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Abstract. Suppose that N players share cryptocurrency using an M -
out-of-N multisig scheme. If N−M+1 players disappear, the remaining
ones have a problem: They’ve permanently lost their funds.

We introduce Paralysis Proofs. A Paralysis Proof is a proof that players
cannot act in concert, e.g., some players have become unavailable. Paral-
ysis Proofs can support the construction of a Paralysis Proof System,
which helps maintain resource availability by updating (e.g., downgrad-
ing) the resource’s access structure when critical players, i.e., key-share
holders, become unavailable.

We present a very general Paralysis Proof System implementation that
combines trusted hardware, specifically Intel SGX, with a censorship-
resistant channel in the form of a blockchain. Active players may issue a
challenge to inactive or missing ones. A failure to respond in a timely way,
as recorded on the blockchain, generates a Paralysis Proof that authorizes
the trusted hardware to change the access structure, for instance, to allow
cryptocurrency to be spent without the missing players.

Paralysis Proofs help address a pervasive key-management problem in
cryptocurrencies and many other settings. We present specific instanti-
ations for Ethereum (without trusted hardware) and for Bitcoin (with
and without trusted hardware). We show that for any cryptocurrency
system, versions with trusted hardware can be far more efficient than
those without.

We also show how extensions of our techniques can encompass a rich
array of access-structure policies addressing problems well beyond paral-
ysis.

1 Introduction

Key management is an ever-present security challenge that highlights the tension
between security and convenience. It arises prominently in the context of cryp-



tocurrencies, where secret keys are used to authorize transactions. It is further
aggravated by some of the unique characteristics of cryptocurrencies.

First, as secret keys embody direct and total control over the money, key theft
immediately enables funds to be stolen. As secret keys are accessed for each
transaction, and potentially from multiple platforms, the keys of frequent users
may be highly exposed to attack. In addition to theft, accidental deletion or
corruption of keys is also fatal. Unlike traditional online banking systems where
lost credentials can be recovered via out-of-band mechanisms, the decentralized
nature of cryptocurrencies makes direct recovery of credentials from the system
impossible. Therefore, lost keys equate with lost money.

Motivated by these practical concerns, there have been various proposals for
protection and risk control mechanisms (see, e.g., [10]). However, the current
key management support that cryptocurrencies offer is scant and inadequate.
Particularly in Bitcoin, due to the limited expressiveness of its scripts, specifying
complex access-control logic is difficult. The proposed Merklized Abstract Syntax
Tree [25] can help to avoid the high transaction fees and latency that complex
scripting logic entails, but only in some settings (e.g., M -out-of-N multisig where
M � N , see Appendix B for more details).

Cryptocurrency funds associated with real world business activities, however,
require flexible and sometimes complex access structures [13], meaning subsets
of players authorized to control resources. A fundamental problem then arises
that has received little attention, a problem we call access-control paralysis.

1.1 The paralysis problem

Consider, for instance, a cryptocurrency fund that is controlled by N players via
an N -out-of-N Shamir secret sharing [26] of a single secret key or using N -out-
of-N multisigs. If one of the key holders / players and her key share disappear
due to an unforeseen event (e.g., a car accident, a broken hardware wallet, etc.),
the remaining N−1 key holders will be unable to access the fund. Such paralysis,
i.e., the inability to achieve a quorum of players, can alternatively take the form
of a key-withholding attack, where a malicious key-share holder blackmails other
players by withholding her key share. Similar problems can arise in other access
structures. For instance, given a M -out-of-N threshold setting, inability to access
N −M + 1 shares results in paralysis.

Existing secret sharing and multisig schemes cannot resolve the paralysis prob-
lem securely because of a basic paradox. Consider our N -out-of-N example from
above and suppose that we wish to avoid paralysis should one share go missing.
The only clear way to do so is to allow the N −1 remaining players to update to
an (N − 1, N)-threshold access structure should paralysis occur. If N − 1 play-
ers have this ability, though, then they can simply pretend that one share has
gone missing, downgrade the access structure, and access the fund on their own.
The system therefore effectively has an (N − 1, N)-threshold access structure.



To put it another way, the only way to avoid paralysis given a particular access
structure is not to have that access structure to begin with, but instead to have
a weaker one with lower system security.

One might argue for simply starting with an (N−1, N)-threshold in this example.
But this is strictly and unnecessarily weaker than a conditionally downgraded
(N,N)-threshold. Moreover, as we show, as we show, one may want to support
the option of multiple access-structure downgrades. Starting with the weakest
possible access structure in place would clearly then be a bad idea.

1.2 Our solution

We propose a novel technique called a Paralysis Proof System that is, to the best
of our knowledge, the first to resolve this paradox. A Paralysis Proof System
supports securely conditional migration from one access structure to another;
the access structures can be arbitrarily rich and the policy governing migration
in cases of paralysis can be quite flexible. A Paralysis Proof System can tolerate
system paralysis both in settings where players disappears and more generally
when players fail to act in concert. The principal tools that we employ to build
a general version of a Paralysis Proof System are trusted hardware—Intel SGX,
in particular—and a censorship-resistant channel in the form of a blockchain.

The critical idea behind Paralysis Proof Systems is that when some players in
an access structure fail to act, the remaining players construct a proof, called a
Paralysis Proof, that a quorum of players cannot act in concert. In our N -out-of-
N access-structure example, N − 1 players might construct a proof that an N th

player has disappeared. The proof itself takes the form of a challenge issued by
the N − 1 players to the N th on the blockchain. Given the censorship-resistant
nature of the blockchain, if the N th player is available, she can respond reliably
to the challenge. If not, the challenge of the N−1 players, together with evidence
on the blockchain of a lack of response by the N th player, constitute a Paralysis
Proof within the access structure. This proof can be fed to a piece of trusted
hardware to generate a signature using the underlying shared credentials of the
full set of N players.

A Paralysis Proof System can be realized relatively easily for Ethereum using a
smart contract, and we can even avoid trusted hardware in that setting. Scripting
constraints in Bitcoin, however, necessitate the use of trusted hardware and also
introduce some technical challenges that we address in this paper. Prime among
these is the fact that without significant bloat in its trusted computing base, an
SGX application cannot easily synch securely with the Bitcoin blockchain. We
show how to avoid a need for an SGX application realizing a Paralysis Proof
System to have a trustworthy view of the blockchain. We also present in the
paper appendix a (somewhat less efficient) approach without trusted hardware
that makes use of covenants, a proposed Bitcoin feature, and a scheme that
works in Bitcoin today, but has security and efficiency limitations.



In the limit, it is possible, of course, to have all access requests mediated by an
enclaved application, enabling arbitrarily defined access to a key. This approach,
however, renders the availability of the enclave critical in a manner that we seek
to avoid in our designs.

Let us emphasize that the capability to express timeouts does not, in itself, enable
a Paralysis Proof System. For example, a simple Bitcoin script can dictate that
the N players can spend the money before time τ0, any subset of the players of
size N−1 can spend the money in the time interval [τ0, τ1], and any subset of size
N−2 can spend the money after time τ1. However, a malicious coalition of N−2
players could simply wait until time τ2 and then spend the money without the
consent of the other two players, even if these two players are active. By contrast,
a Paralysis Proof can be used to transfer ownership of the funds to the coalition
of N−2 players only if the other two players are incapacitated. In Appendix B we
describe a combination of a Paralysis Proof System and time-based expirations
that lower the threshold should paralysis occur.

In general, Paralysis Proof Systems are conceptually simple and offer a powerful
new capability that is widely realizable today for the first time thanks to the
emergence of Intel SGX and blockchains. This capability applies to settings well
beyond cryptocurrency, e.g., file decryption, and can also be extended, as we
explain to a rich set of access-structure modification options beyond paralysis.

Paper Organization.

In Section 2, we formally define policies and security for Paralysis Proof Systems.
We explore implementation of a Paralysis Proof System for Bitcoin using SGX
in Section 3. For comparison, we also present implementation with an Ethereum
smart contract in Section 4. In Section 5, we very briefly discuss extensions of
the techniques and concepts in this paper, showing how they can enable access-
control policies in settings beyond cryptocurrency and paralysis. We conclude in
Section 6 with a brief discussion of future work.

In the paper appendices, we describe an approach to Paralysis Proof System for
Bitcoin using covenants, show how SGX can greatly improve the efficiency of
complex access-structure support for Bitcoin, and given an example of an en-
riched access-control policy that enforces daily cryptocurrency withdrawal limits.

2 Paralysis Proof Systems

Paralysis Proofs demonstrate conditions, e.g., player incapacitation, that justify
migration from one access structure to another. They serve within a Paralysis
Proof System, a system that utilizes Paralysis Proofs to enforce enriched ac-
cess control policies that can tolerate access-structure paralysis. We explain in



this section how these policies are formally specified and how the security of a
Paralysis Proof System can be formally defined.

2.1 Policy Specification

We define a Paralysis Proof System policy as a tuple (R,S,M) that specifies the
resources (R) being access-controlled, a set of access structures (S), and a set of
migration rules (M) dictating when access-structure migrations are permitted.

Let L0 = {Pi}Ni=1 denote the set of N players at beginning of the protocol,
and Lt the set of live (i.e. not incapacitated) players at time t. As we shall
see shortly, correctly determining Lt, i.e. which players are actually live, is the
main technical challenge in deploying Paralysis Proofs. We use Lt to denote
the ground truth. We assume that if a player becomes incapacitated, it remains
incapacitated throughout the protocol, i.e. P 6∈ Lt implies P 6∈ Lt′ for all t′ > t.

In this paper, an access structure s is a function s(L) → {true, false} that
determines whether a set of live players L ⊆ L0 is allowed to access the managed
resource. Access structures are monotonic, i.e., s(L) = true and L ⊆ L′ together
imply that s(L′) = true.

For a given policy, the set of access structures S and the associated migration
rules M may be represented as a directed graph G = (S,M). A node si ∈ S
is an access structure and an enhanced edge csi,sj = (si, sj) ∈ M represents
a migration condition under which access structure si may change to access
structure sj . Condition is a function that takes as input the set of live players
Lt and outputs true (migration permitted) or false (migration not permitted).
For simplicity, we let csi,sj denote a given edge or its associated function.

The goal of a policy is to specify proper access structures and migration rules
to retain access even a certain set of players become incapacitated. Depending
on the application scenarios, one may design policies to defend against different
levels of access-structure paralysis, e.g. the disappearance of up to M players.
In what we call a paralysis-free policy, if the current access structure cannot be
satisfied, switching to another satisfiable access structure should be permitted,
as long as the switch doesn’t put any of the live players at disadvantage. More
precisely, we define the set of least permissive access structures for Lt as

SLP(Lt) = {s ∈ S : s(Lt) = true ∧ (∀L ( Lt, s(L) = false)}.

That is, all players in Lt must be live to satisfy access structures in SLP. Formally,
a policy (R,S,M) is paralysis-free if ∀s ∈ S

s(Lt) = false∧SLP(Lt) 6= ∅ =⇒ ∃s′ ∈ SLP(Lt), cs,s′ ∈M s.t cs,s′(Lt) = true.

Note that a paralysis-free policy doesn’t imply the availability of the resource.
What a paralysis-free policy can guarantee is the best possible availability : if



there is a state that can get the system out of the paralysis, then the policy
should permit a transition to that state. However, if the set of live players is
too sparse to satisfy any of the prescribed access structures, then the availability
cannot be achieved.

2.2 Security of a Paralysis Proof System

A Paralysis Proof System can be implemented in various ways, e.g. using SGX
or Bitcoin scripts. We therefore model it in a very general way as an interactive
agent that grants access upon request according to the current access structure
in force. The Paralysis Proof System will migrate to another access structure
given a suitable input, specifically a Paralysis Proof.

Adversarial model. We assume an adversary that may control an arbitrary num-
ber of players. An honest player always follows the protocol, while a malicious
player controlled by the adversary may deviate arbitrarily. We assume that
the adversary has complete control of the network, with the exception that a
blockchain is available to all players, i.e. is censorship-resistant, and the maxi-
mum network latency to the blockchain is bounded by ∆.

Let s denote the state, i.e. the current effective access structure, of a Paralysis
Proof System enforcing policy (R,S,M). We say that a Paralysis Proof System
is secure if the following security properties are preserved in all states s ∈ S at
any time t:

Safety:

– A set of players L ⊆ Lt can access R only if s(L) = true.

– A transition to s′ 6= s occurs at time t only if cs,s′(Lt) = true.

Liveness:

– If s(L) = true for some L ⊆ Lt, then L can access R within ∆ time after
interacting with the Paralysis Proof System honestly.

– If cs,s′(Lt) = true, then a transition to s′ 6= s occurs within ∆ after Lt interacts
with the Paralysis Proof System honestly.

Example 1. Let’s take the example of N shareholders who wish to retain access
to a resource R should one player disappear. Let P = L0 = {Pi}Ni=1 denote the
set of N players, and P−i = P\{Pi} denote the set of N−1 players that excludes
Pi. Let I(·) denote an indicator function. A policy (R,S,M) that realizes the

aforementioned access control can be specified by S = {si}Ni=0 where

s0 = IP
si = IP−i , 1 ≤ i ≤ N

and the condition cs0,si ∈M is fulfilled for Lt = P−i.



In Example 1, the Safety property ensures that access is enforced by the current
access structure at any time, and that the access structure can be downgraded
to allow access by N − 1 shareholders only if |Lt| < N , i.e., a collusion of N − 1
shareholders cannot maliciously accuse the N th shareholder of being incapaci-
tated and thereby steal her share. The Liveness property ensures that access
is granted if the structure is satisfied by a set of cooperating players. Moreover,
if allowed by the policy, the Liveness property ensures that the access structure
will be downgraded within a bounded time should players submit legitimate re-
quests. Note that the Liveness property does not stipulate that access structure
si for i > 0 is automatically instantiated if |Lt| < N . This is because players may
not immediately activate an access-structure migration; in fact, if all players are
incapacitated, such migration cannot happen.

Paralysis Proofs. Because a Paralysis Proof System cannot directly infer Lt, our
system instead leverages the censorship-resistance of blockchain to enable players
to construct Paralysis Proofs. Note that a Paralysis Proof does not necessarily
prove Lt. It may merely prove that Pi 6∈ Lt for a given player Pi or similar facts
about Lt.

A Paralysis Proof System can be implemented by a program in an Intel SGX
enclave (c.f. Section 3) or Bitcoin scripts enhanced with covenants (c.f. Ap-
pendix A). To determine Lt in a trustworthy way, the program relies on Paral-
ysis Proofs presented by players in the system. In particular, as we shall see, to
prove that Pi 6∈ Lt, players issue to Pi a challenge on the blockchain. If Pi does
not respond within some time ∆, the challenge together with evidence of this
failure to respond constitute a Paralysis Proof one that prove Pi 6∈ Lt.

2.3 Basic Ideal Functionality

F fund

L := {Pi}Ni=1 // The IDs in L control the $money

Let ∆ be the network latency parameter, let µ ≤ 1 be a threshold parameter

On receive(spend, T ) from Pi1 , Pi2 , . . . , Pin :

Assert n ≥ µ|L|
Send $money to T

On receive(remove, i): // remove Pi and allow {Pj}j∈L\{i} to unlock the funds

Notify Pi

Wait to receive (alive) from Pi:

If Pi did not send (alive) within ∆ time then L := L \{i}

Fig. 1. The ideal functionality F fund



We model the goal of a basic Paralysis Proof System by means of the ideal func-
tionality F fund in Figure 1. The functionality F fund requires some threshold of
M -out-of-N to spend an atomic unit of money $money (where M/N is defined
by µ) and allows players to accuse a player Pi of paralysis and remove her from
the access structure. It is straightforward to implement F fund with an Ethereum
contract; see Section 4. In Section 3 and Appendix A we explore Bitcoin im-
plementations of F fund. For simplicity, our Bitcoin protocols are restricted to
µ = 1, but it is possible to extend them (Figures 3 and 6) to µ < 1 too. In
Appendix B we discuss the complexity of extended functionalities, where some
of the challenges apply to Ethereum as well.

3 Paralysis Proofs via SGX

Program for the SGX Enclave (progencl)

Hardcoded: {pki}
N
i=1 , δ, ε,∆, φreserve

On input(init):
(skSGX, pkSGX)←$KGen(1n) and output pkSGX

On input(spend, {σi}Ni=1, UTXOfund, Addrnew)

Parse UTXOfund as (V, (pk1 ∧ pk2 ∧ · · · ∧ pkn) ∨ pkn+1)
Assert pkn+1 = pkSGX

Assert Verify(σi, pki) for all 1 ≤ i ≤ n
Sign transaction t := 〈UTXOfund → Addrnew〉 with skSGX

Output t

On input(remove, UTXOfund, pkk):
Parse UTXOfund as (V, (pk1 ∧ pk2 ∧ · · · ∧ pkn) ∨ pkn+1)
Assert pkn+1 = pkSGX

(pkR, skR)←$KGen(1n)
φlifesignal := pkk ∨ (pkR ∧ (CSV ≥ ∆))
φall
′ := ∧

j 6=k
pkj

Sign transition t1, t2:
t1 := 〈(δ, φreserve)→ (ε, φlifesignal), (δ − ε, φreserve)〉
t2 := 〈(ε, φlifesignal), (V, φall ∨ pkSGX)→ (V, φ′all ∨ pkSGX)〉

Output t1 and t2

Fig. 2. The Paralysis Proof Enclave

Due to the limited expressiveness of Bitcoin scripts, it is problematic to im-
plement secure Paralysis Proofs that are compatible with the current Bitcoin
protocol (see Appendix A for a Bitcoin implementation with covenants [22]). In
this section, we describe a secure protocol using trusted hardware, namely SGX.



Protocol ΠSGX

Hardcoded: {pki}
N
i=1 , δ,∆, φreserve

Let φall , (pk1 ∧ pk2 · · · ∧ pkN )

Initialize:

{Pi} send δB to φreserve (for example, δ = 10−4)

Call Gatt.install(progencl)

pkSGX := Gatt.resume(init)

Send 〈UTXOfund → (V, φall ∨ pkSGX)〉 to the blockchain

Spend:

t := Gatt.resume(spend,{σi} , (V, φall ∨ pkSGX), Tnew)

Send t to the blockchain

Remove: // to remove Pi and allow {Pj}j 6=i to unlock the funds

t1, t2 := Gatt.resume(remove, (V, φall ∨ pkSGX), i)

Send t1 to the blockchain // notify Pi

Wait for ∆ time:

Send t2 to the blockchain

Fig. 3. An SGX based protocol for Paralysis Proofs.

Intel Software Guard Extensions (SGX) is an instruction set architecture exten-
sion that permits code execution in an isolated, tamper-free environment, and
can prove to remote users that an output represents the result of such execution.
We refer readers to [1,12,11,21] for further details on SGX.

Compared to the covenants-based scheme, the SGX-based protocol is simpler and
has better on-chain efficiency. Let us stress that the trust assumption in SGX
is local, i.e., only the players in the Paralysis Proofs protocol will be affected
should the SGX properties be broken.

Notation. Let N be the number of players at the start of ΠSGX. We denote each
player as Pi for i ∈ {1, 2, . . . , N }. Each Pi is associated with a Bitcoin public key
pki, whose corresponding secret key is only known to Pi. For simplicity, {Pi} is
used to refer to the entire set of players. We use 〈I1, I2, . . . , In → O1, O2, . . . , Om〉
to denote a transaction with input {Ii}ni=1 and output {Oi}mi=1. We use (V, φ)
to denote an UTXO of V coins and script φ.

Modeling SGX. We adopt a simplified version of the ideal functionality Gatt
defined in [24]. Compared with the original definition, we drop the parameters
sid and eid for notational simplicity. Figure 2 gives the logic of the SGX enclave,
which is used to program Gatt, and Figure 3 gives the protocol ΠSGX that realizes
the basic ideal functionality of Section 2.3. The reader is advised to refer to
Figure 4 for an illustration of ΠSGX.



Setup of Enclaves. To avoid the reliance on a centralized SGX server, each
player in ΠSGX runs her own SGX enclave with an identical program. This way,
any individual player (or set of players) can always use all the capabilities of
the protocol without being dependent on the other players. This is particularly
relevant with a signature scheme (cf. Section 2.3), but even with an N -out-of-N
multisig it is important that the enclave is not controlled by only one player,
in case the player becomes incapacitated. Each enclave first generates a fresh
key pair (pkSGXi

, skSGXi
) and outputs pkSGXi

while keeping skSGXi
secret. Each

player uses her identity Pi to endorse pkSGXi
, and all the players reach agreement

on the list of SGX identities {pkSGXi}
N
i=1. The enclaves then use {pkSGXi}

N
i=1 to

establish secure channels (TLS) with each other, and create a fresh shared secret

key skSGX that is associated with {pkSGXi}
N
i=1 (i.e., another invocation of the

setup procedure will generate a different shared key). Given the secure hardware
random number generator (RDRAND), secret keys generated by SGX are known
only to the enclaves, not to any of the players. From now on, no inter-enclave
communication is needed in the course of the protocol. Each enclave then seals its
state by encrypting it (which mainly consists of skSGX) using the hardware key
(unique to each CPU) and storing the ciphertext to persistent storage. Hence,
the enclave program does not have to run persistently, and each players can load
and run the backup when needed.

Initialization. After the setup procedure completed, the players send a small
fund (e.g. 0.00001 B) to a new output with a script (denoted φreserve) that can be
spent by pkSGX. Then the players launch the protocol by sending their unspent
output of V coins (denoted UTXOfund) to a new output of V coins with a script

that can be spent by either {pki}
N
i=1 or pkSGX.

Spend. There are two ways to spend the funds that are managed in ΠSGX. At
any time, the players can spend the money via a Bitcoin transaction that embeds
their N signatures (per φall in Figure 3). Hence, even in the case that all of the
N SGX CPUs are destroyed, the players are still able to spend the funds just as
they could before the execution of ΠSGX. However, a better way to spend the
funds is by sending N requests to an enclave, letting the enclave create a Bitcoin
transaction with a single signature (signed by skSGX). This reduces the on-chain
complexity and the transaction fee (see also Appendix B).

Remove. In this procedure, the enclave received the unspent escrow fund as
input, and generates two signed transactions: t1 is the life signal for Pk, and
t2 spends both the life signal (i.e., the unspent t1) and the escrowed fund to a

script that ({pki}
N
i=1 \{pkk })∨pkSGX can spend. The SGX enclave gives both t1

and t2 together as output. If t1 is sent to the Bitcoin blockchain, Pk can cancel
her removal by spending t1. Otherwise, t2 will become valid after the ∆ delay
and can be sent to the blockchain, thereby removing Pk’s control over the fund.
Figure 4 demonstrates an example with three players.

The Remove procedure resolves system paralysis by letting N − 1 shareholders
spend the money if one shareholder is incapacitated. Intuitively, the role of SGX



is to be an arbitrator: when any shareholder alleges that the money is stuck due
to an unresponsive party, SGX first gives the accused party ∆ time to appeal,
and the set of shareholders that controls the fund will be reduced only if no
appeal occurred.

The core idea of implementing an “appeal” in Bitcoin is to use what we call life
signals. A life signal request for party Pk is a UTXO of a negligible amount of
εB, that can be spent either by Pk — thereby signaling her liveness — or by
pkSGX but only after a delay.

Init:

t1:

t2:

5000 BTC

pk1 ∧ pk2 ∧ pk3

5000 BTC

(pk1 ∧ pk2 ∧ pk3) ∨ pkSGX

0.00001 BTC

pkSGX

0.00001 BTC

pk1 ∨ (pkR ∧ (CSV ≥ 144))

5000 BTC

(pk2 ∧ pk3) ∨ pkSGX

UTXO0

UTXO1

UTXO0

UTXO1

Fig. 4. Example of ΠSGX with three players and P1 accused of being incapacitated.

The security ofΠSGX stems from the use of relative timeout (CheckSequenceVerify [6])
in the fresh t1, and the atomicity of the signed transaction t2. To elaborate, t2
will be valid only if the witness (known as ScriptSig in Bitcoin) of each of
its inputs is correct. The witness that the SGX enclave produced for spending
the escrow fund is immediately valid, but the witness for spending t1 becomes
valid only after t1 has been incorporated into a Bitcoin block that has been
extended by ∆ additional blocks (due to the CSV condition). The shareholder
Pi that accused Pk of being incapacitated should therefore broadcast t1 to the
Bitcoin network, wait until t1 is added to the blockchain, then wait for the next
∆ blocks, and then broadcast t2 to the Bitcoin network. However, while these
∆ blocks are being generated, Pk has the opportunity to appeal by spending
t1 with the secret key skk that is known only to her (the script of t1 does not
require the CSV condition for spending with skk). Since the witnesses are bound
to the entire t2, it is impossible to maul t2 into a different transaction that uses
only the witness for the escrow fund.

Thus, setting the parameter ∆ to a large value serves two purposes: (1) giving Pk

enough time to respond, and (2) making sure that it is infeasible for an attacker



to create a secretive chain of ∆ blocks faster than the Bitcoin miners, and then
broadcast this chain (in which t2 is valid) to overtake the public blockchain.

Note that a fresh, ephemeral key pair is generated for each life signal to ensure
that t1 is unique and hence does not already reside on the blockchain (e.g., Pk

may have failed to respond to an earlier life signal but luckily another shareholder
Pj was removed at that time). The SGX enclave does not need store these
ephemeral keys, as they are consumed right after generation. Also notice that
the enclave code needs to parse the unspent escrow input and fetch the list of
current shareholders, so that the list in the output for the new escrow fund will
not include shareholders that already proved to be incapacitated earlier. Given
the aforementioned setup procedure, one may regard our enclave request format
(i.e., supplying the unspent escrow fund as input) as a method to synchronize
the N local enclaves by using the blockchain itself.

It is important to point out that the security of ΠSGX does not require the SGX
enclave to have an up-to-date view of the blockchain (in fact it does not require
any view of the blockchain), nor does it require a trusted clock. By contrast,
protocols that require a view of the blockchain have a larger attack surface, and
in particular such protocols need additional security measures in order to be
protected against rollback attacks (see, e.g., [19,4]).

In Appendix D we give a similar Paralysis Proof system that works with the
current Bitcoin protocol and does not require SGX, but the construction has a
weaker security guarantee and more than exponential overhead.

4 Paralysis Proofs in Ethereum

An Ethereum implementation of the ideal functionality F fund of Figure 1 is
straightforward. Our reference implementation consists of 117 lines of Solidity
code, and its main logic is shown in Figure 5.

This implementation differs from the ideal functionality only in minor engi-
neering changes and optimizations. Firstly, all spends must occur in multiple
contract calls, first initiating a send transaction and then accepting a signature
from each potential shareholder until the threshold is met, rather than perform-
ing the operation atomically. This is necessary, as it removes the requirement to
verify Ethereum signatures on-chain, and allows the signatures in the contract
transactions of each shareholder to serve as their signatures in F fund. It would
be possible to more closely mirror the atomic nature of our ideal functionality
by not allowing calls to remove while a withdrawal is in progress, and adding a
corresponding timeout to each withdrawal, forcing this series of signature trans-
actions to occur together.

Furthermore, there is no way to asynchronously prune keyholders that fail to
respond to a challenge in time in Ethereum, where all contract calls must be
initiated by some user. We instead check and prune any signers that did not



function spend(uint256 proposal_id) public {

// Get rid of any paralyzed keyholders

prune_paralyzed_keyholders();

require(is_keyholder(msg.sender));

require(proposal_id < proposals.length);

// add sender's signature to approval

proposal_sigs[proposal_id][msg.sender] = true;

// if enough proposers approved, send money

uint num_signatures = 0;

for (uint256 i = 0; i < keyholders.length; i++) {

if (!paralyzed[keyholders[i]]) {

if (proposal_sigs[proposal_id][keyholders[i]]) {

num_signatures++;

}

}

}

if ((num_signatures) >= required_sigs) {

if (!proposals[proposal_id].filled) {

proposals[proposal_id].filled = true;

proposals[proposal_id].to.transfer(proposals[proposal_id].amount);

}

}

}

function remove(address accused) public {

// Get rid of any paralyzed keyholders (prevent paralyzed requester)

prune_paralyzed_keyholders();

// both requester and accused must be keyholders

require(is_keyholder(msg.sender));

require(is_keyholder(accused));

// There shouldn't be any outstanding claims against accused

require(!(paralysis_claims[accused].expiry > now));

// Create and insert an Paralysis Claim

paralysis_claims[accused] = ParalysisClaim(now+delta, false);

NewAccusation(accused, now + delta); // Notify the accused

}

function respond() public {

require(paralysis_claims[msg.sender].expiry > now);

paralysis_claims[msg.sender].responded = true;

}

Fig. 5. A Solidity-based solution on Ethereum.



respond to a challenge at the beginning of each on-chain operation that requires
checking or manipulating only valid signers. This ensures that the state of un-
paralyzed signers is correct before any contract action.

A final caveat is that block timestamps are used to measure time; while this
can be trivially replaced with block numbers, which are less susceptible to miner
manipulation (timestamps are miner set), the bounded degree of manipulation
and monotonically increasing timestamp constraints on Ethereum provide some
assurance that the timestamps are reasonably accurate for our purposes.

One useful property of the Etheruem-based realization is that the multisignature
key holders need not necessarily run archival nodes: because a log is emitted
whenever a user is accused, users can simply watch transaction receipts for an
accusation against them, using any Ethereum full or lite client to respond by
calling the respond function (guaranteed to work as long as an adversary cannot
censor a user’s connection to the blockchain, given that the user accepts the
relevant trust assumptions surrounding their choice of node).

Our full contract code, which includes the logic for pruning incapacitated signers
and updating the signature threshold according to µ|L| as in F fund, is published
at https://github.com/pdaian/paralysis_proofs.

5 Beyond Paralysis Proof Systems and Cryptocurrencies

The techniques we have introduced for Paralysis Proof System in combining
SGX with blockchains can be applied to settings other than paralysis proofs and
even to settings other than cryptocurrencies. We give some examples here:

– Daily spending limits: It is possible to enforce limits on the amount of BTC
that set of players can spend in a given interval of time. For example, players
might be able to spend no more than 0.5 BTC per day. We explore this
objective, and technical limitations in efficient solutions, in Appendix C.

– Decryption: The credentials controlled by a Paralysis Proof System need not
be signing keys, but instead can be decryption keys. It is possible then, for
example, to create a deadman’s switch. For example, a document can be
decrypted by any of a set of journalists should its author be incapacitated.

– Event-driven policies: Using an oracle, e.g., [32], it is possible to condition
access-control policies on real-world events. For example, daily spending lim-
its might be denominated in USD by accessing oracle feeds on exchange rates.
Similarly, decryption credentials for a document might be released for situa-
tions other than incapacitation, e.g., if a document’s author is prosecuted by
a government. (This latter example would in all likelihood require natural
language processing, but this is not beyond the capabilities of an enclaved
application.)

https://github.com/pdaian/paralysis_proofs


The last example involving prosecution does not require use of a blockchain, of
course. Many interesting SGX-enforceable access-control policies do not. But use
of a blockchain as a censorship-resistant channel can help ensure that policies are
enforced. For example, release of a decryption key might be entangled with the
spending of cryptocurrency. A certain amount of cryptocurrency, say, 10 BTC,
might be spendable on condition that an oracle is recently queried and the
result consumed by an enclave application. This approach provides an economic
assurance of a censorship-resistant channel from the blockchain to the enclave.

6 Conclusion

We have shown how Paralysis Proof Systems enrich existing access-control poli-
cies in a way that was previously unachievable. They allow an access structure
to be modified—typically downgraded—given the incapacitation of a player or
the inability of a set of players to act in concert. While this basic capability
is realizable in Ethereum, it is only practical in Bitcoin using our techniques.
Additionally, we have also shown how Paralysis Proof Systems can be used to
control decryption keys and how the techniques introduced in this paper can
given rise to a range of interesting and sophisticated event-driven access-control
policies.

Side-channel attacks against SGX [7,17,31] are a source of concern about our
proposed schemes. In future work, we will explore techniques to mitigate such
attacks. For example, in a system that permits an N -out-of-N secret sharing
scheme to be downgraded to (N − 1)-out-of-N , it is possible for an enclave ap-
plication to store and conditionally release a single share, rather than controlling
a master secret. This would limit the damage of a side-channel attack should
the node containing the application be compromised. It is also possible to dis-
tribute secrets across enclaves, which is useful in mitigating the impact of node
compromises, but also helpful for resilience to node failures [19], another topic
of future work.

In summary, we believe that the combination of the advent of two pivotal tech-
nologies, blockchains and trusted hardware (specifically SGX), is a powerful one.
It enables new access-control regimes and we hope that our work stimulates ex-
ploration of other novel capabilities.
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Pattern123

IF
3 <pk1> <pk2> <pk3> 3 CheckMultiSig

ELSE IF
<V> <Pattern12> CheckOutputVerify 2 <pk1> <pk2> 2 CheckMultiSig

ELSE IF
<V> <Pattern13> CheckOutputVerify 2 <pk1> <pk3> 2 CheckMultiSig

ELSE IF
<V> <Pattern23> CheckOutputVerify 2 <pk2> <pk3> 2 CheckMultiSig

ELSE IF
<V> <Pattern1> CheckOutputVerify <pk1> CheckSig

ELSE IF
<V> <Pattern2> CheckOutputVerify <pk2> CheckSig

ELSE IF
<V> <Pattern3> CheckOutputVerify <pk3> CheckSig

ENDIF ENDIF ENDIF ENDIF ENDIF ENDIF ENDIF

PatternIJ for (I, J) ∈ {(1, 2), (1, 3), (2, 3)}

IF
<150> CheckSequenceVerify 2 <pkI> <pkJ> 2 CheckMultiSig

ELSE IF
<V> <Pattern123> CheckOutputVerify 1 <pk1> <pk2> <pk3> 3 CheckMultiSig

ENDIF ENDIF

PatternI for I ∈ {1, 2, 3}

IF
<150> CheckSequenceVerify <pkI> CheckSig

ELSE IF
<V> <Pattern123> CheckOutputVerify 1 <pk1> <pk2> <pk3> 3 CheckMultiSig

ENDIF ENDIF

Fig. 6. Basic paralysis covenants for three shareholders.

recursive patterns, by hashing fixed and variable data and then comparing the
result to the output P2SH address [2] or the SegWit P2WPKH/P2WSH [15] (as
well as Merkelized syntax trees [14,25]).

An exemplary paralysis covenant is illustrated in Figure 6, using syntax that is
similar to that of [22]. In this example, three shareholders can spend the entire
amount V with no restrictions, by using the 3-out-of-3 multisig condition of the
Pattern123 covenant. Any two shareholders can accuse the third shareholder of
being paralyzed, by moving the entire fund of V coins into an PatternIJ covenant
that lets them spend the coins after a relative timeout of 150 blocks. While the
150 blocks are still being created, the third shareholder can move the funds
back into the initial covenant Pattern123. Similarly, any single shareholder can
accuse the two other shareholders of being paralyzed, by moving the V coins into
the PatternI covenant.

Note that the covenants PatternIJ and PatternI must be distinct for different
values of I, J, in order to avoid collusion attacks. For example, if PatternIJ

allowed any 2-out-of-3 to spend the V funds after the timeout, then two malicious



shareholders P2, P3 could pretend that P3 is paralysed, so that P1, P2 would
accuse P3, and after the 150 blocks timeout P2, P3 will spend the funds arbitrarily
(without the consent of the honest P1).

There is certain similarity between the SGX protocol of Figure 3 and the covenants
implementation of Figure 6. The main difference is that the pkI, pkJ multisig re-
places pkSGX in the condition (pkSGX∧CSV ≥ ∆). Hence, by taking the paralysis
use-case as an example, it can be inferred that the complexity of the covenants
approach is significantly higher than that of an SGX implementation (in terms of
conceptual as well as on-chain complexity, see also Appendix B). As there have
been recent proposals to support stateless covenants in Ethereum (for better
scalability, cf. [29]), the comparative advantages of our SGX-based design may
prove useful in other contexts too.

B The Complexity of Access Structure Realizations

The ideal functionality of Section 2.3 and focus of the paper are threshold pred-
icates that require consent from µN of the N live shareholders in order to spend
the funds. (µ = 1 would mean unanimous consent.)

However, it is also possible to consider an extended functionality that requires
signatures according to a more complex access structure. E.g., any subset of 35
out of {P1, P2, . . . , P40} can spend the funds, otherwise the funds can be spent
with the consent of all shareholders in the privileged set {P1, P2, P3, P4}, or
otherwise the privileged P1, P35, P36, P37, P38, P39, P40 can spend the funds.

Such an access structure can be accomplished using cryptographic constructions,
in particular mesh signatures [5] and attribute-based signatures [18]. However,
these schemes involve bilinear pairings and are rather complex, which entails
that the on-chain verification of such schemes will be impractical or costly.

Recently, the use of SGX has been suggested for functional encryption that is
far more efficient in comparison to a standard cryptographic variant [9]. In a
similar fashion, the use of SGX for an access structure based signature scheme
implies substantial efficiency gains too. Thus, the improved efficiency applies
both to the off-chain protocol that produces signatures, and to the on-chain cost
of verifying the signature (i.e., the on-chain complexity is reduced to just one
ordinary signature verification against pkSGX).

The ideal functionality of Figure 1 can therefore be replaced with an extended
functionality that supports an access structure, and the Bitcoin protocol of Fig-
ure 3 will essentially remain the same. This is because the off-chain complexity
of creating the signature will be handled by the SGX enclave code, and the
on-chain complexity will be absorbed into a verification against pkSGX.

It is worth considering whether it is inherently that case that the high efficiency
requires SGX, or whether it is possible to design a cryptocurrency with built-in



support to access structure based signatures. In fact, certain support is offered
via the use of Merklized Abstract Syntax Trees [14,25] and Schnorr aggregate
signatures [30]. As in the “Large multi-signature constructs” of [14], we can for
example have a Merkle tree with 2 +

(
40
35

)
−

(
36
31

)
−

(
33
28

)
+

(
30
25

)
< 218 leaves,

such that all but two of the leaf nodes require a multisig by a specific subset
of {P1, P2, . . . , P40} of size 35 (excluding subsets that already include the priv-
ileged sets {P1, P2, P3, P4} and {P1, P35, P36, P37, P38, P39, P40}, without double
counting), put only the root hash on the blockchain, and expect a valid Merkle
authentication path to spend the coins. Further, the script of the leaf can use a
single aggregated public key that is created from the public keys of the 35 signers
(using delinearization [3,28]), so that the on-chain complexity is on par with that
of verifying one ordinary signature. Regarding the total on-chain complexity, we
have that transaction that spends the funds consists of one aggregated signature
for the leaf node and a Merkle authentication path of 18 sibling hashes.

However, per the discussion of OP EVAL in [14], the use of a Merklized Abstract
Syntax Trees becomes significantly more challenging for a predicate that involves
a more complex relation than a logical OR among the leaves. For instance, if the
access structure specified that P1, P2, P3 must consent, and either P4, P5 or P6, P7

must also consent, then this cannot be handled by the implementation of [14]. By
contrast, SGX can handle this instance just as easily as the previous example.

As the above discussion illustrates, harnessing SGX to spend funds according to
an access structure can be highly useful even for a cryptocurrency with a Turing-
complete scripting language (such as Ethereum). Let us point out that as long
as [30] is not yet operational, it can be quite beneficial to employ SGX even
for threshold signatures, since an ECDSA threshold scheme (without a trusted
dealer) is rather complex, cf. [10].

The use of access structures in a cryptocurrency can also incorporate a notion
of time, which in turn can help to avoid system paralysis that is caused by
disagreement together with the disappearance of some players. For instance, the
functionality can require 75% of the active players to agree on how to spend
the funds, but require only 50% of the active players after one year, and only
20% after three years. In the UTXO model of Bitcoin, this can be accomplished
via trusted hardware: whenever the players agree to spend the funds they will
specify absolute timeouts for the 50% and 20% cutoffs (using CLTV [27]), and
whenever the SGX enclave is asked to remove an incapacitated player it will
create a transaction whose output hardcodes the same absolute timeouts as the
input that is being spent. If the access structures for the different points in time
are complex, the trusted hardware based implementation will be particularly
beneficial (otherwise covenants could be used).



C Daily Withdrawal Limit using SGX

Let us consider a functionality Fdaily that allows N shareholders to spend the
funds if at least µN of them reach an agreement (for µ ≤ 1), and allows each
individual shareholder to spend a small portion of the funds (e.g., 0.1%) each day.
Moreover, the functionality allows ρN shareholders to disable the daily spending
of funds by individual shareholders (for ρ ≤ µ, which is useful in the case that
some shareholders appear to spend too much). By using ρ < µ, it is easier to
block the daily withdrawals than to reach consensus on a large expenditure.

It may be quite useful to combine Fdaily with a functionality for paralysis proofs,
but for simplicity we focus in this section on a bare implementation of just Fdaily

itself. Given an expressive enough covenants support for Bitcoin (such as [16]),
it is possible — though quite complex — to implement Fdaily using similar
methods to the ones that we describe in Appendix A. However, let us present
here the more efficient implementation that relies on trusted hardware, and can
be deployed on the current Bitcoin mainnet.

The SGX-based protocol Πdaily that implements Fdaily is given in Figure 7.

Since Bitcoin outputs must be fully consumed, Πdaily does not realize Fdaily

exactly, but instead lets each one of the shareholders perform a daily withdrawal,
in sequential order. Thus, the first shareholder has the privilege to withdraw a
small amount on the first day, the second shareholder can withdraw a small
amount on the second day, the third shareholder on the third day, and so on.
If for example the third shareholder did not withdraw, then on the forth day
any single shareholder can withdraw a small amount (on a first come first served
basis), but on the fifth day the sequential order resumes and the forth shareholder
will have the privilege to withdraw.

It should be noted that in a cryptocurrency that uses the accounts model rather
than the UTXO model (e.g., Ethereum), a more expressive realization of Fdaily

is possible. E.g., multiple shareholders can withdraw small amounts as long as
the daily limit has not yet been reached.

The gist of Πdaily is an embedding of a public key pkSGXj
into the spending

transaction, corresponding to the shareholder Pj who currently has the daily
withdrawal privilege. Since the secret key skSGXj is known only to the SGX
enclave, Pj cannot spend the funds arbitrarily, but instead has to submit to
enclave a request to spend a small amount V ′ of the V coins to an arbitrary
destination T ′. The enclave will thus also produce a new output for the rest of
the V − V ′ funds, with pkSGXj+1

embedded into it.

Since Pj may not necessarily wish to withdraw, the output that the enclaves
produces also allows spending of a small amount with a special master public
key pkSGX0

, but only after a relative timeout of ∆ blocks (since Bitcoin blocks
are created once every 10 minutes on average, ∆ = 144 blocks implies ≈ 1 day).
Hence, any shareholder who submitted a request to withdraw from the current



funds will be able to spend the signed transaction that the enclave produced for
her, but only after ∆ blocks so that Pj has the opportunity to spend first.

Protocol Πdaily

Hardcoded: {pki}
N
i=1 , µ, ρ, Vmax,∆,∆

′

Init:

1. Setup: securely generate and share (skSGX, pkSGX), (skSGX0 , pkSGX0
)

and
{

(skSGXk , pkSGXk
)
}N
k=1

among the enclaves.

2. Let φµ , [µN -out-of-N multisig among pk1, pk2, . . . , pkN ].
3. For j ∈ [N ], let ψj , [φall∨pkSGX∨(pkSGX0

∧(CSV ≥ ∆))∨(pkSGXj
∧(CSV ≥ ∆′))].

4. {Pi} escrow UTXOfund by publishing 〈UTXOfund → (V, ψ1)〉.

Spend:
1. {Pi} send µN signatures, the escrowed (V, ψcurr), and Tnew to the enclave.
2. The enclave returns a signed transaction t = 〈(V, ψcurr)→ Tnew〉.

Daily withdrawal:
1. Pk sends a signed request with the escrowed (V, ψcurr) and (V ′, T ′) to the enclave.
2. The enclave verifies that V ′ ≤ Vmax.
3. The enclave fetches curr by parsing ψcurr.
4. If k = curr then sk := skSGXk else sk := skSGX0 .
5. If k < N then ` := k + 1 else ` := 1.
6. The enclave uses sk to create the signed transaction

t = 〈(V, φcurr)→ (V − V ′, ψ`), (V ′, T ′)〉, and returns t.

Disallow daily withdrawals:
1. {Pi} send ρN signatures and the escrowed (V, ψcurr) to the enclave.
2. The enclave returns a signed transaction t = 〈(V, ψcurr)→ (V, [φall ∨ pkSGX])〉.

Fig. 7. An SGX-based realization of Fdaily.

In case µN shareholders wish to spend an arbitrary amount, or in case ρN
shareholders wish to disable the daily withdrawal feature, they can submit their
µN (or ρN) signatures to the enclave and receive a signed transaction that
takes precedence over any daily withdrawal transaction. This is accomplished
by using a small relative timeout ∆′ in the condition that allows the current
privileged shareholder to perform a daily withdrawal, so that the transaction
that was agreed upon by µN (or ρN) shareholders can be incorporated into the
blockchain earlier (e.g., ∆′ = 3 is reasonable).

Other parts of the Πdaily protocol (in particular the setup procedure) are iden-
tical to ΠSGX, see Section 3 for details.



D Purely Bitcoin-Based Paralysis Proofs

A Paralysis Proof mechanism can also be implemented without SGX (on the
current Bitcoin mainnet), albeit with subpar security and more than exponential
overhead.

Our construction utilizes the “life signal” method of Section 3. In the initial setup
phase, each player Pi will prepare unsigned transactions {ti,j,k }j∈[N ]\{i},k∈[K]

that accuse Pj (these transactions are similar to t1), and all players will sign
transactions t′i,j,k that take UTXO0 and the output of ti,j,k as inputs (these
transactions are similar to t2). K is a security parameter specifying the number
of accusation attempts that can be made. Figure 8 illustrates the transactions
in the aforementioned scheme.

This scheme can be implemented post-SegWit [8], where transaction hash (txid)
excludes the ScriptSig witness. In particular, SegWit allows one to prepare t′i,j,k
and condition its validity on that of unsigned ti,j,k.

After every player receives all the signed transactions, the players will move the
high-value fund into UTXO0. This guarantees atomicity: either every player will
have the ability to eliminate all the incapacitated player, or none of the player
will have this ability. The output of ti,j,k requires a signature from Pj before
the CSV timeout and a signature from Pi after the CSV timeout, and Pi may
embed this signature into t′i,j,k after Pj failed to spend the output of ti,j,k on the
blockchain. Since UTXO0 requires the signatures of all parties, the only way to
eliminate an incapacitated player is by using the signed transactions t′i,j,k that
were prepared in advance.

0.00001 BTC

pki

0.00001 BTC

pkj ∨ (pki ∧ (CSV ≥ 144))

5000 BTC∧
n 6=j

pkn

5000 BTC∧
n∈[N ]

pkn

UTXOjlife-signal

UTXOjlife-signal

ti,j,k:

t′i,j,k:

Fig. 8. Bitcoin-based Paralysis Proofs with N players (with public keys {pkn}n∈[N ]).
Each player Pi will prepare unsigned transactions {ti,j,k }j∈[N ]\{i},k∈[K]. All players will

sign transactions t′i,j,k.

The parameter K specifies the number of accusation attempts that can be made;
hence a malicious player that pretends to be incapacitated more than K times



will break this scheme. The SGX scheme does not exhibit this deficiency, because
any player can send a fresh small amount of bitcoins to the enclave and thereby
create an accusation transaction.

Furthermore, in order to support sequences of ` > 1 incapacitated players, the
N players will need to prepare in advance additional transactions that spend
the outputs of t′i,j,k in order to eliminate another player, and so on. The scheme
offers the most safety when ` = N−1, as this implies that any lone active player
(i.e., all other players became incapacitated) will be able to gain control over the
fund. The number of signed transactions that need to be prepared in advance is

f(`,N,K) , KN(N−1) ·K(N−1)(N−2) · · ·K(N−`+1)(N−`) ≥ Ω(K`N `).

Thus, ` = N − 1 implies that f(`,N,K) grows faster than g(N) = 2N .
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