
ar
X

iv
:1

80
2.

04
41

0v
1

 [
cs

.C
R

]
 1

3
Fe

b
20

18
1

Smart Contract-Based Access Control for the

Internet of Things
Yuanyu Zhang, Member, IEEE, Shoji Kasahara, Member, IEEE, Yulong Shen, Member, IEEE, Xiaohong Jiang,

Senior Member, IEEE, and Jianxiong Wan

Abstract—This paper investigates a critical access control issue
in the Internet of Things (IoT). In particular, we propose a
smart contract-based framework, which consists of multiple
access control contracts (ACCs), one judge contract (JC) and
one register contract (RC), to achieve distributed and trustworthy
access control for IoT systems. Each ACC provides one access
control method for a subject-object pair, and implements both
static access right validation based on predefined policies and
dynamic access right validation by checking the behavior of
the subject. The JC implements a misbehavior-judging method
to facilitate the dynamic validation of the ACCs by receiving
misbehavior reports from the ACCs, judging the misbehavior
and returning the corresponding penalty. The RC registers
the information of the access control and misbehavior-judging
methods as well as their smart contracts, and also provides
functions (e.g., register, update and delete) to manage these
methods. To demonstrate the application of the framework, we
provide a case study in an IoT system with one desktop computer,
one laptop and two Raspberry Pi single-board computers, where
the ACCs, JC and RC are implemented based on the Ethereum
smart contract platform to achieve the access control.

Index Terms—Internet of Things, access control, blockchain,
smart contract.

I. INTRODUCTION

THANKS to the rapid advance of communication and

networking technologies (e.g., Wi-Fi, Zigbee, Bluetooth),

a growing number of objects (e.g., sensors, actuators, smart

devices) are being connected to the Internet nowadays, leading

to the concept of the Internet of things (IoT) [1], [2]. The

ubiquitous interconnection of physical objects significantly

accelerates data collection, aggregation and sharing in the IoT,

making the IoT one of the most fundamental architectures for

various promising applications such as smart healthcare, intel-

ligent transportation, home automation, etc. [3], [4]. However,

such interconnection may also incur crucial security issues into

IoT systems, because adversaries can intrude into the systems

to gain illegal access to the provided resources (e.g., data,

services, storage units, computing units) by simply deploying

their own or compromising existing IoT devices [5], [6]. Thus,

Y. Zhang and S. Kasahara are with the Graduate School of Information
Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan. E-
mail:{yyzhang,kasahara}@is.naist.jp.

Y. Shen is with the School of Computer Science and Technology, Xidian
University, Xi’an, Shannxi, China. E-mail: ylshen@mail.xidian.edu.cn.

X. Jiang is with the School of Systems Information Science, Future
University Hakodate, Hakodate, Hokkaido, Japan, and the School of Com-
puter Science and Technology, Xidian University, Shaanxi, China. E-mail:
jiang@fun.ac.jp.

J.Wan is with the School of Data Science and Application, Inner Mongolia
University of Technology, P.R. China. E-mail: jxwan@imut.edu.cn.

access control, which aims to prevent the illegal resource

access from unauthorized entities, has been regarded as an

increasingly vital research issue in the IoT for both academia

and industry [7]–[9].

Traditional IoT access control schemes are mainly built on

top of the well-known access control models including the

role-based access control model (RBAC) [10], the attributed-

based access control model (ABAC) [11] and the capability-

based access control model (CapBAC) [12]. In the RBAC-

based schemes, the access control is based on the roles

(e.g., administer, guest) of subjects (i.e., entities that access

resources) within an organization. By associating the roles

with access rights (e.g., read, write, execute) and assigning the

roles to the subjects, the RBAC-based schemes can establish a

many-to-many relationship between the access rights and the

subjects [13], [14]. The ABAC-based schemes implement the

access control based on policies, which combine various types

of attributes, such as subject attributes, object (i.e., the entity

that holds resources) attributes and environment attributes, etc.,

to define a set of rules expressing under what conditions

access rights can be granted to subjects [15], [16]. In the

CapBAC-based schemes, access rights are granted to subjects

based on the concept of capability, which is a transferable

and unforgeable token of authority (e.g, a key, a ticket), and

describes a set of access rights for each subject [17], [18].

It is notable that, in the above schemes, validating the

access rights of subjects is usually conducted by a centralized

entity, which turns out to be a single point of failure. To

address this issue, distributed CapBAC models have been

proposed recently [19], [20], where the access right validation

is performed by the requested IoT objects themselves rather

than a centralized entity. However, IoT objects are usually

with low capability and thus may be easily compromised by

adversaries, so they cannot be fully trusted as the access right

validation entities. As a result, the distributed CapBAC models

may fail to tackle the access control problem in untrustworthy

IoT environments. Thus, a crucial question arises: how can we

achieve distributed and trustworthy access control in the IoT?

The answer may lie in the emerging blockchain technology,

the key enabler behind modern cryptocurrency systems like

the Bitcoin [21] and Ethereum [22]. The blockchain is initially

created as a distributed and immutable ledger of transactions

for cryptocurrency systems. Thanks to the invention of smart

contracts (executable codes that reside in the blockchain), the

blockchain has now evolved into a promising platform for

developing distributed and trustworthy applications, and has

attracted considerable attentions from researchers in the IoT

http://arxiv.org/abs/1802.04410v1

2

community [23], [24]. Therefore, this paper aims to apply

the smart contract-enabled blockchain technology to achieve

distributed and trustworthy access control for the IoT.

Some initial work has been done on the blockchain-based

access control. The authors in [25] considered the access

control issue in an IoT network with service providers, cloud

storage, user devices and smart homes, each containing a

miner and multiple IoT devices. Each home miner maintains

a local private blockchain with a policy header storing access

control policies to control all the access requests related

to the home, i.e., internal, incoming and outgoing requests.

However, the authors eliminated the critical proof-of-work

process [26] in the blockchain technology, resulting in an

untrustworthy access control scheme. Notice that the main

purpose of the blockchain in [25] is to serve as a distributed

and immutable storage for access control policies, whereas the

computing capability of the blockchain was largely wasted.

The idea of using the blockchain to only store access control

policies has also been adopted in [27], [28]. Recently, the

computing capability of the blockchain has been exploited in

[29] for access control, where the blockchain plays the role

of a decentralized access control manager. The authors used

access tokens to represent access rights and the tokens can

be delivered from one peer to another through transactions.

When delivering a token, the sender embeds access control

policies into the locking scripts of the transaction output. The

receiver of the token must unlock the locking scripts to prove

the possession of the token (i.e., the access rights to a certain

resource). Using this scheme, a peer can be granted access

rights by receiving a token, grant access rights to another

subject by delivering a token, and access an object by spending

a token. Although using locking scripts for access control is

an excellent idea, the computing capability of locking scripts

is significantly limited. Different from [29], this paper utilizes

smart contracts to provide a much higher computing capability

for achieving various access control methods. Notice that the

idea of using smart contracts for access control has been

adopted in [30], [31], where, different from this paper, the

main purpose of the smart contracts is to manage data records.

To address the limitations of the above works, this paper

proposes a smart contract-based access control framework,

which consists of multiple access control contracts (ACCs),

one judge contract (JC) and one register contract (RC), to

achieve distributed and trustworthy access control for IoT sys-

tems. In the framework, each ACC provides one access control

method for a subject-object pair, which implements both static

access right validation based on predefined access control

policies and dynamic access right validation by checking the

behavior of the subject. The ACCs also provide functions for

adding, updating and deleting access control policies. Once

called by a subject for access control, the ACC will be run

and verified by most participants in the system, ensuring the

trustworthiness of the access control. To facilitate the dynamic

validation of the ACCs, the JC provides a misbehavior-

judging method, which receives misbehavior reports about the

subjects from the ACCs, judges the misbehavior and returns

the corresponding penalty. To manage the access control and

misbehavior-judging methods, the RC registers the information

IoT device

User device

Server Peer-to-Peer

network

IoT device

Storage device

IoT device

Gateway

Fig. 1. Illustration of the considered IoT system.

(e.g., name, subject, object, smart contract) of the methods and

also provides functions to register a new method and update or

delete an existing method. To demonstrate the application of

the framework, we provide a case study, in which we employ

the Ethereum smart contract platform to implement the ACCs,

JC and RC for the access control in a IoT system with one

desktop computer, one laptop and two Raspberry Pi single-

board computers.

The remainder of this paper is organized as follows. Section

II presents the IoT system considered in this paper and Section

III introduces the underlying smart contract platform for our

access control framework. We introduce the distributed smart

contract-based framework in Section IV and provide a case

study for the proposed framework in Section V. Finally,

Section VI concludes this paper.

II. SYSTEM ARCHITECTURE

As illustrated in Fig. 1, the IoT system considered in this

paper consists of a large number of servers, storage devices,

IoT gateways and user devices, which are connected together

through a peer-to-peer (P2P) network. Also present in the

system are numerous IoT devices (e.g., sensors and actuators),

which are connected to the P2P network via the IoT gateways.

The main roles of the peers are explained as follows.

• Server: A server is a device or a cluster of devices that

can interact with the IoT devices and storage devices

to provide a variety of services (e.g., smart home) for

users. Interactions between the servers and other peers

(e.g., IoT devices, storage devices) include collecting

environmental data from the sensors, sending commands

to the actuators to perform some operation, querying data

from or storing data to the storage devices, etc.

• Storage device: A storage device can store data for other

peers of the system, like the servers, sensors and users.

Various data can be stored on the storage devices, like

the application data of the servers, environmental data

gathered by the sensors, user profiles, etc.

3

…...…… block header

Transaction

…

Contract

…

EXE

block header

Transaction

…

Contract

…

EXE

block header

Transaction

…

Contract

…

EXE

Fig. 2. Illustration of a blockchain.

• User device: A user device is a device (e.g., PCs, laptops,

smart phones) through which users can enjoy the services

(e.g., checking the current temperature of his/her own

house) provided by the servers and read data from or

write data to the storage devices.

• IoT gateway: Each IoT gateway connects a cluster of

IoT devices to the P2P network via short-range commu-

nication technologies like Bluetooth, Wi-Fi and Zigbee,

and serves as the service agent for these IoT devices at

the same time.

• IoT device: The IoT devices in the system mainly include

sensors, which can perceive environmental data (e.g.,

temperature) and send these data to the servers or storage

devices for further use, and actuators, which can perform

some operations (e.g., turning on the air conditioner) once

receiving a command from users.

In typical IoT applications, each peer may have some resources

(e.g., services, data, storage space) that are needed by the

other peers. Thus, access control must be implemented by all

resource owners to prevent unauthorized use of their resources.

For example, a server must be able to block the access requests

from users who has not signed up, or the access requests

from signed-up users for some services that they have not

subscribed. To prevent illegal use of its storage space and data,

a storage device must be able to restrict the access requests

from unauthorized peers for querying data or storing data.

An IoT device must be able to deny the unauthorized access

requests for retrieving its data or controlling its actuators.

The aim of this paper is to address the critical access

control issue for the above IoT system. In particular, we will

propose an access control framework based on smart contracts

to implement distributed and trustworthy access control.

III. SMART CONTRACT PLATFORM

A. Ethereum Platform

The proposed framework is based on the Ethereum smart

contract platform [22], through which each peer of the system

can implement access control for its resources. The main

elements of the Ethereum platform are briefly introduced as

follows. For a detailed introduction to the Ethereum platform,

please refer to [32].

• Account/Address: Ethereum has two types of accounts:

externally controlled accounts and contract accounts, both

identified by a 20-byte address. We refer to the former

simply as accounts and the latter as smart contracts or

contracts throughout this paper.

• Smart contract: A smart contract or contract is regarded

as a special account that has associated code (i.e., its

functions) and data (i.e., its state) [33]. In general, a

smart contract is compiled into a piece of bytecode in an

Ethereum-specific binary format (i.e., Ethereum Virtual

Machine bytecode) and deployed by an account to a

global database known as blockchain. A smart contract

usually provides many functions or application binary

interfaces (ABIs) that can be used to interact with it.

These ABIs can be executed by sending a transaction

from an account or a message from another contract. They

can also be executed by simply invoking the call function

without sending transactions and messages. Notice that

only the former approach can modify the data (or state)

of the contract.

• Transaction and Message: A transaction is a data pack-

age signed and sent by an account to transfer some ether

(Ethereum’s native token) to another account. In addition

to transferring ether, a transaction can also be sent with

some parameters to execute the ABIs of a contract. A

message is like a transaction, but it is sent by a contract

instead of an account to run the associated ABIs of

another contract.

• Blockchain: Like most platforms such as Bitcoin,

Ethereum also has a blockchain, which contains blocks

of transactions and smart contracts with each block

containing the hash of its previous block, as illustrated in

Fig. 2. Every node connected to the network may have

a local copy of the blockchain, and help maintain and

update the blockchain by including new blocks.

• Mining: Mining is a process that includes new blocks of

transactions and contracts into the blockchain. The nodes

performing this task are called miners. In one mining

around, each miner constructs a block of newly generated

transactions and contracts, and executes the proof-of-

work consensus algorithm, where the miners repeatedly

guesses random numbers to solve an extremely difficult

cryptographic puzzle problem related to its block until

one of them wins. The winning miner then broadcasts its

block to the other nodes in the network to validate the

block. For the block validation, each node not only checks

the formats of the transactions and contracts in the block,

but also executes the ABIs called by these transactions

in its local EVM. If the formats of the transactions

and contracts as well as the results of the called ABIs

are valid, the other nodes will include the new block

into its local blockchain; otherwise, they will discard

the block. Through mining, the whole system reaches

a common tamper-resistant consensus on the blockchain

and no participant can deceive the others by wrongly

executing the ABIs, as long as it controls no more than

half of the computing power of the system. This is the key

to achieving trustworthy access control for IoT systems.

Notice that the mining in current implementation of the

Ethereum is based on the concept of proof-of-work, while

a novel proof-of-stake consensus algorithm [34], which

depends on the economic stake of miners instead of

their computing computing power, will be used in future

4

Lookup Table

Register

Contract (RC)

ACC 1

JC

…
…

ACC 2

ACC 3

Judge

Contract (JC)

Access Control Contract (ACC)

ACC 1

ACC 2

ACC 3

Misbehavior

report

Penalty decision

header

RC

…

header

ACC 1

…

header

ACC 3

ACC 2…JC Blockchain

EXE

EXE

EXE

EXE

EXE

Fig. 3. Illustration of smart contract system.

implementation of Ethereum.

B. System Configurations

To apply the Ethereum platform in our access control frame-

work, we need to make the following basic configurations to

the system.

• Each peer must be associated with an Ethereum account

to represent itself in the system. Using the account, each

peer can claim the deployment of a smart contract and

identify itself during the access control.

• The Ethereum client can be run at all peers in the

system except for IoT devices, due to the limited energy

and computing power of IoT devices. All clients are

assumed synchronized on the same block. Using the

client, each peer except for IoT devices can directly

interact with the blockchain to deploy smart contracts

and send transactions to run the ABIs of smart contracts.

These peers can also function as miners to conduct the

mining task for the system.

• As IoT devices has no Ethereum clients, the IoT gateways

act as agents for their local IoT devices to conduct access

control for the resources of the IoT devices. To achieve

this goal, each gateway stores the accounts of its local

IoT devices and uses these accounts to sign transactions

for deploying and running smart contracts on behalf of

its local IoT devices. We assume gateways are physically

accessible and thus unlikely to be compromised, so they

can be trusted as the agents.

IV. ACCESS CONTROL FRAMEWORK

This section presents the smart contract-based distributed

access control framework. We first introduce the system of

smart contracts in the framework and then explain the main

functions provided by the framework.

A. Smart Contract System

As illustrated in Fig. 3, the proposed framework consists

of multiple access control contracts (ACCs), each of which

implements the access control for a pair of peers, one judge

TABLE I
ILLUSTRATION OF POLICY LIST.

Resource Action Permission ToLR

file A read allow 2017-12-11 16:19

file A write deny 2017-12-12 20:34

Program A execute deny 2017-12-11 16:19

...

contract (JC), which receives the misbehavior report of a

peer from an ACC, judges the misbehavior and determines

the corresponding penalty, and one register contract (RC),

which stores the information of the JC and ACCs and provide

functions to manage these contracts. Each of the contracts is

introduced as follows.

1) Access control contract (ACC): An ACC (e.g., ACC

1, ACC 2, ACC 3 in Fig. 3) is deployed by a peer (object)

who wants to control the access requests from another peer

(subject). We assume that the subject-object pair can agree

on multiple access control methods, and each method is

implemented by one ACC. As a result, one subject-object pair

can be associated with multiple ACCs, but one ACC can be

associated with one and only one subject-object pair. In this

framework, to control the access requests from the subject,

each ACC implements not only static access right validation

by checking predefined policies but also dynamic validation

by checking the behavior of the subject.

An example of the ACC is given as follows. In this example,

to achieve the access control, the ACC maintains a policy list

as illustrated in Table I, in which each row corresponds to the

policy defined on a certain (resource, action) pair. The basic

fields of each row are:

• Resource: the resource for which the policy is defined,

such as a file, a computing unit and a storage unit, etc.;

• Action: the action that is performed on the resource, such

as read, write, execute, etc.;

• Permission: the static permission predefined on the action,

such as allow, deny, etc.; and

• Time of last request (ToLR): the time of the last access

request from the subject.

The Permission field can be used for static validation and the

ToLR can be used for dynamic validation, such as detecting

the misbehavior that the subject sends access requests too

frequently in a short period of time.

To record the misbehavior that the subject has exhibited on

a certain resource as well as the corresponding penalty, the

ACC also maintains a misbehavior list for each resource (as

illustrated in Table II), where each row has the following basic

fields:

• Misbehavior: the misbehavior of the subject on this

resource, such as too frequent request in a short period

of time, etc.;

• Time: the time when the misbehavior is exhibited; and

• Penalty: the penalty on the subject for its misbehavior,

such as blocking its access requests for a certain period

of time, etc.;

The Misbehavior field may also describe the details of the

misbehavior to facilitate the misbehavior judging at the JC.

5

TABLE II
ILLUSTRATION OF MISBEHAVIOR LIST FOR EACH RESOURCE.

Misbehavior Time Penalty

Too frequent access 2017-12-11 16:19 blocked for 2 hours

Too frequent access 2017-12-12 20:34 blocked for 4 hours

...

The ACC also provides the following main ABIs to manage

the policies and implement the access control.

• policyAdd(): This ABI receives the information of a new

access control policy and adds the information to the

policy list.

• policyUpdate(): This ABI receives the information of a

policy that needs to be updated and updates the policy.

• policyDelete(): This ABI receives the identification infor-

mation of a policy and deletes the policy.

• accessControl(): This ABI receives the information re-

quired for access control and returns the access result

and penalty. This ABI implements both the static and

dynamic validation. When the subject calls (by sending

a transaction) this ABI to authorize its current access

request, both the static and dynamic validation processes

will start to check the validity of the request. Once a

possible misbehavior is detected, the ACC reports it to the

JC by sending a message to execute the misbehaviorJudge

ABI of the JC, receives a penalty decision on the mis-

behavior from the JC and takes countermeasures based

on the penalty decision. The access request is authorized

if and only if it successfully passes both the static and

dynamic validation processes.

• setJC(): In order for the ACC to execute the ABI of the

JC, the ACC needs to keep an instance of the JC, so this

ABI is to receive the address of the JC and set the JC

instance.

• deleteACC(): This ABI performs the selfdestruct opera-

tion to remove the code and storage of the ACC from

the blockchain [33], such that the ACC can no longer be

available.

Notice that only the creator of the ACC can add a new policy,

update or delete an existing policy, set the JC and delete the

ACC. Thus, permission must be carefully considered in the

implementation of the ABIs.

2) Judge contract (JC): The JC implements a misbehavior-

judging method, which judges the misbehavior of the subject

and determines the corresponding penalty, when receiving a

potential misbehavior report from an ACC, as illustrated in

Fig. 3. The penalty can be based on the misbehavior history

of the subject, so the JC may need to keep a record of

the misbehavior history of all subjects. After determining

the penalty, the JC returns the decision to the ACC for

further operation. Here, we give an example of the JC, which

maintains a misbehavior list for each subject who has behaved

abnormally, as illustrated in Fig. 4. The fields of each record

include:

• Object: the peer who suffered from the misbehavior;

• Misbehavior: the details of the misbehavior;

User A Sensor B Server C… …

Misbehavior Records

… …… … … …… …

Object Misbehavior Time Penalty

Sensor B

Server C

… …… …

2017/12/13

10:49

too frequent

request

successive

failure
2017/12/13

11:00

blocked for one

hour

blocked for two

hours

Subject

Fig. 4. Illustration of misbehavior records.

• Time: the time when the misbehavior is exhibited; and

• Penalty: the penalty imposed on the misbehavior.

The JC also provides the following main ABIs for judging

misbehavior, determining the penalty and managing the JC.

• misbehaviorJudge(): This ABI can be run by any ACC

to report the misbehavior of a subject to the JC. After

receiving the report, this ABI judges the misbehavior

of the subject, determines the penalty on the subject

based on the misbehavior history of the subject and

returns the penalty decision to the ACC that reported

the misbehavior. This ABI also adds a new misbehavior

record to the misbehavior list of the subject.

• deleteJC(): This ABI performs the selfdestruct operation

to delete the JC.

3) Register contract (RC): The main role of the RC in

the system is to manage the access control and misbehavior-

judging methods. To achieve this goal, the RC maintains a

lookup table, which registers the required information to find

and execute all the methods. An example of the lookup table

is given in Table III, in which each row contains the following

information of a method:

• MethodName: the name of the method;

• Subject: the subject of the corresponding subject-object

pair of the method;

• Object: the object of the corresponding subject-object pair

of the method;

• ScName: the name of the corresponding smart contract

implementing this method;

• Creator: the peer who created and deployed the contract;

• ScAddress: the address of the smart contract; and

• ABI: the ABIs provided by the contract.

For the JC, the Subject and Object fields are left blank. In

general, the object is the creator of the ACC as well as the

creator of the access control method. Notice that for the case

where the object is an IoT device, the creator is the local

gateway, i.e., the agent for deploying contracts and sending

transactions for the IoT device.

With the help of the lookup table, the RC provides the

following main ABIs to mange these methods.

6

TABLE III
ILLUSTRATION OF LOOKUP TABLE.

MethodName Subject Object ScName Creator ScAddress ABI

Method 1 Server A Sensor B ACC 1 Sensor B 0xca35b7d915458ef540ade6068dfe2f44e8fa733c accessControl(),...

Method 2 Server A Sensor B ACC 2 Sensor B 0xab072c469475346532bf47aea86df61761049565 accessControl(),...

Method 3 Sensor B Server A ACC 3 Server A 0xb51f6d86d4c998531056a501344060fbafc32a48 accessControl(),...

JC Judge 0x3f23c7b929cced4191ef6064ffcb33902ea1d92b misbehaviorJudge()...

...

• methodRegister(): This ABI receives the information of a

new method and registers the information into the lookup

table.

• methodUpdate(): This ABI receives the information of an

existing method that needs to be updated and update the

information, especially the fields of ScAddress and ABI.

• methodDelete(): This ABI receives the MethodName of a

method and deletes the method from the lookup table.

• getContract(): This ABI receives the MethodName of a

method and returns the address and ABIs of the contract

(i.e., the ACCs and JC) of the method.

Notice that only the creator of the method can register, update

and delete the method.

B. Main Functions of the Framework

With the help of the ACC, JC and RC smart contracts, the

framework can provide many functions to facilitate the access

control of the IoT system. These functions mainly include

registering, updating and deleting an access control method;

registering and updating the misbehavior-judging method;

adding, updating and deleting a policy of an ACC; and the

access control for a subject-object pair. The process of each

function is explained as follows.

1) Registering a new access control method: A subject-

object pair can agree on a new access control method, which

is registered by the creator (i.e., the object) of the method

through the following steps.

• Step 1: Create (i.e., write and compile) an ACC for the

new method.

• Step 2: Send a transaction to deploy the newly created

ACC onto the blockchain.

• Step 3: Send a transaction to call the methodRegister ABI

of the RC to register the required information of the new

ACC in the lookup table of the RC.

Registering the misbehavior-juding method follows the same

steps as above.

2) Updating an existing access control method: A subject-

object pair can agree on updating an existing access control

method, which is conducted by the creator of the method

through the following steps.

• Step 1: Create a new ACC, which is used to replace the

old one.

• Step 2: Send a transaction to deploy the newly created

ACC onto the blockchain.

• Step 3: Send a transaction to run the methodUpdate ABI

of the RC to update the ACC-related fields of the method,

such as the ScName, ScAddress, ABI, etc..

• Step 4: Send a transaction to run the deleteACC ABI of

the old ACC to destruct it.

Updating the misbehavior-juding method follows the same

steps as above.
3) Deleting an existing access control method: A subject-

object pair can agree on deleting an existing access control

method, which is conducted by the creator of the method

through the following steps.

• Step 1: Send a transaction to run the methodDelete ABI

of the RC to delete the information of the existing method

from the lookup table.

• Step 2: Send a transaction to run the deleteACC ABI of

the ACC of the method.

4) Adding, updating and deleting a policy: A subject-

object can agree on adding an access control policy for a

newly-deployed resource, which is conducted by the creator of

the method through sending a transaction to call the policyAdd

ABI of the corresponding ACC. Similarly, the creator can send

a transaction to call the policyUpdate (resp. policyDelete) ABI

of the ACC to update (resp. delete) an existing policy of the

access control method.
5) Access control: The ACC for the access control between

a subject-object pair can be called by either the subject or

the object. We assume that both the subject and object know

the names of all the available methods for the access control

between them. The illustration of the case where the ACC is

called by the subject is given in Fig. 5a, where a server (the

subject) wants to access the resource of an IoT device (the

object). To complete the access control, the following steps

are executed:

• Step 1: The server calls the getContract ABI of the RC

to retrieve the ACC (e.g., the ACC 2 in Fig. 5a) for the

access control.

• Step 2: The RC returns the address and ABI of the ACC

to the server.

• Step 3: The server sends a transaction, which contains

the required information for access control, to call the

accessControl ABI of the ACC. This transaction will be

encapsulated in a new block and the accessControl ABI

will not be executed until the new block is mined and

included in the blockchain by some miner.

• Step 4: During the access control process, the ACC will

send a message to call the misbehaviorJudge ABI of

the JC, if some potential misbehavior of the subject is

detected.

• Step 5: Once the misbehaviorJudge ABI completes juding

the misbehavior and determining the penalty, it will return

the penalty to the ACC.

7

header

RC

�

header

ACC 2

header

�CC 3�CC 1 �

JC

EXE

EXE

�

EXE

1
:

g e
t

th
e

�

C
C

2
:

re
tu

rn
 t

h
e

�

C
C

(e

.�
� �

C
C

 2
	

4: rep
�t misbehavior

�if any)

5 return ���alt�

Server

��ub�ec��

Io� device

�O���c��

Gatewa�

Local �atewa

local interactions

6! retu
rn

 access resu
lt

(a) ACC called by the subject.

1: send access request

8" forward access result

4
:

fo
rw

ar
d

 a
cc

es
s

re
q

u
es

t 7# retu
rn

 access resu
lt

$erver

%&u'*+,-/

01349c:;

<atewa=

>ocal ?atewa@

local interactions

header

RC

B

header

CCC 2

DCC 1
EXE

EXE

E

EXE

FH reJKMt Nisbehavior

Pif anQR

TU return VWnalXY

(b) ACC called by the object.

Fig. 5. Illustration of access control.

• Step 6: Finally, the access result will be returned to both

the subject and object, after the access control process

finishes.

Since all miners will reach a consensus on the result of the

access control through mining, so no miners can tamper with

the access control process. As the agent of the IoT device,

the local gateway informs the IoT device the real-time status

of the access control, such as the arrival of access requests

and the access results, via secure local interactions. Fig. 5b

illustrates the case where the ACC is called by the object.

The main difference between the access control in Fig. 5b

and that in Fig. 5a is that the access request of the subject

(resp. the access result) in Fig. 5b is forwarded by the object

rather than being directly sent to the accessControl ABI of the

ACC (resp. the subject).

V. CASE STUDY

This section provides a case study to demonstrate the appli-

cation of the proposed framework for distributed access control

in the IoT. We first introduce the hardware and software

used in the study and then present how the access control is

implemented based on the framework. Finally, we show some

experiment results.

Fig. 6. Hardware used in the case study.

A. Hardware and Software

We considered a case with one desktop computer (Dell

Inspiron 3650), one laptop (MacBook Pro) and two single-

board computers (Raspberriy Pi 3 Model B), as shown in Fig.

6. The specifications of these devices are listed in Table IV.

The desktop and laptop correspond to the user devices in the

system and the single-board computers correspond to the local

gateways. We considered the access control issue between the

single-board computers, of which one serves as the subject (or

the agent of the subject) and the other severs as the object (or

the agent of the object).

On each device, a geth client [35] (a command line interface

implemented in the Go language) was installed to transform

the device into an Ethereum node. With the geth clients, we

created an Ethereum account for each node and configured

these nodes to form a private blockchain network (as illustrated

in Fig. 7), where the desktop computer and the laptop play the

roles of miners due to their relatively large computing and

storage capability, and the single-board computers function

as lightweight Ethereum nodes that deploy ACCs and send

transactions for access control.

For writing and compiling the ACC at the object side,

we utilized the Remix integrated development environment

(IDE) [36], which is a browser-based IDE for Solidity (i.e.,

the programming language for writing smart contracts) [37].

In addition, we adopted the web3.js [38] (i.e., the official

Ethereum JavaScript API) at the object side to interact with

the corresponding geth client through HTTP connections for

deploying the compiled ACC and also monitoring the states of

the ACC (i.e., the results of the access control). The web3.js

was also installed at the subject side to interact with the geth

for sending access requests to the ACC via transactions and

also receiving the access control results from the ACC.

B. Implementation

The implementation of the ACC, RC and JC is based on

the examples in Section IV-A.

1) ACC: In this implementation, we defined a simple

misbehavior, which is sending access requests too frequently in

a short period of time. To help characterize the misbehavior,

we added the following fields to the rows (i.e., policies) in

Table I:

• minInterval: the minimum allowable time interval be-

tween two successive requests. If the time interval be-

tween two successive requests is less than or equal to

8

TABLE IV
SPECIFICATIONS OF DEVICES.

Device CPU Operating System Memory Hard Disk

Dell Inspiron 3650 Intel Core i7-6700, 3.40GHz Windows 10 Home (64 bit) 16GB 2TB

MacBook Pro Intel Core i5, 2GHz macOS Sierra (Version 10.12.6) 8GB 256GB

Raspberry Pi 3 Model B quad-core ARM Cortex A53, 1.2GHz Raspbian GNU/Linux 8 (jessie) 1GB SDRAM 16GB (microSD card)

blockchain

geth

webZ[js

\u]^_`t

geth

Recix

webdefs

hiklnt

geth

qining

rsuvow z {onitor

|CCs

send access

request } get

result

~iners

Fig. 7. Software used in the case study.

minInterval, the later request will be treated as a frequent

request.

• NoFR: the number of frequent requests in a short time

period.

• threshold: the threshold on the NoFR. If the NoFR is

larger than or equal to the threshold, the ACC judges

that a misbehavior occurs.

As the penalty for the misbehavior, the access requests from

the subject will be blocked for a certain time period. We

introduced a variable timeOfUnblock for each resource to

represent the time until when requests are blocked, which is

set to 0 when the requests are unblocked. We used a struct

to store the fields of a policy and applied a two-dimensional

mapping from the fields of resource (primary key) and action

(secondary key) to this struct to construct the policy list.

The ACC also contains a JC instance, through which the

misbehaviorJudge ABI of the JC can be run by the ACC.

Based on the above fields and variables, we designed the

accessControl ABI as in Algorithm 1, which receives the

inputs of resource, action and time (i.e., when the request

is sent), and returns the access result and penalty. The static

validation is from Line 7 to Line 11 and the dynamic validation

is from Line 12 to Line 23. The event returnResult(result,

penalty) in Line 28 is used to return the access result and

penalty to both the subjects and objects. For the detailed

Algorithm 1 accessControl ABI

Input: resource, action, time

Output: result, penalty

Require: policyCheck ← false, behaviorCheck ← true,

penalty ← 0, JC instance judge, policy list policies,

timeofUnblock of resource.

1: if This request is from the subject then

2: p ← policies[resource][action].

3: if timeofUnblock ≤ time then

4: if timeofUnblock > 0 then

5: p.NoFR ← 0, p.ToLR ← 0, timeofUnblock ← 0.

6: end if

7: if p.policy = ”allow” then

8: policyCheck ← true.

9: else

10: policyCheck ← false.

11: end if

12: if time − p.ToLR ≤ p.minInterval then

13: p.NoFR ← p.NoFR + 1.

14: if p.NoFR ≥ p.threshold then

15: Detect a misbehavior msb.

16: behaviorCheck ← false.

17: penalty ← judge.misbehaviorJudge(subject,

msb).

18: timeofUnblock ← time + penalty.

19: Push msb into the misbehavior list of resource.

20: end if

21: else

22: p.NoFR ← 0.

23: end if

24: end if

25: p.ToLR ← time.

26: end if

27: result ← policyCheck and behaviorCheck.

28: Trigger event returnResult(result, penalty).

implementation of the ACC, please refer to [39].

2) RC: The key issue in the implementation of the RC is

to construct the loopup table as shown in Table III. Like the

construction of policy list for the ACC, we used a struct to

store the information of each method and applied a mapping

from the field of MethodName to this struct to construct the

loopup table.

3) JC: In the implementation of the JC, we used a dynamic

array to store the misbehavior records of a subject. We con-

sidered a simple misbehavior judging method, which treats all

potential misbehavior received from the ACC as misbehavior.

When receiving a misbehavior report of a subject from the

ACC, the misbehaviorReport ABI pushes the misbehavior into

9

the misbehavior record array of the subject and then uses the

following function to determine the corresponding penalty:

penalty = (base)⌊ℓ/interval⌋, (1)

where ℓ is the number of misbehavior that the subject has

exhibited (i.e., the length of the misbehavior record array of the

subject), and base and interval are parameters that determine

how the penalty changes with ℓ. Notice that base and interval

are initialized when the JC is deployed.

4) JavaScripts at the subject and object: The access control

in this study is implemented based on the case in Fig. 5a,

where the ACC is called by the subject and the result is

returned to both sides. To implement the access control, we

created two JavaScripts (one at the subject and the other at

the object) using the web3.js to interact with the JC and ACC.

As shown in Algorithm 2, the JavaScript at the subject side

first retrieves the address addr and ABI abi of the ACC from

the RC (Line 1 - Line 3) and then sends a transaction that

contains the access request information (resource, action, time)

to run the accessControl ABI of the ACC for access control

(Line 4 - Line 5). Finally, the JavaScript watches the event

returnResult() returned from the accessControl ABI to retrieve

the access result (Line 6 - Line 11).

Algorithm 2 Access Request JavaScript

Input: resource, action, time

Output: result, penalty

1: Create a RC instance register.

2: Specify the access control method name method.

3: (addr, abi)← register.getContract(method).

4: Create an ACC instance acc with addr, abi.

5: Send a transaction containing parameters (resource, ac-

tion, time) to the accessControl ABI of acc.

6: while ture do

7: if Event returnResult() is captured then

8: (result, penalty) ← returnResult().

9: break.

10: end if

11: end while

12: return result, penalty

The JavaScript at the object side is illustrated in Algorithm

3), which uses the same statements (Line 1 - Line 3) to retrieve

the address and ABI of the ACC from the RC and infinitely

watches the returnResult() events from the ACC to know who

wants to access which resource at what time, and what the

corresponding result and penalty are (Line 4 - Line 10).

C. Experiments

Our source code for the ACC, JC, RC and JavaScripts of

the case study is now available at [39]. Based on the code, the

hardware and software, we conducted experiments to show

the feasibility of the framework for access control. We added

a policy to the ACC with minInterval set to 100 seconds and

threshold set to 2. We also set the base and interval in the

JC to 2 and 3, respectively. Fig. 8 shows the access results

displayed by the JavaScripts at the object (Fig. 8a) and subject

Algorithm 3 Access Monitor JavaScript

1: Create a RC instance register.

2: Specify the access control method name method.

3: (addr, abi)← register.getContract(method).

4: Create an ACC instance acc with addr, abi.

5: while ture do

6: if Event returnResult() is captured then

7: (result, penalty) ← returnResult().

8: Display result, penalty.

9: end if

10: end while

(a) Results at the object.

(b) Results at the subject.

Fig. 8. Access results after misbehavior occurring once.

(Fig. 8b), when the subject exhibited the misbehavior for the

first time. Fig. 9 and Fig. 10 show the access results, when

the subject exhibited the misbehavior for three times and six

10

(a) Results at the object.

(b) Results at the subject.

Fig. 9. Access results after misbehavior occurring for three times.

times, respectively. We can see that the request of the subject

is blocked for 1, 2 and 4 minutes in Fig. 8, Fig. 9 and Fig. 10,

respectively, which is consistent with the penalty determining

equation in (1).

VI. CONCLUSIONS

This paper investigated the access control issue in the IoT,

for which we proposed a smart contract-based framework

to implement distributed and trustworthy access control. The

framework includes multiple access control contracts (ACCs)

for access control between multiple subject-object pairs in the

system, one judge contract (JC) for judging the misbehavior

of the subjects during the access control, and one register

contract (RC) for managing the ACCs and JC. A case study

was also provided for the access control in a IoT system

with one desktop computer, one laptop and two Raspberry

Pi single-board computers. The case study demonstrated the

feasibility of the proposed framework in achieving distributed

and trustworthy access control for the IoT.

REFERENCES

[1] I. Yaqoob, E. Ahmed, I. A. T. Hashem, A. I. A. Ahmed, A. Gani,
M. Imran, and M. Guizani, “Internet of things architecture: Recent
advances, taxonomy, requirements, and open challenges,” IEEE Wireless

Commun., vol. 24, no. 3, pp. 10–16, 2017.
[2] M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel,

and L. Ladid, “Internet of things in the 5g era: Enablers, architecture,
and business models,” IEEE J. Sel. Areas Commun., vol. 34, no. 3, pp.
510–527, 2016.

(a) Results at the object.

(b) Results at the subject.

Fig. 10. Access results after misbehavior occurring for six times.

[3] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Trans. Ind. Informat., vol. 10, no. 4, pp. 2233–2243, 2014.

[4] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of things: A survey on enabling technologies,
protocols, and applications,” IEEE Commun. Surveys Tuts., vol. 17, no. 4,
pp. 2347–2376, 2015.

[5] C. J. DOrazio, K. K. R. Choo, and L. T. Yang, “Data exfiltration from
internet of things devices: ios devices as case studies,” IEEE Internet

Things J., vol. 4, no. 2, pp. 524–535, 2017.
[6] E. Bertino and N. Islam, “Botnets and internet of things security,”

Computer, vol. 50, no. 2, pp. 76–79, Feb. 2017. [Online]. Available:
doi.ieeecomputersociety.org/10.1109/MC.2017.62

[7] S. Sicari, A. Rizzardi, L. A. Grieco, and A. Coen-Porisini, “Security,
privacy and trust in internet of things: The road ahead,” Computer
Networks, vol. 76, pp. 146–164, 2015.

[8] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty security
considerations for cloud-supported internet of things,” IEEE Internet

Things J., vol. 3, no. 3, pp. 269–284, June 2016.
[9] A. Ouaddah, H. Mousannif, A. A. Elkalam, and A. A. Ouahman, “Access

control in the internet of things: Big challenges and new opportunities,”
Computer Networks, vol. 112, pp. 237 – 262, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128616303735

[10] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2, pp. 38–47, 1996.

[11] V. C. Hu, D. R. Kuhn, and D. F. Ferraiolo, “Attribute-based access
control,” Computer, vol. 48, no. 2, pp. 85–88, 2015.

[12] R. S. Sandhu and P. Samarati, “Access control: principle and practice,”
IEEE Commun. Mag., vol. 32, no. 9, pp. 40–48, 1994.

[13] A. Yavari, A. S. Panah, D. Georgakopoulos, P. P. Jayaraman, and
R. v. Schyndel, “Scalable role-based data disclosure control for the
internet of things,” in 2017 IEEE 37th International Conference on

Distributed Computing Systems (ICDCS), June 2017, pp. 2226–2233.
[14] Q. Liu, H. Zhang, J. Wan, and X. Chen, “An access control model for

resource sharing based on the role-based access control intended for
multi-domain manufacturing internet of things,” IEEE Access, vol. 5,
pp. 7001–7011, 2017.

doi.ieeecomputersociety.org/10.1109/MC.2017.62
http://www.sciencedirect.com/science/article/pii/S1389128616303735

11

[15] N. Ye, Y. Zhu, R.-c. Wang, R. Malekian, and L. Qiao-min, “An efficient
authentication and access control scheme for perception layer of internet
of things,” Applied Mathematics & Information Sciences, vol. 8, no. 4,
p. 1617, 2014.

[16] S. Bhatt, F. Patwa, and R. Sandhu, “Access control model for aws
internet of things,” in International Conference on Network and System
Security. Springer, 2017, pp. 721–736.

[17] S. Gusmeroli, S. Piccione, and D. Rotondi, “A capability-based security
approach to manage access control in the internet of things,” Mathemat-
ical and Computer Modelling, vol. 58, no. 5-6, pp. 1189–1205, 2013.

[18] P. N. Mahalle, B. Anggorojati, N. R. Prasad, R. Prasad et al., “Identity
authentication and capability based access control (iacac) for the internet
of things,” Journal of Cyber Security and Mobility, vol. 1, no. 4, pp.
309–348, 2013.

[19] J. L. Hernndez-Ramos, M. P. Pawlowski, A. J. Jara, A. F. Skarmeta,
and L. Ladid, “Toward a lightweight authentication and authorization
framework for smart objects,” IEEE J. Sel. Areas Commun., vol. 33,
no. 4, pp. 690–702, 2015.

[20] D. Hussein, E. Bertin, and V. Frey, “A community-driven access control
approach in distributed iot environments,” IEEE Commun. Mag., vol. 55,
no. 3, pp. 146–153, March 2017.

[21] Bitcoin - open source p2p money. [Online]. Available:
https://bitcoin.org/en/

[22] Ethereum smart contract platform. [Online]. Available:
https://www.ethereum.org/

[23] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for
the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[24] N. Kshetri, “Can blockchain strengthen the internet of things?” IT

Professional, vol. 19, no. 4, pp. 68–72, 2017.
[25] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “Blockchain for

iot security and privacy: The case study of a smart home,” in 2017 IEEE
International Conference on Pervasive Computing and Communications

Workshops (PerCom Workshops), March 2017, pp. 618–623.
[26] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[27] G. Zyskind, O. Nathan, and A. . Pentland, “Decentralizing privacy:

Using blockchain to protect personal data,” in 2015 IEEE Security and

Privacy Workshops, May 2015, pp. 180–184.
[28] D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access

control,” in IFIP International Conference on Distributed Applications

and Interoperable Systems. Springer, 2017, pp. 206–220.
[29] A. Ouaddah, A. Abou Elkalam, and A. Ait Ouahman, “Fairaccess: a new

blockchain-based access control framework for the internet of things,”
Security and Communication Networks, vol. 9, no. 18, pp. 5943–5964,
2016.

[30] A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using
blockchain for medical data access and permission management,” in
Open and Big Data (OBD), International Conference on. IEEE, 2016,
pp. 25–30.

[31] A. Ramachandran, D. Kantarcioglu et al., “Using blockchain and smart
contracts for secure data provenance management,” arXiv preprint

arXiv:1709.10000, 2017.
[32] An introduction to ethereum platform. [Online]. Available:

http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
[33] An introduction to ethereum smart contracts. [Online]. Available:

http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html
[34] Proof-of-stake. [Online]. Available:

https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
[35] Geth client for building private blockchain networks. [Online].

Available: https://github.com/ethereum/go-ethereum/wiki/geth
[36] Remix ide for ethereum smart contract programming. [Online].

Available: https://remix.ethereum.org/
[37] Solidity - a contract-oriented, high-level language

for implementing smart contract. [Online]. Available:
https://solidity.readthedocs.io/en/develop/

[38] Web3 javascript api to interact with ethereum nodes. [Online].
Available: https://github.com/ethereum/wiki/wiki/JavaScript-API

[39] Implement access control in a simple iot system using ethereum smart
contrats. [Online]. Available: http://mdlval.blogspot.jp/

https://bitcoin.org/en/
https://www.ethereum.org/
http://ethdocs.org/en/latest/introduction/what-is-ethereum.html
http://solidity.readthedocs.io/en/develop/introduction-to-smart-contracts.html
https://github.com/ethereum/wiki/wiki/Proof-of-Stake-FAQ
https://github.com/ethereum/go-ethereum/wiki/geth
https://remix.ethereum.org/
https://solidity.readthedocs.io/en/develop/
https://github.com/ethereum/wiki/wiki/JavaScript-API
http://mdlval.blogspot.jp/

	I Introduction
	II System Architecture
	III Smart Contract Platform
	III-A Ethereum Platform
	III-B System Configurations

	IV Access Control Framework
	IV-A Smart Contract System
	IV-A1 Access control contract (ACC)
	IV-A2 Judge contract (JC)
	IV-A3 Register contract (RC)

	IV-B Main Functions of the Framework
	IV-B1 Registering a new access control method
	IV-B2 Updating an existing access control method
	IV-B3 Deleting an existing access control method
	IV-B4 Adding, updating and deleting a policy
	IV-B5 Access control

	V Case Study
	V-A Hardware and Software
	V-B Implementation
	V-B1 ACC
	V-B2 RC
	V-B3 JC
	V-B4 JavaScripts at the subject and object

	V-C Experiments

	VI Conclusions
	References

