z-Channel ensures that the
identities of the parties and the balances of the channels and
even the existence of the channel are kept secret. Finally, we
implement Z-Channel protocol, and our experiments demon-
strate that Z-Channel significantly improves the scalability and
reduces the average payment time of Zerocash.
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APPENDIX

A. Definition of Security

We define the completeness, ledger indistinguishability,
transaction non-malleability and balance in a way similar to
definitions B.1, C.1 C.2 and C.3 in [25].

Definition 7: We say that a DAP+ scheme Π
= (Setup, CreatePKCM, CreateAddress, MintPlus,
PourPlus, VerifyPlus, ReceivePlus) is complete, if for
every poly(λ)-size adversary A and sufficiently large λ,
AdvINCOMP

Π,A (λ) < negl(λ), where AdvINCOMP
Π,A (λ) := 2·

Pr[INCOMP (Π,A, λ) = 1] − 1 is A’s advantage in the
INCOMP experiment.

Definition 8: We say that a DAP+ scheme Π =
(Setup, CreatePKCM, CreateAddress, MintPlus, PourPlus,
VerifyPlus, ReceivePlus) is L− IND secure, if for ev-
ery poly(λ)-size adversary A and sufficiently large λ,
AdvL−IND

Π,A (λ) < negl(λ), where AdvL−IND
Π,A (λ) := 2 ·

Pr[L− IND( Π,A, λ) = 1] − 1 is A’s advantage in the
L− IND experiment.

Definition 9: We say that a DAP+ scheme Π =
(Setup, CreatePKCM, CreateAddress, MintPlus, PourPlus,
VerifyPlus, ReceivePlus) is TR− NM secure, if for ev-
ery poly(λ)-size adversary A and sufficiently large λ,
AdvTR−NM

Π,A (λ) < negl(λ), where AdvTR−NM
Π,A (λ) := 2 ·

Pr[TR− NM (Π,A, λ) = 1] − 1 is A’s advantage in the
TR− NM experiment.

Definition 10: We say that a DAP+ scheme Π =
(Setup, CreatePKCM, CreateAddress, MintPlus, PourPlus,
VerifyPlus, ReceivePlus) is BAL secure, if for every poly(λ)-
size adversary A and sufficiently large λ, AdvBAL

Π,A(λ) <
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negl(λ), where AdvBAL
Π,A(λ) := 2 ·Pr[BAL (Π,A, λ) = 1]− 1

is A’s advantage in the BAL experiment.

In each of the experiments, one or more oracles of the
DAP scheme ODAP+ receives queries and output answers.
A challenger C interacts with an adversary A, forwards the
queries from A to ODAP+ and the answers back to A, and
performs sanity checks. We modify the mechanism of the
original ODAP+ in [25] to suit our new DAP+ scheme. Below,
we first describe how this new oracle ODAP+ works.

The oracle ODAP+ is initialized by a list of public pa-
rameters pp and maintains state. Internally, ODAP+ stores the
following:

(i) L, a ledger;
(ii) ADDR, a set of address key pairs;

(iii) COIN, a set of coins;
(iv) PKCM, a set of tuples of (sk, pkL, pkcm);
(v) OLDPKCM, a set of tuples of (addrpk, pkcm, pkL).

Initially, L, ADDR, COIN, PKCM, OLDPKCM start out
empty. The oracle ODAP+ accepts various types of queries,
and each type of query modifes L, ADDR, COIN, PKCM,
OLDPKCM in different ways and outputs differently. We now
describe each type of query Q.

Q = (CreateAddress)

1) Compute (addrpk, addrsk) := CreateAddress(pp).
2) Add the address key pair (addrpk, addrsk) to ADDR.
3) Output the address public key addrpk.

Other internal storages apart from ADDR stay unchanged.

Q = (CreatePKCM,addrpk,K)

1) Randomly sample u.
2) Randomly sample a public key list pkL (with secret key

list being sklist) of size K.
3) Compute pkcm = COMMu(Hash(pkL)).
4) Store (sk, pkL, pkcm) in table PKCM.
5) Output pkcm.

Other internal storages apart from PKCM stay unchanged.

Q = (Mint, v, addrpk, pkcm, tL)

1) Compute (c, txMint) := Mint(pp, v, addrpk, tL).
2) Add the coin c to COIN.
3) If addrpk is in ADDR, find tuple (sk, pkL, pkcm) in table

PKCM, aborts if cannot find, then removes the tuple from
PKCM and stores (addrpk, sk, pkL, pkcm) in OLDPKCM;

4) If addrpk is not in ADDR, but pkcm can be found in
PKCM or OLDPKCM, aborts;

5) Add the mint transaction txMint to L.
6) Output ⊥.

The internal storage ADDR stay unchanged.

Q = (Pour, idxold1..2, addroldpk,1..2, ovd1..2, vnew1..2, addrnewpk,1..2,
locknew1..2, vpub)

1) Let MBH be the current block height.
2) For each i ∈ {1, 2}:

a) Let cmold
i be the idxoldi -th coin commitment in L.

b) Let txi be the mint/pour transaction in L that contains
cmold

i .
c) Let coldi be the first coin in COIN with coin commitment

cmold
i .

d) Let pkcmold
i be the public key commitment stored in

coldi .
e) Let (addroldpk,i, ski, pkL

old
i , pkcmold

i ) be the first tuple in
OLDPKCM with public key commitment pkcmold

i .
f) Let (addroldpk,i,addr

old
sk,i) be the first key pair in ADDR

with addroldpk,i being coldi ’s address.
g) Let tLi be the lock time stored in coldi .
h) If ovdi is false, let rti be the a randomly selected root

in the Merkle tree root history later than cmold
i in L

such that BH(rti) + tLi < MBH.
i) If ovdi is true, let rti be the a randomly selected root

in the Merkle tree root history.
j) Compute pathi, the authentication path from cmold

i to
rti.

k) If addrnewpk,i is in ADDR, checks that pkcmnew
i is in

PKCM and not in OLDPKCM, and aborts if the check
fails. Let (pkLnewi , unewi , pkcmnew

i ) be the tuple found
in PKCM. Remove pkcmnew

i from PKCM and stores
(addrnewpk,i, ski, pkL

new
i , pkcmnew

i ) in OLDPKCM.
l) If addrnewpk,i is not in ADDR, checks that pkcmnew

i is not
in either PKCM or OLDPKCM, and aborts if the check
fails.

3) Compute (cnew1 , cnew2 , txPour) := Pour(pp, vpub, cold1..2,
addroldsk,1..2, rt1..2, path1..2, pkLold1..2, sk1..2, addrnewpk,1..2,
vnew1..2, locknew1..2).

4) Verify that Verify(pp, txPour, L) outputs 1.
5) Add the coins cnew1..2 to COIN.
6) Add the pour transaction txPour to L.
7) Output ⊥.

If any of the above operations fail, the output is ⊥ (and L,
ADDR, COIN, PKCM, OLDPKCM remain unchanged).

Q = (Insert, tx)

1) Verify that Verify(pp, tx, L) outputs 1. (Else, abort.)
2) Add the mint/pour transaction tx to L.
3) Run ReceivePlus for all addresses addrpk in ADDR;
4) For each output coin from ReceivePlus

a) Let pkcm be the public key commitment stored in it.
b) Let (sk, pkL, pkcm) be the first tuple in PKCM with the

public key commitment pkcm (if not exists, aborts).
c) Remove this tuple from PKCM;
d) Add (addrpk, sk, pkL, pkcm) to OLDPKCM.

5) Output ⊥.

The address set ADDR stays unchanged.

With the above described oracle ODAP+, the definitions
of ledger indistinguishability, transaction non-malleability and
balance are defined by three games respectively: L− IND,
TR− NM and BAL. We now describe the above mentioned
L− IND experiment. The other experiments TR− NM and
BAL are similar to the original ones, refer to [25] for the
details.

Given a DAP+ scheme Π, adversary A, and security
parameter λ, the (probabilistic) experiment L− IND(Π, A, λ)
consists of a series of interactions between A and a challenger
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C. At the end of this experiment, C outputs a bit in {0, 1}
indicating whether A succeeds.

At the start of the experiment, C samples b ∈ {0, 1} at
random, samples pp ←Setup(1λ), and sends pp to A; using
pp, C initializes two DAP+ oracles ODAP+

0 and ODAP+
1 .

Now A and C start interaction in steps. In each step, C
provides to A two ledgers (Lleft, Lright), where Lleft := Lb is
the current ledger in ODAP+

b and Lright := L1−b the ledger in
ODAP+

1−b ; then A sends to C a pair of queries (Q, Q′), which
must be of the same type of query. C acts differently on differnt
types of queries, as follows:

1) If the query is of type Insert, C forwards Q to ODAP+
b ,

and Q′ to ODAP+
1−b . If the inserted query is a Pour query

with one of the target address addrpk in ADDR, the public
key commitment pkcm committed in the coin must not
be one generated by CreatePKCM previously.

2) For the other query types, C ensures that Q, Q′ are
publicly consistent, and then forwards Q to ODAP+

0 , and
Q′ to ODAP+

1 ; assume the two oracle answer (a0, a1), C
forwards to A (ab, a1−b).

At the end, A sends C a guess b′ ∈ {0, 1}. If b = b′, C outputs
1; else, C outputs 0.

Public consistency. As mentioned above, the pairs of
queries A sends C must be of the same type and publicly
consistent. We now define the public consistency. If Q, Q′ are
of type CreateAddress, the queries are automatically public
consistent; further more, we require that in this case the address
generated in both oracles are identity. If they are of type
CreatePKCM, the queries are automatically public consistent.
If they are of type Mint, then the minted value v in Q must
equal the value in Q′. Finally, if they are Pour query, we
require the following restrictions.

First, each of Q, Q′ must be well-formed:

(i) the coins cold1 , cold2 corresponding to the coin commit-
ments (reference by the two indices idxold1 , idxold2 ) in Q
must appear in the coin table COIN, similar requirement
for Q′;

(ii) the coins cold1 , cold2 referenced in Q must be unspent,
similar requirement for Q′;

(iii) the address public keys addrpk,1 and addrpk,2 in Q must
match those in cold1 , cold2 , similar requirement for Q′;

(iv) the balance equations must hold;
(v) the lock times of the old coins must be up, if not

overriden;
(vi) the public key commitments pkcmi must be one gener-

ated by PKCM previously and never used in previous
queries and each must be unique in these queries Q and
Q′.

Furthermore, Q, Q′ must be consistent with respect to
public information and A’s view:

(i) the public values in Q and Q′ must equal;
(ii) for each i ∈ {1, 2}, if the i-th recipient addresses in Q

is not in ADDR, then vnewi in Q and Q′ must equal (vice
versa for Q′);

(iii) for each i ∈ {1, 2}, the i-th overriding flag ovdi in Q
must equal the corresponding flag in Q′;

(iv) for each i ∈ {1, 2}, if the i-th index in Q references
a coin commitment in a transaction from a previously
posted Insert query, then the corresponding index in Q′
must also reference a coin commitment in a transaction
posted in Insert query; additionally, voldi in Q and Q′

must equal (vice versa for Q′).

B. Proof of Security

Here we present the complete proof of Theorem 5.4. The
proofs to transaction non-malleability and balance are trivially
similar to the ones in [25], we omit them here. For proof of
ledger indistingsuishability, we construct a simulation asim in
which the adversary A interacts with a challenger C, as in
the L− IND experiment. However asim modifies the L− IND
experiment in a critical way: all answers sent by C to A are
independent from the bit b, so the advantage of A’s in asim is
0. Then we show that AdvL−IND

Π,A (λ) is only negligibly larger
than A’s advantage in asim.

The simulation experiment. The simulation asim works
as follows. First, C samples b ∈ {0, 1} and pp ← Setup(1λ),
with the following modifications: the zk-SNARK keys are gen-
erated by (pkPOUR, vkPOUR, trap)← Sim(1λ, CPOUR), instead
of the usual way. Then, C sends pp to A, and initializes two
DAP+ oracles ODAP+

0 and ODAP+
1 .

Afterwards, asim proceeds in steps and at each step C
present A two ledgers (Lleft, Lright), where Lleft := Lb is the
current ledger in ODAP+

b and Lright := L1−b the ledger in
ODAP+

1−b ; then A sends to C a message (Q, Q′), which consist
of two queries of the same type. The requirement to these
two queries is the same to that in L− IND. The reaction of
challenger C is different from that in L− IND, as described as
follows:

1) Answering CreateAddress queries. In this case, Q = Q′

= CreateAddress. To answer Q, C behaves as in L− IND,
except for the following modification: after obtaining
(addrpk, addrsk)←CreateAddress(pp), C replaces apk in
addrpk with a random string of the appropriate length;
then, C stores (addrpk,addrsk) in ADDR and returns addrpk
to A. Afterwards, C does the same for Q′.

2) Answering CreatePKCM queries. In this case, Q = Q′

= CreatePKCM. To answer Q, C behaves as in L− IND,
except for the following modification: after obtaining
(sk, pkL, pkcm), C replaces pkcm with a random string of
the appropriate length; then, C stores the tuple in PKCM
and returns pkcm to A. Afterwards, C does the same for
Q′.

3) Answering Mint queries. In this case, Q = (Mint,
v, addrpk) and Q′ = (Mint, v, addr′pk). To answer
Q, C behaves as in L− IND, except for the following
modification: Compute m = COMMr(τ) for a ran-
dom string τ of the suitable length, instead of m =
COMMr(apk, ρ, pkL, tL). Afterwards, C does the same for
Q′.

4) Answering Pour queries. In this case, Q and Q′ both
have the form (Pour, idxold1..2, addroldpk,1..2, ovd1..2, vnew1..2,
addrnewpk,1..2, locknew1..2, vpub). To answer Q, C modifies in
the following ways:

a) For each j ∈ {1, 2}:
i) Uniformly sample random snoldj .
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ii) Randomly sample a list of pairs of public/private
keys pkLj , compute pkHold

j := Hash(pkLj).
iii) If addrnewpk,j is in ADDR:

A) sample a coin commitment cmnew
j on a random

input;
B) run Kenc(ppenc) → (pkenc, skenc) and compute

Cnew
j := Eenc(pkenc, r) for a random r of

suitable length.
iv) Otherwise, calculate (cmnew

j , Cnew
j ) as in the Pour

algorithm.
b) Set h1 and h2 to be random strings of suitable length.
c) Compute all other values as in the Pour algorithm.
d) The pour proof is computed as πPOUR:=Sim(trap, ~x),

where ~x := (rt1..2, snold1..2, pkHold
1..2, cmnew

1..2, vpub, hsig,
h1..2, MBH, ovd1..2).

Afterwards, C does the same for Q′.
5) Answering Insert queries. In this case, Q = (Insert, tx)

and Q = (Insert, tx′). The answer to each query proceeds
as in the L− IND experiment.

In each of the above cases, the response to A is computed
independently of the bit b. Thus, when A outputs a guess b′,
it must be the case that Pr[b = b′] = 1/2, i.e., A’s advantage
in asim is 0.

Indistinguishability from Real Experiment.

We construct a sequence of hybrid experiments (areal, a1,
a2, a3, asim), in each of these experiments a challenger C
conducts a different modification of the L− IND experiment.
We define areal to be the original L− IND experiment, and
asim to be the simulation described above. Given experiment
a, we define Adva to be the absolute value of the difference
between the L− IND advantage of A in a and that in areal.
Also, let

1) qCA be the number of CreateAddress queries issued by
A,

2) qCP be the number of CreatePKCM queries issued by A.
3) qP be the number of Pour queries issued by A,
4) qM be the number of Mint queries issued by A,

Finally, define AdvEnc to be A’s advantage in Enc’s IND-
CCA and IK-CCA experiments, AdvPRF to be A’s advantage
in distinguishing the pseudorandom function PRF from a
random one, and AdvCOMM to be A’s advantage against the
hiding property of COMM.

We now describe each of the hybrid experiments.

1) Experiment a1. The experiment a1 modifies areal by
simulating the zk-SNARKs. More precisely, we modify
areal so that C simulates each zk-SNARK proof, as
follows. At the beginning of the experiment, instead
of invoking KeyGen(1λ, CPOUR), C invokes Sim(1λ,
CPOUR) and obtains (pkPOUR, vkPOUR, trap). At each
subsequent invocation of the Pour algorithm, C computes
πPOUR ←Sim(trap, x), without using any witnesses,
instead of using Prove. Since the zk-SNARK system is
perfect zero knowledge, the distribution of the simulated
πPOUR is identical to that of the proofs computed in areal.
Hence Adva1 = 0.

2) Experiment a2. The experiment a2 modifies a1 by replac-
ing the ciphertexts in a pour transaction by encryptions of

random strings. Each time A issues a Pour query where
one of (addrnewpk,1, addrnewpk,2) is in ADDR, the ciphertexts
Cnew

1 , Cnew
2 are generated as follows:

a) (pknewenc , sk
new
enc )← Kenc(ppenc);

b) for each j ∈ {1, 2}, Cnew
j := Eenc(pknewenc , j, r) where

r is a message randomly and uniformly sampled from
plaintext space.

By Lemma A.1,
∣∣∣Adva2 −Adva1

∣∣∣ ≤ 4 · qP ·AdvEnc.
3) Experiment a3. The experiment a3 modifies a2 by re-

placing all PRF-generated values with random strings:
a) each time A issues a CreateAddress query, the value
apk within the returned addrpk is substituted with a
random string of the same length;

b) each time A issues a Pour query, each of the serial
numbers snold1 , snold2 in txPour is substituted with a
random string of the same length, and h1 and h2 with
random strings of the same length.

By Lemma A.2,
∣∣∣Adva3 −Adva2

∣∣∣ ≤ qCA ·AdvPRF

4) Experiment asim. The experiment asim is already de-
scribed above. For comparison, we explain how it differs
from a3: all the commitments are replaced with commit-
ments to random inputs:

a) each time A issues a CreatePKCM query, the com-
mitment pkcm is substituted with a random string of
suitable length; and

b) each time A issues a Mint query, the coin commitment
cm in txMint is substituted with a commitment to a
random input; and

c) each time A issues a Pour query, for each j ∈ {1, 2},
if the output address addrnewpk,j is in ADDR, cmnew

j is
substituted with a commitment to a random input.

By Lemma A.3,
∣∣∣Advasim −Adva3

∣∣∣ ≤ (qM + 4 · qP +

qCP) ·AdvCOMM

By summing over A’s advantages in the hybrid experi-
ments, we can bound A’s advantage in areal by

AdvL−IND
Π,A (λ) ≤ 4 · qP ·AdvEnc + qCA ·AdvPRF +

(qM + 4 · qP + qCP) ·AdvCOMM

which is negligible in λ. This concludes the proof of ledger
indistinguishability.

Below, we sketch proofs for the lemmas used above.

Lemma A.1: Let AdvEnc be the maximum of: A’s ad-
vantage in the IND-CCA experiment against the encryption
scheme Enc, and A’s advantage in the IK-CCA experiment
against the encryption scheme Enc. Then after qP Pour

queries,
∣∣∣Adva2 −Adva1

∣∣∣ ≤ 4 · qP ·AdvEnc.

The proof of Lemma A.1 is exactly the same to the proof
of Lemma D.1 in [25], so we omit it here.

Lemma A.2: Let AdvPRF be A’s advantage in distinguish-
ing the pseudorandom function PRF from a random function.
Then, after qCA CreateAddress queries,∣∣∣Adva3 −Adva2

∣∣∣ ≤ qCA ·AdvPRF.

Proof sketch. We first constuct a hybrid H, intermediate
between a2 and a3, in which we replace all values computed
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by the first oracle-generated key ask with random strings. On
receiving A’s first CreateAddress query, replace the public ad-
dress addrpk = (apk, pkenc) with addrpk = (τ , pkenc) where τ is
a random string of the appropriate length. On each subsequent
Pour query txPour, for each i ∈ 1, 2, if addroldpk,i = addrpk then:

1) replace snoldi with a random string of appropriate length;
2) replace each of h1, h2 with a random string of appropriate

length;
3) simulate the zk-SNARK proof πPOUR.

We now argue that A’s advantage in H is at most AdvPRF

more than in a2. Let ask be the secret key generated by the
oracle in the first CreateAddress query. In a2 (as in areal):

1) apk := PRFaddr
ask

(0);
2) for each i ∈ {1, 2}, sni := PRFsn

ask
ρ) for a random ρ;

3) for each i ∈ {1, 2}, hi := PRFpk
ask

(i‖hsig) and hsig is
unique.

Now let O be an oracle that implements either PRFask or a
random function. We show that if A distinguishes H from a2

with probability ε, we can construct a distinguisher for the two
implementations of O. In fact, when O implements PRFask ,
the distribution of the experiment is identical to that of a2;
when O is a random function, the distribution is identical to
H. Therefore, A’s advantage is at most AdvPRF.

Finally, by the hybrid argument, we extend to all qCA

oracle-generated addresses; then, A’s advantage gain from a2

to a3 is at most qCA ·AdvPRF. The final hybrid is equal to
a3, we obtain that

∣∣∣Adva3 −Adva2

∣∣∣ ≤ qCA ·AdvPRF.

Lemma A.3: Let AdvCOMM be A’s advantage against the
hiding property of COMM. After qM Mint queries, qP Pour

queries and qCP CreatePKCM queries,
∣∣∣Advasim −Adva3

∣∣∣
≤ (qM + 4 · qP + qCP) ·AdvCOMM.

Proof sketch. We only provide a short sketch, because the
structure of the argument is similar to the one used to prove
Lemma A.2 above.

For the first Mint or Pour query, replace the “internal” com-
mitment m := COMMr(apk, ρ, pkL, tL) with a COMMr(τ)
where τ is a random string of appropriate length. Since
ρ is random, A’s advantage in distinguishing this modified
experiment from a2 is at most AdvCOMM. Then, if we modify
all qM Mint queries and all qP Pour queries, by replacing the
qM +2 ·qP internal commitments with random strings, we can
bound A’s advantage by (qM + 2 · qP) ·AdvCOMM.

Next, similarly, replace the coin commitment in the first
Pour with a commitment to a random value, then A’s ad-
vantage in distinguishing this modified experiment from the
above one is at most AdvCOMM. Then, we modify all qP Pour
queries, by replacing the 2 · qP output coin commitments with
random strings, we can update the bound to A’s advantage to
(qM + 2 · qP) ·AdvCOMM.

Finally, we modify the qCP CreatePKCM commitments
to replace the resulting qCP public key commitments by a
random string of appropriate length, we obtain the experiment
asim and get that

∣∣∣Advasim −Adva3

∣∣∣ ≤ (qM + 4 · qP +

qCP) ·AdvCOMM.
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